1
|
Huang HW, Wu S, Chowdhury EA, Shah DK. Expansion of platform physiologically-based pharmacokinetic model for monoclonal antibodies towards different preclinical species: cats, sheep, and dogs. J Pharmacokinet Pharmacodyn 2024; 51:621-638. [PMID: 37947924 DOI: 10.1007/s10928-023-09893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Monoclonal antibodies (mAbs) are becoming an important therapeutic option in veterinary medicine, and understanding the pharmacokinetic (PK) of mAbs in higher-order animal species is also important for human drug development. To better understand the PK of mAbs in these animals, here we have expanded a platform physiological-based pharmacokinetic (PBPK) model to characterize the disposition of mAbs in three different preclinical species: cats, sheep, and dogs. We obtained PK data for mAbs and physiological parameters for the three different species from the literature. We were able to describe the PK of mAbs following intravenous (IV) or subcutaneous administration in cats, IV administration in sheep, and IV administration dogs reasonably well by fixing the physiological parameters and just estimating the parameters related to the binding of mAbs to the neonatal Fc receptor. The platform PBPK model presented here provides a quantitative tool to predict the plasma PK of mAbs in dogs, cats, and sheep. The model can also predict mAb PK in different tissues where the site of action might be located. As such, the mAb PBPK model presented here can facilitate the discovery, development, and preclinical-to-clinical translation of mAbs for veterinary and human medicine. The model can also be modified in the future to account for more detailed compartments for certain organs, different pathophysiology in the animals, and target-mediated drug disposition.
Collapse
Affiliation(s)
- Hsien-Wei Huang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Shengjia Wu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Ekram A Chowdhury
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, 455 Pharmacy Building, Buffalo, NY, 14214-8033, USA.
| |
Collapse
|
2
|
Orgil BO, Chintanaphol M, Alberson NR, Letourneau L, Martinez HR, Towbin JA, Purevjav E. Animal Models for Mechanical Circulatory Support: A Research Review. Rev Cardiovasc Med 2024; 25:351. [PMID: 39484122 PMCID: PMC11522838 DOI: 10.31083/j.rcm2510351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 11/03/2024] Open
Abstract
Heart failure is a clinical syndrome that has become a leading public health problem worldwide. Globally, nearly 64 million individuals are currently affected by heart failure, causing considerable medical, financial, and social challenges. One therapeutic option for patients with advanced heart failure is mechanical circulatory support (MCS) which is widely used for short-term or long-term management. MCS with various ventricular assist devices (VADs) has gained traction in end-stage heart failure treatment as a bridge-to-recovery, -decision, -transplant or -destination therapy. Due to limitations in studying VADs in humans, animal studies have substantially contributed to the development and advancement of MCS devices. Large animals have provided an avenue for developing and testing new VADs and improving surgical strategies for VAD implantation and for evaluating the effects and complications of MCS on hemodynamics and organ function. VAD modeling by utilizing rodents and small animals has been successfully implemented for investigating molecular mechanisms of cardiac unloading after the implantation of MCS. This review will cover the animal research that has resulted in significant advances in the development of MCS devices and the therapeutic care of advanced heart failure.
Collapse
Affiliation(s)
- Buyan-Ochir Orgil
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Michelle Chintanaphol
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Neely R. Alberson
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | | | - Hugo R. Martinez
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| | - Jeffrey A. Towbin
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
- Pediatric Cardiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Enkhsaikhan Purevjav
- The Heart Institute, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN 38103, USA
| |
Collapse
|
3
|
Akinterinwa OE, Singh M, Vemuri S, Tyagi SC. A Need to Preserve Ejection Fraction during Heart Failure. Int J Mol Sci 2024; 25:8780. [PMID: 39201469 PMCID: PMC11354382 DOI: 10.3390/ijms25168780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Heart failure (HF) is a significant global healthcare burden with increasing prevalence and high morbidity and mortality rates. The diagnosis and management of HF are closely tied to ejection fraction (EF), a crucial parameter for evaluating disease severity and determining treatment plans. This paper emphasizes the urgent need to maintain EF during heart failure, highlighting the distinct phenotypes of HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF). It discusses the complexities of HFrEF pathophysiology and its negative impact on patient outcomes, stressing the importance of ongoing research and the development of effective therapeutic interventions to slow down the progression from preserved to reduced ejection fraction. Additionally, it explores the potential role of renal denervation in preserving ejection fraction and its implications for HFrEF management. This comprehensive review aims to offer valuable insights into the critical role of EF preservation in enhancing outcomes for patients with heart failure.
Collapse
Affiliation(s)
- Oluwaseun E. Akinterinwa
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Center for Predictive Medicine (CPM) for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40202, USA
| | - Sreevatsa Vemuri
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
4
|
Falcão-Pires I, Ferreira AF, Trindade F, Bertrand L, Ciccarelli M, Visco V, Dawson D, Hamdani N, Van Laake LW, Lezoualc'h F, Linke WA, Lunde IG, Rainer PP, Abdellatif M, Van der Velden J, Cosentino N, Paldino A, Pompilio G, Zacchigna S, Heymans S, Thum T, Tocchetti CG. Mechanisms of myocardial reverse remodelling and its clinical significance: A scientific statement of the ESC Working Group on Myocardial Function. Eur J Heart Fail 2024; 26:1454-1479. [PMID: 38837573 DOI: 10.1002/ejhf.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbimortality in Europe and worldwide. CVD imposes a heterogeneous spectrum of cardiac remodelling, depending on the insult nature, that is, pressure or volume overload, ischaemia, arrhythmias, infection, pathogenic gene variant, or cardiotoxicity. Moreover, the progression of CVD-induced remodelling is influenced by sex, age, genetic background and comorbidities, impacting patients' outcomes and prognosis. Cardiac reverse remodelling (RR) is defined as any normative improvement in cardiac geometry and function, driven by therapeutic interventions and rarely occurring spontaneously. While RR is the outcome desired for most CVD treatments, they often only slow/halt its progression or modify risk factors, calling for novel and more timely RR approaches. Interventions triggering RR depend on the myocardial insult and include drugs (renin-angiotensin-aldosterone system inhibitors, beta-blockers, diuretics and sodium-glucose cotransporter 2 inhibitors), devices (cardiac resynchronization therapy, ventricular assist devices), surgeries (valve replacement, coronary artery bypass graft), or physiological responses (deconditioning, postpartum). Subsequently, cardiac RR is inferred from the degree of normalization of left ventricular mass, ejection fraction and end-diastolic/end-systolic volumes, whose extent often correlates with patients' prognosis. However, strategies aimed at achieving sustained cardiac improvement, predictive models assessing the extent of RR, or even clinical endpoints that allow for distinguishing complete from incomplete RR or adverse remodelling objectively, remain limited and controversial. This scientific statement aims to define RR, clarify its underlying (patho)physiologic mechanisms and address (non)pharmacological options and promising strategies to promote RR, focusing on the left heart. We highlight the predictors of the extent of RR and review the prognostic significance/impact of incomplete RR/adverse remodelling. Lastly, we present an overview of RR animal models and potential future strategies under pre-clinical evaluation.
Collapse
Affiliation(s)
- Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Ana Filipa Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Fábio Trindade
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Luc Bertrand
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pôle of Cardiovascular Research, Brussels, Belgium
- WELBIO, Department, WEL Research Institute, Wavre, Belgium
| | - Michele Ciccarelli
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Cardiovascular Research Unit, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Dana Dawson
- Aberdeen Cardiovascular and Diabetes Centre, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Linda W Van Laake
- Division Heart and Lungs, Department of Cardiology and Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Frank Lezoualc'h
- Institut des Maladies Métaboliques et Cardiovasculaires, Inserm, Université Paul Sabatier, UMR 1297-I2MC, Toulouse, France
| | - Wolfgang A Linke
- Institute of Physiology II, University Hospital Münster, Münster, Germany
| | - Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway
- KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Mahmoud Abdellatif
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | | | - Nicola Cosentino
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessia Paldino
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands
- Centre of Cardiovascular Research, University of Leuven, Leuven, Belgium
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences (DISMET), Center for Basic and Clinical Immunology Research (CISI), Interdepartmental Center of Clinical and Translational Sciences (CIRCET), Interdepartmental Hypertension Research Center (CIRIAPA), Federico II University, Naples, Italy
| |
Collapse
|
5
|
Galbas MC, Straky HC, Meissner F, Reuter J, Schimmel M, Grundmann S, Czerny M, Bothe W. Cardiac dimensions and hemodynamics in healthy juvenile Landrace swine. Cardiovasc Ultrasound 2024; 22:3. [PMID: 38229189 DOI: 10.1186/s12947-023-00321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Swine are frequently used as animal model for cardiovascular research, especially in terms of representativity of human anatomy and physiology. Reference values for the most common species used in research are important for planning and execution of animal testing. Transesophageal echocardiography is the gold standard for intraoperative imaging, but can be technically challenging in swine. Its predecessor, epicardial echocardiography (EE), is a simple and fast intraoperative imaging technique, which allows comprehensive and goal-directed assessment. However, there are few echocardiographic studies describing echocardiographic parameters in juvenile swine, none of them using EE. Therefore, in this study, we provide a comprehensive dataset on multiple geometric and functional echocardiographic parameters, as well as basic hemodynamic parameters in swine using EE. METHODS The data collection was performed during animal testing in ten female swine (German Landrace, 104.4 ± 13.0 kg) before left ventricular assist device implantation. Hemodynamic data was recorded continuously, before and during EE. The herein described echocardiographic measurements were acquired according to a standardized protocol, encompassing apical, left ventricular short axis and long axis as well as epiaortic windows. In total, 50 echocardiographic parameters and 10 hemodynamic parameters were assessed. RESULTS Epicardial echocardiography was successfully performed in all animals, with a median screening time of 14 min (interquartile range 11-18 min). Referring to left ventricular function, ejection fraction was 51.6 ± 5.9% and 51.2 ± 6.2% using the Teichholz and Simpson methods, respectively. Calculated ventricular mass was 301.1 ± 64.0 g, as the left ventricular end-systolic and end-diastolic diameters were 35.3 ± 2.5 mm and 48.2 ± 3.5 mm, respectively. The mean heart rate was 103 ± 28 bpm, mean arterial pressure was 101 ± 20 mmHg and mean flow at the common carotid artery was 627 ± 203 mL/min. CONCLUSION Epicardial echocardiography allows comprehensive assessment of most common echocardiographic parameters. Compared to humans, there are important differences in swine with respect to ventricular mass, size and wall thickness, especially in the right heart. Most hemodynamic parameters were comparable between swine and humans. This data supports study planning, animal and device selection, reinforcing the three R principles in animal research.
Collapse
Affiliation(s)
- Michelle Costa Galbas
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Hendrik Cornelius Straky
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Florian Meissner
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Johanna Reuter
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Marius Schimmel
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Sebastian Grundmann
- Department of Cardiology and Angiology, Heart Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Wolfgang Bothe
- Department of Cardiovascular Surgery, Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
6
|
Galbas MC, Meissner F, Asmussen A, Straky HC, Schimmel M, Reuter J, Grundmann S, Czerny M, Bothe W. A systematic methodology for epicardial and epiaortic echocardiography in swine research models. Health Sci Rep 2024; 7:e1777. [PMID: 38186934 PMCID: PMC10767764 DOI: 10.1002/hsr2.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Perioperative echocardiography is of paramount importance during cardiac surgery. Nonetheless, in the experimental large-animal setting, it might be challenging obtaining optimal imaging when using conventional imaging acquisition techniques, such as transthoracic and transesophageal screenings. Open-chest surgery allows epicardial echocardiographic assessment with direct contact between probe and heart, thus providing superior quality. Standard protocols regarding the use of epicardial ultrasound in swine for research purposes are lacking. Methods Epicardial echocardiography was performed in 10 female German Landrace pigs undergoing cardiac surgery. A structured and comprehensive protocol for epicardial echocardiography was elaborated including apical, ventricular long and short axis, as well as epiaortic planes. All experiments were approved by the local board for animal welfare and conducted in accordance with the German animal protection law (TierSchG) and the ARRIVE guidelines. Conclusions Systematic protocols using epicardial echocardiography may serve as an additional tool to assess cardiac dimensions and function in experimental scenarios with swine models.
Collapse
Affiliation(s)
- Michelle C. Galbas
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Florian Meissner
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Alexander Asmussen
- Department of Cardiology and Angiology I, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Hendrik C. Straky
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Marius Schimmel
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Johanna Reuter
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Sebastian Grundmann
- Department of Cardiology and Angiology I, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Martin Czerny
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Wolfgang Bothe
- Department of Cardiovascular Surgery, Heart Center Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| |
Collapse
|
7
|
Bhattacharjee P, Khan Z. Sacubitril/Valsartan in the Treatment of Heart Failure With Reduced Ejection Fraction Focusing on the Impact on the Quality of Life: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Cureus 2023; 15:e48674. [PMID: 38090453 PMCID: PMC10714125 DOI: 10.7759/cureus.48674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 04/10/2024] Open
Abstract
There exists a paucity of research data reported by analyses performed on randomized clinical trials (RCTs) that encompass quality of life (QOL) and the aftermath for patients suffering from heart failure with reduced ejection fraction (HFrEF). This systematic review and meta-analysis of randomized clinical trials (RCTs) have been done to evaluate the drug sacubitril/valsartan in the treatment of heart failure (HF) with reduced ejection fraction (HFrEF) with a clear focus on the effect it bestows on measures of physical exercise tolerance and quality of life. A thorough systematic search was done in databases including Cochrane Central Register of Controlled Trials (CENTRAL), ClinicalTrials.gov, Embase, and PubMed from 1 January 2010 to 1 January 2023. The search only included published RCTs on adult patients aged 18 and above, with heart failure with reduced ejection fraction (HFrEF). Data analysis was performed by using the software RevMan 5.4 (Cochrane Collaboration, London, United Kingdom). The included studies' bias risk was assessed using the Cochrane Collaboration's Risk of Bias tool. The quality of evidence for the primary outcome was done using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) framework. This systematic review and meta-analysis of RCTs yielded 458 studies, of which eight randomized clinical trials were included and analyzed. The meta-analysis of the included trials shows that the I2 value is 61% (i.e., I2 > 50%), demonstrating a substantial heterogeneity within the studies. The left ventricular ejection fraction (LVEF) expressed in percentage was reported in the five studies, and thereby, a subgroup analysis that yielded a confidence interval (CI) of 95% had the standard mean difference of 0.02 (-0.02, 0.07). The trials had disparity between the reporting of effect on peak oxygen consumption (VO2), measured through cardiopulmonary exercise testing (CPET) methods, six-minute walking test (6MWT), overall physical activity, and exercise capacity. Sacubitril/valsartan did not exponentially improve peak VO2 or 6MWT in these trials; however, the patient-reported data suggested that the quality of life was modestly influenced by the drug. A subgroup analysis was performed using the pooled effect value by the random effects model. The findings showed that the sacubitril/valsartan group significantly was better than the control group in improving HFrEF-associated health-related quality of life (HRQoL). This study is a systematic review and meta-analysis of randomized clinical trials that evaluated the drug sacubitril/valsartan in treating heart failure with reduced ejection fraction (HFrEF) and focused on its tangible effect on the measures of physical exercise tolerance and quality of life. It depicts that the statistical scrutiny due to the lack of significant data and parity across studies did not impart significant improvement of either LVEF, peak VO2, or 6MWT with the use of sacubitril/valsartan; however, the reported exercise tolerance, including daytime physical activity, had a modest impact with the said drug. The pooled values demonstrated that the sacubitril/valsartan group significantly outperformed the control group in improving HFrEF HRQoL.
Collapse
Affiliation(s)
| | - Zahid Khan
- Acute Medicine, Mid and South Essex NHS Foundation Trust, Southend-on-Sea, GBR
- Cardiology, Barts Heart Centre, London, GBR
- Cardiology and General Medicine, Barking, Havering and Redbridge University Hospitals NHS Trust, London, GBR
- Cardiology, Royal Free Hospital, London, GBR
| |
Collapse
|
8
|
Kőrösi D, Vorobcsuk A, Fajtai D, Tátrai O, Bodor E, Farkas K, Garamvölgyi R. Adaptation of closed-chest infarction porcine model to adult Pannon minipigs. J Pharmacol Toxicol Methods 2023; 123:107469. [PMID: 37598810 DOI: 10.1016/j.vascn.2023.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The aim of the recent study was to collect data on the genotype characteristics of the Hungarian self-bred Pannon minipigs by adapting a standardized infarct model procedure. Closed chest AMI was induced by balloon occlusion for 90 min in the left anterior descendent coronary artery (LAD) in 24 adult intact female minipigs followed by reperfusion. To assess the left ventricular (LV) function, serial cardiac magnetic resonance imaging (cMRI) was performed prior to the experimental procedure, on day 3 post-AMI (72 ± 12 h), and at 1 month follow-up (Day 30 ± 2 days). Compared to baseline cMRI scans the end-diastolic volume (EDV) was increased on days 3 and 30 On day 3 the left ventricular ejection fraction (LVEF) decreased significantly but there was no statistical difference between the baseline and day 30 measurements. Cardiac output, stroke volume, and end-systolic volume significantly were increased compared to baseline on day 30 A high percentage (54%) of malignant arrhythmias occurred during the AMI procedure, with a 25% mortality rate. The compensatory capacity of the Pannon minipig heart is excellent therefore the use of different cardiac parameters and invasive measurements is advisable in chronic pharmacological experiments to complement cMRI data.
Collapse
Affiliation(s)
- Dénes Kőrösi
- Hungarian University of Agriculture and Life Sciences, Doctoral School in Animal Science, Kaposvár Campus, 40. Guba S. Kaposvár, Kaposvár H-7400, Hungary.
| | - András Vorobcsuk
- Kaposi Moritz Teaching Hospital, Department of Cardiology, 20-32. Tallián Gy. Kaposvár, Kaposvár H-7400, Hungary; Medical School, University of Pécs, Pf. 99, H-7601 Pécs, Hungary
| | - Dániel Fajtai
- Medicopus Nonprofit Ltd., 40. Guba S. Kaposvár, Kaposvár H-7400, Hungary
| | - Ottó Tátrai
- Kaposi Moritz Teaching Hospital, Department of Cardiology, 20-32. Tallián Gy. Kaposvár, Kaposvár H-7400, Hungary
| | - Emőke Bodor
- Kaposi Moritz Teaching Hospital, Department of Cardiology, 20-32. Tallián Gy. Kaposvár, Kaposvár H-7400, Hungary
| | - Kornélia Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, 1. Honvéd Pécs, Pécs H-7624, Hungary
| | - Rita Garamvölgyi
- Hungarian University of Agriculture and Life Sciences, Doctoral School in Animal Science, Kaposvár Campus, 40. Guba S. Kaposvár, Kaposvár H-7400, Hungary
| |
Collapse
|
9
|
Khan MS, Smego D, Ishidoya Y, Hirahara AM, Offei E, Ruiz Castillo MS, Gharbia O, Li H, Palatinus JA, Krueger L, Hong T, Hoareau GL, Ranjan R, Selzman CH, Shaw RM, Dosdall DJ. A canine model of chronic ischemic heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H751-H761. [PMID: 36961487 PMCID: PMC10151054 DOI: 10.1152/ajpheart.00647.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
Preclinical large animal models of chronic heart failure (HF) are crucial to both understanding pathological remodeling and translating fundamental discoveries into novel therapeutics for HF. Canine models of ischemic cardiomyopathy are historically limited by either high early mortality or failure to develop chronic heart failure. Twenty-nine healthy adult dogs (30 ± 4 kg, 15/29 male) underwent thoracotomy followed by one of three types of left anterior descending (LAD) coronary artery ligation procedures: group 1 (n = 4) (simple LAD: proximal and distal LAD ligation); group 2 (n = 14) (simple LAD plus lateral wall including ligation of the distal first diagonal and proximal first obtuse marginal); and group 3 (n = 11) (total LAD devascularization or TLD: simple LAD plus ligation of proximal LAD branches to both the right and left ventricles). Dogs were followed until chronic severe HF developed defined as left ventricular ejection fraction (LVEF) < 40% and NH2-terminal-prohormone B-type natriuretic peptide (NT-proBNP) > 900 pmol/L. Overall early survival (48-h postligation) in 29 dogs was 83% and the survival rate at postligation 5 wk was 69%. Groups 1 and 2 had 100% and 71% early survival, respectively, yet only a 50% success rate of developing chronic HF. Group 3 had excellent survival at postligation 48 h (91%) and a 100% success in the development of chronic ischemic HF. The TLD approach, which limits full LAD and collateral flow to its perfusion bed, provides excellent early survival and reliable development of chronic ischemic HF in canine hearts.NEW & NOTEWORTHY The novel total left anterior descending devascularization (TLD) approach in a canine ischemic heart failure model limits collateral flow in the ischemic zone and provides excellent early survival and repeatable development of chronic ischemic heart failure in the canine heart. This work provides a consistent large animal model for investigating heart failure mechanisms and testing novel therapeutics.
Collapse
Affiliation(s)
- Muhammad S Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
| | - Douglas Smego
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
| | - Yuki Ishidoya
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - Annie M Hirahara
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Emmanuel Offei
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Martha S Ruiz Castillo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Omar Gharbia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
| | - Hui Li
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
| | - Joseph A Palatinus
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - Lauren Krueger
- Office of Comparative Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - TingTing Hong
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Utah, Salt Lake City, Utah, United States
| | - Guillaume L Hoareau
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Department of Emergency Medicine, The University of Utah, Salt Lake City, Utah, United States
| | - Ravi Ranjan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
| | - Robin M Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| | - Derek J Dosdall
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiothoracic Surgery, Department of Surgery, The University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The University of Utah, Salt Lake City, Utah, United States
- Department of Biomedical Engineering, The University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
10
|
Kovilakath A, Wohlford G, Cowart LA. Circulating sphingolipids in heart failure. Front Cardiovasc Med 2023; 10:1154447. [PMID: 37229233 PMCID: PMC10203217 DOI: 10.3389/fcvm.2023.1154447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023] Open
Abstract
Lack of significant advancements in early detection and treatment of heart failure have precipitated the need for discovery of novel biomarkers and therapeutic targets. Over the past decade, circulating sphingolipids have elicited promising results as biomarkers that premonish adverse cardiac events. Additionally, compelling evidence directly ties sphingolipids to these events in patients with incident heart failure. This review aims to summarize the current literature on circulating sphingolipids in both human cohorts and animal models of heart failure. The goal is to provide direction and focus for future mechanistic studies in heart failure, as well as pave the way for the development of new sphingolipid biomarkers.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - George Wohlford
- Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Richmond Veteran's Affairs Medical Center, Richmond, VA, United States
| |
Collapse
|
11
|
Sridharan D, Pracha N, Rana SJ, Ahmed S, Dewani AJ, Alvi SB, Mergaye M, Ahmed U, Khan M. Preclinical Large Animal Porcine Models for Cardiac Regeneration and Its Clinical Translation: Role of hiPSC-Derived Cardiomyocytes. Cells 2023; 12:cells12071090. [PMID: 37048163 PMCID: PMC10093073 DOI: 10.3390/cells12071090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Myocardial Infarction (MI) occurs due to a blockage in the coronary artery resulting in ischemia and necrosis of cardiomyocytes in the left ventricular heart muscle. The dying cardiac tissue is replaced with fibrous scar tissue, causing a decrease in myocardial contractility and thus affecting the functional capacity of the myocardium. Treatments, such as stent placements, cardiac bypasses, or transplants are beneficial but with many limitations, and may decrease the overall life expectancy due to related complications. In recent years, with the advent of human induced pluripotent stem cells (hiPSCs), newer avenues using cell-based approaches for the treatment of MI have emerged as a potential for cardiac regeneration. While hiPSCs and their derived differentiated cells are promising candidates, their translatability for clinical applications has been hindered due to poor preclinical reproducibility. Various preclinical animal models for MI, ranging from mice to non-human primates, have been adopted in cardiovascular research to mimic MI in humans. Therefore, a comprehensive literature review was essential to elucidate the factors affecting the reproducibility and translatability of large animal models. In this review article, we have discussed different animal models available for studying stem-cell transplantation in cardiovascular applications, mainly focusing on the highly translatable porcine MI model.
Collapse
Affiliation(s)
- Divya Sridharan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Nooruddin Pracha
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Schaza Javed Rana
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, Northeast Georgia Medical Center, Gainesville, GA 30501, USA
| | - Salmman Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Lake Erie College of Osteopathic Medicine (LECOM), Erie, PA 16509, USA
| | - Anam J Dewani
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Syed Baseeruddin Alvi
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Muhamad Mergaye
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Uzair Ahmed
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmood Khan
- Department of Emergency Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Gunata M, Parlakpinar H. Experimental heart failure models in small animals. Heart Fail Rev 2023; 28:533-554. [PMID: 36504404 DOI: 10.1007/s10741-022-10286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Heart failure (HF) is one of the most critical health and economic burdens worldwide, and its prevalence is continuously increasing. HF is a disease that occurs due to a pathological change arising from the function or structure of the heart tissue and usually progresses. Numerous experimental HF models have been created to elucidate the pathophysiological mechanisms that cause HF. An understanding of the pathophysiology of HF is essential for the development of novel efficient therapies. During the past few decades, animal models have provided new insights into the complex pathogenesis of HF. Success in the pathophysiology and treatment of HF has been achieved by using animal models of HF. The development of new in vivo models is critical for evaluating treatments such as gene therapy, mechanical devices, and new surgical approaches. However, each animal model has advantages and limitations, and none of these models is suitable for studying all aspects of HF. Therefore, the researchers have to choose an appropriate experimental model that will fully reflect HF. Despite some limitations, these animal models provided a significant advance in the etiology and pathogenesis of HF. Also, experimental HF models have led to the development of new treatments. In this review, we discussed widely used experimental HF models that continue to provide critical information for HF patients and facilitate the development of new treatment strategies.
Collapse
Affiliation(s)
- Mehmet Gunata
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye
| | - Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of Medicine, Inonu University, Malatya, 44280, Türkiye.
| |
Collapse
|
13
|
Asfaw TN, Bondarenko VE. A compartmentalized mathematical model of the β 1- and β 2-adrenergic signaling systems in ventricular myocytes from mouse in heart failure. Am J Physiol Cell Physiol 2023; 324:C263-C291. [PMID: 36468844 DOI: 10.1152/ajpcell.00366.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse models of heart failure are extensively used to research human cardiovascular diseases. In particular, one of the most common is the mouse model of heart failure resulting from transverse aortic constriction (TAC). Despite this, there are no comprehensive compartmentalized mathematical models that describe the complex behavior of the action potential, [Ca2+]i transients, and their regulation by β1- and β2-adrenergic signaling systems in failing mouse myocytes. In this paper, we develop a novel compartmentalized mathematical model of failing mouse ventricular myocytes after TAC procedure. The model describes well the cell geometry, action potentials, [Ca2+]i transients, and β1- and β2-adrenergic signaling in the failing cells. Simulation results obtained with the failing cell model are compared with those from the normal ventricular myocytes. Exploration of the model reveals the sarcoplasmic reticulum Ca2+ load mechanisms in failing ventricular myocytes. We also show a larger susceptibility of the failing myocytes to early and delayed afterdepolarizations and to a proarrhythmic behavior of Ca2+ dynamics upon stimulation with isoproterenol. The mechanisms of the proarrhythmic behavior suppression are investigated and sensitivity analysis is performed. The developed model can explain the existing experimental data on failing mouse ventricular myocytes and make experimentally testable predictions of a failing myocyte's behavior.
Collapse
Affiliation(s)
- Tesfaye Negash Asfaw
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Vladimir E Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia.,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
14
|
Kuwabara Y, Howard-Quijano K, Salavatian S, Yamaguchi T, Saba S, Mahajan A. Thoracic dorsal root ganglion stimulation reduces acute myocardial ischemia induced ventricular arrhythmias. Front Neurosci 2023; 17:1091230. [PMID: 36793544 PMCID: PMC9922704 DOI: 10.3389/fnins.2023.1091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Background Dorsal root ganglion stimulation (DRGS) may serve as a novel neuromodulation strategy to reduce cardiac sympathoexcitation and ventricular excitability. Objective In this pre-clinical study, we investigated the effectiveness of DRGS on reducing ventricular arrhythmias and modulating cardiac sympathetic hyperactivity caused by myocardial ischemia. Methods Twenty-three Yorkshire pigs were randomized to two groups, which was control LAD ischemia-reperfusion (CONTROL) or LAD ischemia-reperfusion + DRGS (DRGS) group. In the DRGS group (n = 10), high-frequency stimulation (1 kHz) at the second thoracic level (T2) was initiated 30 min before ischemia and continued throughout 1 h of ischemia and 2 h of reperfusion. Cardiac electrophysiological mapping and Ventricular Arrhythmia Score (VAS) were assessed, along with evaluation of cFos expression and apoptosis in the T2 spinal cord and DRG. Results DRGS decreased the magnitude of activation recovery interval (ARI) shortening in the ischemic region (CONTROL: -201 ± 9.8 ms, DRGS: -170 ± 9.4 ms, p = 0.0373) and decreased global dispersion of repolarization (DOR) at 30 min of myocardial ischemia (CONTROL: 9546 ± 763 ms2, DRGS: 6491 ± 636 ms2, p = 0.0076). DRGS also decreased ventricular arrhythmias (VAS-CONTROL: 8.9 ± 1.1, DRGS: 6.3 ± 1.0, p = 0.038). Immunohistochemistry studies showed that DRGS decreased % cFos with NeuN expression in the T2 spinal cord (p = 0.048) and the number of apoptotic cells in the DRG (p = 0.0084). Conclusion DRGS reduced the burden of myocardial ischemia-induced cardiac sympathoexcitation and has a potential to be a novel treatment option to reduce arrhythmogenesis.
Collapse
Affiliation(s)
- Yuki Kuwabara
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kimberly Howard-Quijano
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Siamak Salavatian
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tomoki Yamaguchi
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samir Saba
- Division of Cardiology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Aman Mahajan
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Dreyfuss AD, Velalopoulou A, Avgousti H, Bell BI, Verginadis II. Preclinical models of radiation-induced cardiac toxicity: Potential mechanisms and biomarkers. Front Oncol 2022; 12:920867. [PMID: 36313656 PMCID: PMC9596809 DOI: 10.3389/fonc.2022.920867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy (RT) is an important modality in cancer treatment with >50% of cancer patients undergoing RT for curative or palliative intent. In patients with breast, lung, and esophageal cancer, as well as mediastinal malignancies, incidental RT dose to heart or vascular structures has been linked to the development of Radiation-Induced Heart Disease (RIHD) which manifests as ischemic heart disease, cardiomyopathy, cardiac dysfunction, and heart failure. Despite the remarkable progress in the delivery of radiotherapy treatment, off-target cardiac toxicities are unavoidable. One of the best-studied pathological consequences of incidental exposure of the heart to RT is collagen deposition and fibrosis, leading to the development of radiation-induced myocardial fibrosis (RIMF). However, the pathogenesis of RIMF is still largely unknown. Moreover, there are no available clinical approaches to reverse RIMF once it occurs and it continues to impair the quality of life of long-term cancer survivors. Hence, there is an increasing need for more clinically relevant preclinical models to elucidate the molecular and cellular mechanisms involved in the development of RIMF. This review offers an insight into the existing preclinical models to study RIHD and the suggested mechanisms of RIMF, as well as available multi-modality treatments and outcomes. Moreover, we summarize the valuable detection methods of RIHD/RIMF, and the clinical use of sensitive radiographic and circulating biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis I. Verginadis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
16
|
Liu S, Li RG, Martin JF. The cell-autonomous and non–cell-autonomous roles of the Hippo pathway in heart regeneration. J Mol Cell Cardiol 2022; 168:98-106. [PMID: 35526477 DOI: 10.1016/j.yjmcc.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/04/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
|
17
|
Pilz PM, Ward JE, Chang WT, Kiss A, Bateh E, Jha A, Fisch S, Podesser BK, Liao R. Large and Small Animal Models of Heart Failure With Reduced Ejection Fraction. Circ Res 2022; 130:1888-1905. [PMID: 35679365 DOI: 10.1161/circresaha.122.320246] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Heart failure (HF) describes a heterogenous complex spectrum of pathological conditions that results in structural and functional remodeling leading to subsequent impairment of cardiac function, including either systolic dysfunction, diastolic dysfunction, or both. Several factors chronically lead to HF, including cardiac volume and pressure overload that may result from hypertension, valvular lesions, acute, or chronic ischemic injuries. Major forms of HF include hypertrophic, dilated, and restrictive cardiomyopathy. The severity of cardiomyopathy can be impacted by other comorbidities such as diabetes or obesity and external stress factors. Age is another major contributor, and the number of patients with HF is rising worldwide in part due to an increase in the aged population. HF can occur with reduced ejection fraction (HF with reduced ejection fraction), that is, the overall cardiac function is compromised, and typically the left ventricular ejection fraction is lower than 40%. In some cases of HF, the ejection fraction is preserved (HF with preserved ejection fraction). Animal models play a critical role in facilitating the understanding of molecular mechanisms of how hearts fail. This review aims to summarize and describe the strengths, limitations, and outcomes of both small and large animal models of HF with reduced ejection fraction that are currently used in basic and translational research. The driving defect is a failure of the heart to adequately supply the tissues with blood due to impaired filling or pumping. An accurate model of HF with reduced ejection fraction would encompass the symptoms (fatigue, dyspnea, exercise intolerance, and edema) along with the pathology (collagen fibrosis, ventricular hypertrophy) and ultimately exhibit a decrease in cardiac output. Although countless experimental studies have been published, no model completely recapitulates the full human disease. Therefore, it is critical to evaluate the strength and weakness of each animal model to allow better selection of what animal models to use to address the scientific question proposed.
Collapse
Affiliation(s)
- Patrick M Pilz
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.).,Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Jennifer E Ward
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| | - Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Taiwan (W.-T.C.).,Department of Cardiology, Chi-Mei Medical Center, Taiwan (W.-T.C.)
| | - Attila Kiss
- Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Edward Bateh
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.)
| | - Alokkumar Jha
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.)
| | - Sudeshna Fisch
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| | - Bruno K Podesser
- Ludwig Boltzmann Institute at the Center for Biomedical Research, Medical University of Vienna, Austria (P.M.P., A.K., B.K.P.)
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, CA (P.M.P., E.B., R.L.).,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA (J.E.W., S.F., R.L.)
| |
Collapse
|
18
|
Pereira VP, Prates BM, Seyfert CE, de Morais-Pinto L. Morphological importance of coronary ostia in sheep and swine. Anat Histol Embryol 2022; 51:339-346. [PMID: 35165926 DOI: 10.1111/ahe.12793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/19/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022]
Abstract
The aortic valve was investigated in 58 sheep and 60 swine without heart disease. After fixation in 4% formalin, the distance between the ostia and the elements of the right/left aortic sinuses was measured. For the left coronary ostium (LCO), it was found that in sheep 81% were below and 19% at the level of intercomissural line (IL). In pigs, 88.3% were below and 11.7% at the IL level. In sheep, the OCL was close to the right valve commissure (CVR) in 98.3% and close to the left valve commissure (CVV) in 1.7%. In pigs, it was close to RVC at 83.3% and close to LVC at 16.7%. Regarding to RCO, it was found that in sheep 69% was below, 1.7% was above and 29.3% at the IL level. In pigs, 20% were below, 15% above and 65% at the IL level. The distance of the RCO in relation to the valve commissures was 56.9% close to LVC and 43.1% close to RVC in sheep. In pigs, 81.7% were close to LVC and 18.3% close to RVC. The position of LCO was balanced between sheep and swine, while the RCO in swine was closer to CVE when compared with sheep. The accessory coronary ostium was observed in 18.6% of sheep and 10% of pigs. Thus, it is concluded that in sheep and swine the left coronary artery is perfused only in ventricular diastole. Perfusion of the right coronary artery occurs more frequently in diastole and less frequently in ventricular systole.
Collapse
Affiliation(s)
- Vitor Pires Pereira
- Laboratório de Design Anatômico/LabDA, Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Bianca Machado Prates
- Laboratório de Design Anatômico/LabDA, Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Carlos Eduardo Seyfert
- Laboratório de Modelos Anatômicos em 3D/LabMOLA, Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Luciano de Morais-Pinto
- Laboratório de Design Anatômico/LabDA, Departamento de Morfologia, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|
19
|
Templeton EM, Lassé M, Kleffmann T, Ellmers LJ, Palmer SC, Davidson T, Scott NJA, Pickering JW, Charles CJ, Endre ZH, Cameron VA, Richards AM, Rademaker MT, Pilbrow AP. Identifying Candidate Protein Markers of Acute Kidney Injury in Acute Decompensated Heart Failure. Int J Mol Sci 2022; 23:ijms23021009. [PMID: 35055195 PMCID: PMC8778509 DOI: 10.3390/ijms23021009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
One-quarter of patients with acute decompensated heart failure (ADHF) experience acute kidney injury (AKI)—an abrupt reduction or loss of kidney function associated with increased long-term mortality. There is a critical need to identify early and real-time markers of AKI in ADHF; however, to date, no protein biomarkers have exhibited sufficient diagnostic or prognostic performance for widespread clinical uptake. We aimed to identify novel protein biomarkers of AKI associated with ADHF by quantifying changes in protein abundance in the kidneys that occur during ADHF development and recovery in an ovine model. Relative quantitative protein profiling was performed using sequential window acquisition of all theoretical fragment ion spectra–mass spectrometry (SWATH–MS) in kidney cortices from control sheep (n = 5), sheep with established rapid-pacing-induced ADHF (n = 8), and sheep after ~4 weeks recovery from ADHF (n = 7). Of the 790 proteins quantified, we identified 17 candidate kidney injury markers in ADHF, 1 potential kidney marker of ADHF recovery, and 2 potential markers of long-term renal impairment (differential abundance between groups of 1.2–2.6-fold, adjusted p < 0.05). Among these 20 candidate protein markers of kidney injury were 6 candidates supported by existing evidence and 14 novel candidates not previously implicated in AKI. Proteins of differential abundance were enriched in pro-inflammatory signalling pathways: glycoprotein VI (activated during ADHF development; adjusted p < 0.01) and acute phase response (repressed during recovery from ADHF; adjusted p < 0.01). New biomarkers for the early detection of AKI in ADHF may help us to evaluate effective treatment strategies to prevent mortality and improve outcomes for patients.
Collapse
Affiliation(s)
- Evelyn M. Templeton
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
- Correspondence: ; Tel.: +64-03-364-12-53
| | - Moritz Lassé
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Torsten Kleffmann
- Research Infrastructure Centre, Division of Health Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Leigh J. Ellmers
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Suetonia C. Palmer
- Department of Medicine, University of Otago, Christchurch 8014, New Zealand;
| | - Trent Davidson
- Department of Anatomical Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia;
| | - Nicola J. A. Scott
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - John W. Pickering
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Christopher J. Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Zoltan H. Endre
- Department of Nephrology, Prince of Wales Hospital, Sydney, NSW 2031, Australia;
| | - Vicky A. Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
- Cardiovascular Research Institute, Department of Cardiology, National University of Singapore, Singapore 119077, Singapore
| | - Miriam T. Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| | - Anna P. Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch 8014, New Zealand; (M.L.); (L.J.E.); (N.J.A.S.); (J.W.P.); (C.J.C.); (V.A.C.); (A.M.R.); (M.T.R.); (A.P.P.)
| |
Collapse
|
20
|
Abstract
Animal models provide the link between in vitro research and the first in-man application during clinical trials. They provide substantial information in preclinical studies for the assessment of new therapeutic interventions in advance of human clinical trials. However, each model has its advantages and limitations in the ability to imitate specific pathomechanisms. Therefore, the selection of an animal model for the evaluation of a specific research question or evaluation of a novel therapeutic strategy requires a precise analysis. Transplantation research is a discipline that largely benefits from the use of animal models with mouse and pig models being the most frequently used models in organ transplantation research. A suitable animal model should reflect best the situation in humans, and the researcher should be aware of the similarities as well as the limitations of the chosen model. Small animal models with rats and mice are contributing to the majority of animal experiments with the obvious advantages of these models being easy handling, low costs, and high reproductive rates. However, unfortunately, they often do not translate to clinical use. Large animal models, especially in transplantation medicine, are an important element for establishing preclinical models that do often translate to the clinic. Nevertheless, they can be costly, present increased regulatory requirements, and often are of high ethical concern. Therefore, it is crucial to select the right animal model from which extrapolations and valid conclusions can be obtained and translated into the human situation. This review provides an overview in the models frequently used in organ transplantation research.
Collapse
|
21
|
Tourki B, Halade GV. Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Front Cardiovasc Med 2021; 8:695952. [PMID: 34409075 PMCID: PMC8367012 DOI: 10.3389/fcvm.2021.695952] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is an emerging disease with signs of nonresolving inflammation, endothelial dysfunction, and multiorgan defects. Moreover, based on the clinical signs and symptoms and the rise of the obesity epidemic, the number of patients developing HFpEF is increasing. From recent molecular and cellular studies, it becomes evident that HFpEF is not a single and homogenous disease but a cluster of heterogeneous pathophysiology with aging at the base of the pyramid. Obesity superimposed on aging drives the number of inflammatory pathways that intersect with metabolic dysfunction and suboptimal inflammation. Here, we compiled information on obesity-directed macrophage dysfunction that coincide with metabolic defects. Obesity-associated proinflammatory stimuli facilitates heart and interorgan inflammation in HFpEF. Furthermore, diversified mechanisms that drive heart failure urge the need of studying pervasive and unresolved inflammation in animal models to understand HFpEF. A broad and system-based approach will help to study major translational aspects of HFpEF, since no single animal model recapitulates all signs of differential HFpEF stages in the clinical setting. Here, we covered experimental models that target HFpEF and emphasized the advances observed with formyl peptide 2 (FPR2) receptor, a prime sensor that is important in inflammation-resolution signaling. Dysfunction of FPR2 led to the development of spontaneous obesity, impaired macrophage function, and triggered kidney fibrosis, providing evidence of multiorgan defects in HFpEF in an obesogenic aging experimental model.
Collapse
Affiliation(s)
- Bochra Tourki
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, The University of South Florida, Tampa, FL, United States
| |
Collapse
|
22
|
An Ovine Model for Percutaneous Pulmonary Artery Laser Denervation: Perivascular Innervation and Ablation Lesion Characteristics. Int J Mol Sci 2021; 22:ijms22168788. [PMID: 34445490 PMCID: PMC8395814 DOI: 10.3390/ijms22168788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Pulmonary artery denervation (PADN) is an evolving interventional procedure capable to reduce pulmonary artery (PA) pressure. We aimed to compare PA nerve distribution in different specimens and assess the feasibility of an ovine model for a denervation procedure and evaluate the acute changes induced by laser energy. Methods: The experiment was divided into two phases: (1) the analysis of PA nerve distribution in sheep, pigs, and humans using histological and immunochemical methods; (2) fiberoptic PADN in sheep and postmortem laser lesion characteristics. Results: PA nerve density and distribution in sheep differ from humans, although pigs and sheep share similar characteristics, nerve fibers are observed in the media layer, adventitia, and perivascular tissue in sheep. Necrosis of the intima and focal hemorrhages within the media, adventitia, and perivascular adipose tissue were evidenced post laser PADN. Among the identified lesions, 40% reached adventitia and could be classified as effective for PADN. The use of 20 W ablation energy was safer and 30 W-ablation led to collateral organ damage. Conclusions: An ovine model is suitable for PADN procedures; however, nerve distribution in the PA bifurcation and main branches differ from human PA innervation. Laser ablation can be safely used for PADN procedures.
Collapse
|
23
|
Liu S, Li K, Wagner Florencio L, Tang L, Heallen TR, Leach JP, Wang Y, Grisanti F, Willerson JT, Perin EC, Zhang S, Martin JF. Gene therapy knockdown of Hippo signaling induces cardiomyocyte renewal in pigs after myocardial infarction. Sci Transl Med 2021; 13:13/600/eabd6892. [PMID: 34193613 DOI: 10.1126/scitranslmed.abd6892] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 04/03/2021] [Accepted: 06/11/2021] [Indexed: 01/03/2023]
Abstract
Human heart failure, a leading cause of death worldwide, is a prominent example of a chronic disease that may result from poor cell renewal. The Hippo signaling pathway is an inhibitory kinase cascade that represses adult heart muscle cell (cardiomyocyte) proliferation and renewal after myocardial infarction in genetically modified mice. Here, we investigated an adeno-associated virus 9 (AAV9)-based gene therapy to locally knock down the Hippo pathway gene Salvador (Sav) in border zone cardiomyocytes in a pig model of ischemia/reperfusion-induced myocardial infarction. Two weeks after myocardial infarction, when pigs had left ventricular systolic dysfunction, we administered AAV9-Sav-short hairpin RNA (shRNA) or a control AAV9 viral vector carrying green fluorescent protein (GFP) directly into border zone cardiomyocytes via catheter-mediated subendocardial injection. Three months after injection, pig hearts treated with a high dose of AAV9-Sav-shRNA exhibited a 14.3% improvement in ejection fraction (a measure of left ventricular systolic function), evidence of cardiomyocyte division, and reduced scar sizes compared to pigs receiving AAV9-GFP. AAV9-Sav-shRNA-treated pig hearts also displayed increased capillary density and reduced cardiomyocyte ploidy. AAV9-Sav-shRNA gene therapy was well tolerated and did not induce mortality. In addition, liver and lung pathology revealed no tumor formation. Local delivery of AAV9-Sav-shRNA gene therapy to border zone cardiomyocytes in pig hearts after myocardial infarction resulted in tissue renewal and improved function and may have utility in treating heart failure.
Collapse
Affiliation(s)
| | - Ke Li
- Texas Heart Institute, Houston, TX, USA
| | | | - Li Tang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - John P Leach
- Department of Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Francisco Grisanti
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Sui Zhang
- Texas Heart Institute, Houston, TX, USA
| | - James F Martin
- Texas Heart Institute, Houston, TX, USA. .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA.,Center for Organ Repair and Renewal and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Germena G, Hinkel R. iPSCs and Exosomes: Partners in Crime Fighting Cardiovascular Diseases. J Pers Med 2021; 11:jpm11060529. [PMID: 34207562 PMCID: PMC8230331 DOI: 10.3390/jpm11060529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality worldwide. Understanding the mechanisms at the basis of these diseases is necessary in order to generate therapeutic approaches. Recently, cardiac tissue engineering and induced pluripotent stem cell (iPSC) reprogramming has led to a skyrocketing number of publications describing cardiovascular regeneration as a promising option for cardiovascular disease treatment. Generation of artificial tissue and organoids derived from induced pluripotent stem cells is in the pipeline for regenerative medicine. The present review summarizes the multiple approaches of heart regeneration with a special focus on iPSC application. In particular, we describe the strength of iPSCs as a tool to study the molecular mechanisms driving cardiovascular pathologies, as well as their potential in drug discovery. Moreover, we will describe some insights into novel discoveries of how stem-cell-secreted biomolecules, such as exosomes, could affect cardiac regeneration, and how the fine tuning of the immune system could be a revolutionary tool in the modulation of heart regeneration.
Collapse
Affiliation(s)
- Giulia Germena
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
- Correspondence: (G.G.); (R.H.)
| | - Rabea Hinkel
- Laboratory Animal Science Unit, Leibniz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37077 Göttingen, Germany
- Stiftung Tierärztliche Hochschule Hannover, University of Veterinary Medicine, 30559 Hannover, Germany
- Correspondence: (G.G.); (R.H.)
| |
Collapse
|
25
|
Shin HS, Shin HH, Shudo Y. Current Status and Limitations of Myocardial Infarction Large Animal Models in Cardiovascular Translational Research. Front Bioeng Biotechnol 2021; 9:673683. [PMID: 33996785 PMCID: PMC8116580 DOI: 10.3389/fbioe.2021.673683] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
Establishing an appropriate disease model that mimics the complexities of human cardiovascular disease is critical for evaluating the clinical efficacy and translation success. The multifaceted and complex nature of human ischemic heart disease is difficult to recapitulate in animal models. This difficulty is often compounded by the methodological biases introduced in animal studies. Considerable variations across animal species, modifications made in surgical procedures, and inadequate randomization, sample size calculation, blinding, and heterogeneity of animal models used often produce preclinical cardiovascular research that looks promising but is irreproducible and not translatable. Moreover, many published papers are not transparent enough for other investigators to verify the feasibility of the studies and the therapeutics' efficacy. Unfortunately, successful translation of these innovative therapies in such a closed and biased research is difficult. This review discusses some challenges in current preclinical myocardial infarction research, focusing on the following three major inhibitors for its successful translation: Inappropriate disease model, frequent modifications to surgical procedures, and insufficient reporting transparency.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Heather Hyeyoon Shin
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
26
|
Liu Chung Ming C, Sesperez K, Ben-Sefer E, Arpon D, McGrath K, McClements L, Gentile C. Considerations to Model Heart Disease in Women with Preeclampsia and Cardiovascular Disease. Cells 2021; 10:899. [PMID: 33919808 PMCID: PMC8070848 DOI: 10.3390/cells10040899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Preeclampsia is a multifactorial cardiovascular disorder diagnosed after 20 weeks of gestation, and is the leading cause of death for both mothers and babies in pregnancy. The pathophysiology remains poorly understood due to the variability and unpredictability of disease manifestation when studied in animal models. After preeclampsia, both mothers and offspring have a higher risk of cardiovascular disease (CVD), including myocardial infarction or heart attack and heart failure (HF). Myocardial infarction is an acute myocardial damage that can be treated through reperfusion; however, this therapeutic approach leads to ischemic/reperfusion injury (IRI), often leading to HF. In this review, we compared the current in vivo, in vitro and ex vivo model systems used to study preeclampsia, IRI and HF. Future studies aiming at evaluating CVD in preeclampsia patients could benefit from novel models that better mimic the complex scenario described in this article.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kimberly Sesperez
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Eitan Ben-Sefer
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - David Arpon
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
| | - Kristine McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia; (K.S.); (K.M.); (L.M.)
| | - Carmine Gentile
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Sydney, NSW 2007, Australia; (C.L.C.M.); (E.B.-S.); (D.A.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2000, Australia
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Li Y, Chen X, Jin R, Chen L, Dang M, Cao H, Dong Y, Cai B, Bai G, Gooding JJ, Liu S, Zou D, Zhang Z, Yang C. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. SCIENCE ADVANCES 2021; 7:7/9/eabd6740. [PMID: 33627421 PMCID: PMC7904259 DOI: 10.1126/sciadv.abd6740] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Current therapeutic strategies such as angiogenic therapy and anti-inflammatory therapy for treating myocardial infarction have limited success. An effective approach may benefit from resolution of excessive inflammation combined with enhancement of angiogenesis. Here, we developed a microRNA-21-5p delivery system using functionalized mesoporous silica nanoparticles (MSNs) with additional intrinsic therapeutic effects. These nanocarriers were encapsulated into an injectable hydrogel matrix (Gel@MSN/miR-21-5p) to enable controlled on-demand microRNA-21 delivery triggered by the local acidic microenvironment. In a porcine model of myocardial infarction, we demonstrated that the released MSN complexes notably inhibited the inflammatory response by inhibiting the polarization of M1 macrophage within the infarcted myocardium, while further microRNA-21-5p delivery by MSNs to endothelial cells markedly promoted local neovascularization and rescued at-risk cardiomyocytes. The synergy of anti-inflammatory and proangiogenic effects effectively reduced infarct size in a porcine model of myocardial infarction.
Collapse
Affiliation(s)
- Yan Li
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Ronghua Jin
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Lu Chen
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Dang
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Cao
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yun Dong
- Department of Cardiac Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Guo Bai
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - J Justin Gooding
- School of Chemistry, Australian Centre for NanoMedicine and ARC Australian, Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney 2052, Australia
| | - Shiyu Liu
- Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Duohong Zou
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Zhiyuan Zhang
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chi Yang
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
28
|
O’Kelly AC, Lau ES. Sex Differences in HFpEF. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2020. [DOI: 10.1007/s11936-020-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Charles CJ, Rademaker MT, Scott NJA, Richards AM. Large Animal Models of Heart Failure: Reduced vs. Preserved Ejection Fraction. Animals (Basel) 2020; 10:E1906. [PMID: 33080942 PMCID: PMC7603281 DOI: 10.3390/ani10101906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) is the final common end point of multiple metabolic and cardiovascular diseases and imposes a significant health care burden worldwide. Despite significant improvements in clinical management and outcomes, morbidity and mortality remain high and there remains an indisputable need for improved treatment options. The pathophysiology of HF is complex and covers a spectrum of clinical presentations from HF with reduced ejection fraction (HFrEF) (≤40% EF) through to HF with preserved EF (HFpEF), with HFpEF patients demonstrating a reduced ability of the heart to relax despite an EF maintained above 50%. Prior to the last decade, the majority of clinical trials and animal models addressed HFrEF. Despite growing efforts recently to understand underlying mechanisms of HFpEF and find effective therapies for its treatment, clinical trials in patients with HFpEF have failed to demonstrate improvements in mortality. A significant obstacle to therapeutic innovation in HFpEF is the absence of preclinical models including large animal models which, unlike rodents, permit detailed instrumentation and extensive imaging and sampling protocols. Although several large animal models of HFpEF have been reported, none fulfil all the features present in human disease and few demonstrate progression to frank decompensated HF. This review summarizes well-established models of HFrEF in pigs, dogs and sheep and discusses attempts to date to model HFpEF in these species.
Collapse
Affiliation(s)
- Christopher J. Charles
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch 8011, New Zealand; (M.T.R.); (N.J.A.S.); (A.M.R.)
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Miriam T. Rademaker
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch 8011, New Zealand; (M.T.R.); (N.J.A.S.); (A.M.R.)
| | - Nicola J. A. Scott
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch 8011, New Zealand; (M.T.R.); (N.J.A.S.); (A.M.R.)
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago, Christchurch, Christchurch 8011, New Zealand; (M.T.R.); (N.J.A.S.); (A.M.R.)
- Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore 119074, Singapore
| |
Collapse
|
30
|
Müller T, Boileau E, Talyan S, Kehr D, Varadi K, Busch M, Most P, Krijgsveld J, Dieterich C. Updated and enhanced pig cardiac transcriptome based on long-read RNA sequencing and proteomics. J Mol Cell Cardiol 2020; 150:23-31. [PMID: 33049256 DOI: 10.1016/j.yjmcc.2020.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Clinically translatable large animal models have become indispensable for cardiovascular research, clinically relevant proof of concept studies and for novel therapeutic interventions. In particular, the pig has emerged as an essential cardiovascular disease model, because its heart, circulatory system, and blood supply are anatomically and functionally similar to that of humans. Currently, molecular and omics-based studies in the pig are hampered by the incompleteness of the genome and the lack of diversity of the corresponding transcriptome annotation. Here, we employed Nanopore long-read sequencing and in-depth proteomics on top of Illumina RNA-seq to enhance the pig cardiac transcriptome annotation. We assembled 15,926 transcripts, stratified into coding and non-coding, and validated our results by complementary mass spectrometry. A manual review of several gene loci, which are associated with cardiac function, corroborated the utility of our enhanced annotation. All our data are available for download and are provided as tracks for integration in genome browsers. We deem this resource as highly valuable for molecular research in an increasingly relevant large animal model.
Collapse
Affiliation(s)
- Torsten Müller
- German Cancer Research Center (DKFZ), Functional and Structural Genomics, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Etienne Boileau
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sweta Talyan
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Dorothea Kehr
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
| | - Karl Varadi
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
| | - Martin Busch
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany
| | - Patrick Most
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Division of Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, INF 410, 69120 Heidelberg, Germany; Center for Translational Medicine, Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Jeroen Krijgsveld
- German Cancer Research Center (DKFZ), Functional and Structural Genomics, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; Heidelberg University, Medical Faculty, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Large Animal Models of Cell-Free Cardiac Regeneration. Biomolecules 2020; 10:biom10101392. [PMID: 33003617 PMCID: PMC7600588 DOI: 10.3390/biom10101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 09/23/2020] [Accepted: 09/27/2020] [Indexed: 12/13/2022] Open
Abstract
The adult mammalian heart lacks the ability to sufficiently regenerate itself, leading to the progressive deterioration of function and heart failure after ischemic injuries such as myocardial infarction. Thus far, cell-based therapies have delivered unsatisfactory results, prompting the search for cell-free alternatives that can induce the heart to repair itself through cardiomyocyte proliferation, angiogenesis, and advantageous remodeling. Large animal models are an invaluable step toward translating basic research into clinical applications. In this review, we give an overview of the state-of-the-art in cell-free cardiac regeneration therapies that have been tested in large animal models, mainly pigs. Cell-free cardiac regeneration therapies involve stem cell secretome- and extracellular vesicles (including exosomes)-induced cardiac repair, RNA-based therapies, mainly regarding microRNAs, but also modified mRNA (modRNA) as well as other molecules including growth factors and extracellular matrix components. Various methods for the delivery of regenerative substances are used, including adenoviral vectors (AAVs), microencapsulation, and microparticles. Physical stimulation methods and direct cardiac reprogramming approaches are also discussed.
Collapse
|
32
|
Kastner N, Zlabinger K, Spannbauer A, Traxler D, Mester-Tonczar J, Hašimbegović E, Gyöngyösi M. New Insights and Current Approaches in Cardiac Hypertrophy Cell Culture, Tissue Engineering Models, and Novel Pathways Involving Non-Coding RNA. Front Pharmacol 2020; 11:1314. [PMID: 32973530 PMCID: PMC7472597 DOI: 10.3389/fphar.2020.01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
Cardiac hypertrophy is an ongoing clinical challenge, as risk factors such as obesity, smoking and increasing age become more widespread, which lead to an increasing prevalence of developing hypertrophy. Pathological hypertrophy is a maladaptive response to stress conditions, such as pressure overload, and involve a number of changes in cellular mechanisms, gene expression and pathway regulations. Although several important pathways involved in the remodeling and hypertrophy process have been identified, further research is needed to achieve a better understanding and explore new and better treatment options. More recently discovered pathways showed the involvement of several non-coding RNAs, including micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which either promote or inhibit the remodeling process and pose a possible target for novel therapy approaches. In vitro modeling serves as a vital tool for this further pathway analysis and treatment testing and has vastly improved over the recent years, providing a less costly and labor-intensive alternative to in vivo animal models.
Collapse
Affiliation(s)
- Nina Kastner
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Denise Traxler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | | | - Ena Hašimbegović
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
33
|
Marquez J, Garcia MVF, Han J. Back to basic, back to the future: searching for vital signals of life. Pflugers Arch 2020; 472:1431-1432. [PMID: 32780190 DOI: 10.1007/s00424-020-02447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 07/23/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Jubert Marquez
- Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, 47392, Republic of Korea.,Department of Health Sciences and Technology, BK21 Plus Project Team, Graduate School of Inje University, Busan, 47392, Republic of Korea
| | - Maria Victoria Faith Garcia
- Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, 47392, Republic of Korea.,Department of Health Sciences and Technology, BK21 Plus Project Team, Graduate School of Inje University, Busan, 47392, Republic of Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University, Busan, 47392, Republic of Korea. .,Department of Health Sciences and Technology, BK21 Plus Project Team, Graduate School of Inje University, Busan, 47392, Republic of Korea.
| |
Collapse
|
34
|
Heinsar S, Rozencwajg S, Suen J, Bassi GL, Malfertheiner M, Vercaemst L, Broman LM, Schmidt M, Combes A, Rätsep I, Fraser JF, Millar JE. Heart failure supported by veno-arterial extracorporeal membrane oxygenation (ECMO): a systematic review of pre-clinical models. Intensive Care Med Exp 2020; 8:16. [PMID: 32451698 PMCID: PMC7248156 DOI: 10.1186/s40635-020-00303-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/11/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is increasingly being used to treat patients with refractory severe heart failure. Large animal models are developed to help understand physiology and build translational research projects. In order to better understand those experimental models, we conducted a systematic literature review of animal models combining heart failure and VA-ECMO. STUDIES SELECTION A systematic review was performed using Medline via PubMed, EMBASE, and Web of Science, from January 1996 to January 2019. Animal models combining experimental acute heart failure and ECMO were included. Clinical studies, abstracts, and studies not employing VA-ECMO were excluded. DATA EXTRACTION Following variables were extracted, relating to four key features: (1) study design, (2) animals and their peri-experimental care, (3) heart failure models and characteristics, and (4) ECMO characteristics and management. RESULTS Nineteen models of heart failure and VA-ECMO were included in this review. All were performed in large animals, the majority (n = 13) in pigs. Acute myocardial infarction (n = 11) with left anterior descending coronary ligation (n = 9) was the commonest mean of inducing heart failure. Most models employed peripheral VA-ECMO (n = 14) with limited reporting. CONCLUSION Among models that combined severe heart failure and VA-ECMO, there is a large heterogeneity in both design and reporting, as well as methods employed for heart failure. There is a need for standardization of reporting and minimum dataset to ensure translational research achieve high-quality standards.
Collapse
Affiliation(s)
- Silver Heinsar
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Chermside, Brisbane, Australia.,Second Department of Intensive Care, North Estonia Medical Centre, Talinn, Estonia
| | - Sacha Rozencwajg
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Chermside, Brisbane, Australia. .,Sorbonne Université, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Medical ICU, Pitié-Salpêtrière University Hospital, 47, bd de l'Hôpital, 75651, Paris Cedex 13, France.
| | - Jacky Suen
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Chermside, Brisbane, Australia.
| | - Gianluigi Li Bassi
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Chermside, Brisbane, Australia
| | - Maximilian Malfertheiner
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Chermside, Brisbane, Australia.,Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
| | - Leen Vercaemst
- Department of Perfusion, University Hospital Gasthuisberg, Louven, Belgium
| | - Lars Mikael Broman
- ECMO Centre Karolinska, Karolinska University Hospital, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthieu Schmidt
- Second Department of Intensive Care, North Estonia Medical Centre, Talinn, Estonia
| | - Alain Combes
- Second Department of Intensive Care, North Estonia Medical Centre, Talinn, Estonia
| | - Indrek Rätsep
- Sorbonne Université, INSERM, UMRS-1166, ICAN Institute of Cardiometabolism and Nutrition, Medical ICU, Pitié-Salpêtrière University Hospital, 47, bd de l'Hôpital, 75651, Paris Cedex 13, France
| | - John F Fraser
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Chermside, Brisbane, Australia
| | - Jonathan E Millar
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Chermside, Brisbane, Australia.,Wellcome-Wolfson Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
35
|
Schlaak RA, SenthilKumar G, Boerma M, Bergom C. Advances in Preclinical Research Models of Radiation-Induced Cardiac Toxicity. Cancers (Basel) 2020; 12:E415. [PMID: 32053873 PMCID: PMC7072196 DOI: 10.3390/cancers12020415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
Radiation therapy (RT) is an important component of cancer therapy, with >50% of cancer patients receiving RT. As the number of cancer survivors increases, the short- and long-term side effects of cancer therapy are of growing concern. Side effects of RT for thoracic tumors, notably cardiac and pulmonary toxicities, can cause morbidity and mortality in long-term cancer survivors. An understanding of the biological pathways and mechanisms involved in normal tissue toxicity from RT will improve future cancer treatments by reducing the risk of long-term side effects. Many of these mechanistic studies are performed in animal models of radiation exposure. In this area of research, the use of small animal image-guided RT with treatment planning systems that allow more accurate dose determination has the potential to revolutionize knowledge of clinically relevant tumor and normal tissue radiobiology. However, there are still a number of challenges to overcome to optimize such radiation delivery, including dose verification and calibration, determination of doses received by adjacent normal tissues that can affect outcomes, and motion management and identifying variation in doses due to animal heterogeneity. In addition, recent studies have begun to determine how animal strain and sex affect normal tissue radiation injuries. This review article discusses the known and potential benefits and caveats of newer technologies and methods used for small animal radiation delivery, as well as how the choice of animal models, including variables such as species, strain, and age, can alter the severity of cardiac radiation toxicities and impact their clinical relevance.
Collapse
Affiliation(s)
- Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Gopika SenthilKumar
- Medical Scientist Training Program, Medical College of Wisconsin; Milwaukee, WI 53226, USA;
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Carmen Bergom
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|