1
|
Mohammed OA, Youssef ME, Doghish AS, Hamad RS, Abdel-Reheim MA, Alghamdi M, Alamri MMS, Alfaifi J, Adam MIE, Alharthi MH, Alhalafi AH, Bahashwan E, Rezigalla AA, BinAfif DF, Abdel-Ghany S, Attia MA, Elmorsy EA, Al-Noshokaty TM, Fikry H, Saleh LA, Saber S. A novel combination therapy targets sonic hedgehog signaling by the dual inhibition of HMG-CoA reductase and HSP90 in rats with non-alcoholic steatohepatitis. Eur J Pharm Sci 2024; 198:106792. [PMID: 38714237 DOI: 10.1016/j.ejps.2024.106792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-β, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Rabab S Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa 31982, Saudi Arabia; Central Laboratory, Theodor Bilharz Research Institute, Giza 12411, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Mushabab Alghamdi
- Department of Internal Medicine, Division of Rheumatology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohannad Mohammad S Alamri
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Masoud I E Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Abdullah Hassan Alhalafi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Emad Bahashwan
- Department of Internal Medicine, Division of Dermatology, College of medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Daad Fuad BinAfif
- Department of Medicine, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Sameh Abdel-Ghany
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of basic medical sciences, Ibn Sina University for medical sciences, Amman 16197, Jordan
| | - Mohammed A Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Elsayed A Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Saudi Arabia; Clinical Pharmacology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Pharmacology and Toxicology, Collage of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| |
Collapse
|
2
|
Sohouli MH, Bagheri SE, Fatahi S, Rohani P. The effects of weight loss interventions on children and adolescents with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Obes Sci Pract 2024; 10:e758. [PMID: 38682153 PMCID: PMC11047132 DOI: 10.1002/osp4.758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024] Open
Abstract
Background Overall, there is conflicting evidence regarding the beneficial effects of optimal lifestyle modification, particularly weight loss interventions, with nonalcoholic fatty liver disease (non-alcoholic fatty liver disease (NAFLD)). Therefore, this study investigated the effects of weight loss interventions on laboratory and clinical parameters in children and adolescents with NAFLD. Methods Original databases (PubMed/MEDLINE, Web of Science, SCOPUS, and Embase) were searched using standard keywords to identify all controlled trials investigating the effects of weight loss interventions among NAFLD children and adolescents. Pooled weighted mean difference and 95% confidence intervals were achieved by random-effects model analysis. Results Eighteen eligible clinical trials were included in this systematic review and meta-analysis. The pooled findings showed that especially more intense weight loss interventions significantly reduced the glucose (p = 0.007), insulin (p = 0.002), homeostatic model assessment-insulin resistance (HOMA-IR) (p = 0.003), weight (p = 0.025), body mass index (BMI) (p = 0.003), BMI z-score (p < 0.001), waist circumference (WC) (p = 0.013), triglyceride (TG) (p = 0.001), and aspartate transaminase (AST) (p = 0.027). However, no significant changes were found in total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), alanine transaminase (ALT), and hepatic steatosis grades (all p > 0.05) following weight loss interventions. Conclusions Weight loss interventions had significant effects on NAFLD-related parameters including glucose, insulin, HOMA-IR, weight, BMI, BMI z-score, WC, TG, and AST.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research CommitteeDepartment of Clinical Nutrition and DieteticsFaculty of Nutrition and Food TechnologyShahid Beheshti University of Medical SciencesTehranIran
- Pediatric Gastroenterology and Hepatology Research CenterPediatrics Centre of ExcellenceChildren's Medical CenterTehran University of Medical SciencesTehranIran
| | | | - Somaye Fatahi
- Pediatric Gastroenterology, Hepatology, and Nutrition Research CenterResearch Institute for Children's HealthShahid Beheshti University of Medical SciencesTehranIran
| | - Pejman Rohani
- Pediatric Gastroenterology and Hepatology Research CenterPediatrics Centre of ExcellenceChildren's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
4
|
Chiba M, Ohsugi Y, Matsumoto K, Tayama C. Analysis of gene expression changes during lipid droplet formation in HepG2 human liver cancer cells. MEDICINE INTERNATIONAL 2024; 4:7. [PMID: 38283130 PMCID: PMC10811445 DOI: 10.3892/mi.2024.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
Fatty liver is a condition of excessive triglyceride accumulation in hepatocytes. Additionally, hepatocytes exhibit a high degree of fat droplet accumulation during excessive alcohol consumption and metabolic syndrome. However, the molecular mechanisms involved in fat droplet formation remain unknown. The present study used an in vitro fatty liver formation model of the human liver cancer cell line, HepG2, to comprehensively search for fat droplet formation-related genes, and which exhibit changes in expression during fat droplet formation. Microarray analysis with extracted total RNA determined the genes that are involved in fat droplet formation and their expression was confirmed using quantitative polymerase chain reaction following the culture of the HepG2 cells in culture medium containing 0, 50, 200 and 500 µM of oleic acid for 24 h. The results revealed 142 genes demonstrating increased expression levels by >2.0-fold with oleic acid treatment and 426 genes demonstrating decreased expression levels. Perilipin 2 (PLIN2) was estimated as the gene most closely associated with fatty liver. Lipid droplet formation in the HepG2 cells induced by oleic acid led to the upregulation of PLIN2 in a concentration-dependent manner. On the whole, the findings of the present study indicate the involvement of genes in oleic acid-induced lipid droplet formation in HepG2 cells; PLIN2 in particular may play a crucial role in this process.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yuhei Ohsugi
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Kana Matsumoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Chisa Tayama
- Department of Medical Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
5
|
Ishay Y, Neutel J, Kolben Y, Gelman R, Arbib OS, Lopez O, Katchman H, Mohseni R, Kidron M, Ilan Y. Oral Insulin Alleviates Liver Fibrosis and Reduces Liver Steatosis in Patients With Metabolic Dysfunction-associated Steatohepatitis and Type 2 Diabetes: Results of Phase II Randomized, Placebo-controlled Feasibility Clinical Trial. GASTRO HEP ADVANCES 2023; 3:417-425. [PMID: 39131144 PMCID: PMC11308786 DOI: 10.1016/j.gastha.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/30/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Metabolic dysfunction-associated steatohepatitis is an advanced form of nonalcoholic fatty liver disease and a leading cause of end-stage liver disease and transplantation. Insulin resistance and inflammation underlie the pathogenesis of the disease. Methods This double-blind, randomized, placebo-controlled, multicenter feasibility clinical trial aimed to determine the safety of oral 8 mg insulin in patients with metabolic dysfunction-associated steatohepatitis and type 2 diabetes mellitus. Patients were treated twice daily for 12 weeks with an 8 mg insulin (n = 21) or placebo (n = 11) capsule. Safety was monitored throughout the study. MRI-proton density fat fraction assessed liver fat content, and Fibroscan® measured liver fibrosis and steatosis levels at screening and after 12 weeks of treatment. Results No severe drug-related adverse events were reported during the study. After 12 weeks of treatment, mean percent reductions in whole-liver (-11.2% vs -6.5%, respectively) and liver segment 3 (-11.7% vs +0.1%, respectively) fat content was higher in the insulin than in the placebo arm. Patients receiving insulin showed a median -1.2 kPa and -21.0 dB/m reduction from baseline fibrosis and steatosis levels, respectively, while placebo-treated patients showed median increases of 0.3 kPa and 13.0 dB/m, respectively. At Week 12, oral insulin was associated with a mean of 0.27% reduction and placebo with a 0.23% increase from baseline hemoglobin A1c levels. Mean percent changes from baseline alanine aminotransferase, and aspartate aminotransferase levels were -10% and -0.8%, respectively, in the oral insulin and 3.0% and 13.4%, in the placebo arm. Conclusion The results of this feasibility study support the safety and potential therapeutic effect of orally delivered insulin on liver fibrosis, fat accumulation, and inflammatory processes (NIH Clinical Trials No. NCT04618744).
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hadassah Medical Center and Faculty of Medicine Hebrew University, Jerusalem, Israel
| | - Joel Neutel
- Orange County Research Center, Tustin, California
| | - Yotam Kolben
- Department of Medicine, Hadassah Medical Center and Faculty of Medicine Hebrew University, Jerusalem, Israel
| | - Ram Gelman
- Department of Medicine, Hadassah Medical Center and Faculty of Medicine Hebrew University, Jerusalem, Israel
| | - Orly Sneh Arbib
- Department of Medicine, Hadassah Medical Center and Faculty of Medicine Hebrew University, Jerusalem, Israel
| | | | | | | | | | - Yaron Ilan
- Department of Medicine, Hadassah Medical Center and Faculty of Medicine Hebrew University, Jerusalem, Israel
| |
Collapse
|
6
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
7
|
Domingues I, Leclercq IA, Beloqui A. Nonalcoholic fatty liver disease: Current therapies and future perspectives in drug delivery. J Control Release 2023; 363:415-434. [PMID: 37769817 DOI: 10.1016/j.jconrel.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25% of the adult population worldwide. This pathology can progress into end-stage liver disease with life-threatening complications, and yet no pharmacologic therapy has been approved. NAFLD is commonly characterized by excessive fat accumulation in the liver and is in closely associated with insulin resistance and metabolic disorders, which suggests that NAFLD is the hepatic manifestation of metabolic syndrome. Regarding treatment options, the current validated strategy relies on lifestyle modifications (exercise and diet restrictions). Although there are no approved drug-based treatments, several clinical trials are ongoing. Novel targets are being discovered, and the repurposing of drugs that show promising effects in NAFLD is starting to gain more interest. The field of nanotechnology has been growing at an increasing rate, with new and more efficient drug delivery strategies being developed for NAFLD treatment. Nanocarriers can easily encapsulate drugs that need to be better protected from the organism to exert their effect or that need help at reaching their target, thereby helping achieve a better bioavailability. Drug delivery systems can also be designed to target the site of the disease, in this case, the liver. In this review, we focus on the current knowledge of NAFLD pathology, the targets being considered for clinical trials, and the current guidelines and ongoing clinical trials, with a specific focus on potential oral treatments for NAFLD using promising drug delivery strategies.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
8
|
Cottier KE, Bhalerao D, Lewis C, Gaffney J, Heyward SA. Micropatterned primary hepatocyte co-culture (HEPATOPAC) for fatty liver disease modeling and drug screening. Sci Rep 2023; 13:15837. [PMID: 37739978 PMCID: PMC10517001 DOI: 10.1038/s41598-023-42785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/14/2023] [Indexed: 09/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent, progressive disorder and growing public health concern. To address this issue considerable research has been undertaken in pursuit of new NAFLD therapeutics. Development of effective, high-throughput in vitro models is an important aspect of drug discovery. Here, a micropatterned hepatocyte co-culture (MPCC) was used to model liver steatosis. The MPCC model (HEPATOPACTM) is comprised of hepatocytes and 3T3-J2 mouse stromal cells plated onto a patterned standard 96-well or 24-well plate, allowing the cultures to be handled and imaged in a standardized multi-well format. These studies employed high content imaging (HCI) analysis to assess lipid content in cultures. HCI analysis of lipid accumulation allows large numbers of samples to be imaged and analyzed in a relatively short period of time compared to manual acquisition and analysis methods. Treatment of MPCC with free fatty acids (FFA), high glucose and fructose (HGF), or a combination of both induces hepatic steatosis. MPCC treatment with ACC1/ACC2 inhibitors, as either a preventative or reversal agent, showed efficacy against FFA induced hepatic steatosis. Drug induced steatosis was also evaluated. Treatment with valproic acid showed steatosis induction in a lean background, which was significantly potentiated in a fatty liver background. Additionally, these media treatments changed expression of fatty liver related genes. Treatment of MPCC with FFA, HGF, or a combination reversibly altered expression of genes involved in fatty acid metabolism, insulin signaling, and lipid transport. Together, these data demonstrate that MPCC is an easy to use, long-term functional in vitro model of NAFLD having utility for compound screening, drug toxicity evaluation, and assessment of gene regulation.
Collapse
|
9
|
Gyorfi N, Gal AR, Fincsur A, Kalmar-Nagy K, Mintal K, Hormay E, Miseta A, Tornoczky T, Nemeth AK, Bogner P, Kiss T, Helyes Z, Sari Z, Klincsik M, Tadic V, Lenard L, Vereczkei A, Karadi Z, Vizvari Z, Toth A. Novel Noninvasive Paraclinical Study Method for Investigation of Liver Diseases. Biomedicines 2023; 11:2449. [PMID: 37760890 PMCID: PMC10525796 DOI: 10.3390/biomedicines11092449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Based on a prior university patent, the authors developed a novel type of bioimpedance-based test method to noninvasively detect nonalcoholic fatty liver disease (NAFLD). The development of a new potential NAFLD diagnostic procedure may help to understand the underlying mechanisms between NAFLD and severe liver diseases with a painless and easy-to-use paraclinical examination method, including the additional function to detect even the earlier stages of liver disease. The aim of this study is to present new results and the experiences gathered in relation to NAFLD progress during animal model and human clinical trials.
Collapse
Affiliation(s)
- Nina Gyorfi
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Adrian Robert Gal
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Andras Fincsur
- Department of Pathology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Karoly Kalmar-Nagy
- Department of Surgery, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Kitti Mintal
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Edina Hormay
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Anita Katalin Nemeth
- Department of Medical Imaging, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Peter Bogner
- Department of Medical Imaging, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Tamas Kiss
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
- Eötvös Loránd Research Network, Chronic Pain Research Group, University of Pecs, H-7624 Pecs, Hungary
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, H-1117 Budapest, Hungary
| | - Zoltan Sari
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany Str. 6, H-7624 Pecs, Hungary
- Department of Technical Informatics, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
| | - Mihaly Klincsik
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany Str. 6, H-7624 Pecs, Hungary
- Department of Technical Informatics, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
| | - Vladimir Tadic
- Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany Str. 6, H-7624 Pecs, Hungary
- Institute of Information Technology, University of Dunaujvaros, Tancsics M. Str. 1/A, H-2401 Dunaujvaros, Hungary
- John von Neumann Faculty of Informatics, University of Obuda, Becsi Str. 96/B, H-1034 Budapest, Hungary
| | - Laszlo Lenard
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Andras Vereczkei
- Department of Surgery, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Zoltan Karadi
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| | - Zoltan Vizvari
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Symbolic Methods in Material Analysis and Tomography Research Group, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany Str. 6, H-7624 Pecs, Hungary
- John von Neumann Faculty of Informatics, University of Obuda, Becsi Str. 96/B, H-1034 Budapest, Hungary
- Department of Environmental Engineering, Faculty of Engineering and Information Technology, University of Pecs, Boszorkany Str. 2, H-7624 Pecs, Hungary
| | - Attila Toth
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentagothai Research Centre, University of Pecs, Ifjusag Str. 20, H-7624 Pecs, Hungary
- Institute of Physiology, Medical School, University of Pecs, Szigeti Str. 12, H-7624 Pecs, Hungary
| |
Collapse
|
10
|
The Effects of Probiotics on Small Intestinal Microbiota Composition, Inflammatory Cytokines and Intestinal Permeability in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020640. [PMID: 36831176 PMCID: PMC9953317 DOI: 10.3390/biomedicines11020640] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has soared globally. As our understanding of the disease grows, the role of the gut-liver axis (GLA) in NAFLD pathophysiology becomes more apparent. Hence, we focused mainly on the small intestinal area to explore the role of GLA. We looked at how multi-strain probiotics (MCP® BCMC® strains) containing six different Lactobacillus and Bifidobacterium species affected the small intestinal gut microbiota, inflammatory cytokines, and permeability in NAFLD patients. After six months of supplementation, biochemical blood analysis did not show any discernible alterations in either group. Five predominant phyla known as Actinobacteria, Proteobacteria, Firmicutes, Bacteroidota and Fusobacteria were found in NAFLD patients. The probiotics group demonstrated a significant cluster formation of microbiota composition through beta-diversity analysis (p < 0.05). This group significantly reduced three unclassifiable species: unclassified_Proteobacteria, unclassified_Streptococcus, and unclassified_Stenotrophomonas. In contrast, the placebo group showed a significant increase in Prevotella_melaninogenica and Rothia_mucilaginosa, which were classified as pathogens. Real-time quantitative PCR analysis of small intestinal mucosal inflammatory cytokines revealed a significant decrease in IFN-γ (-7.9 ± 0.44, p < 0.0001) and TNF-α (-0.96 ± 0.25, p < 0.0033) in the probiotics group but an increase in IL-6 (12.79 ± 2.24, p < 0.0001). In terms of small intestinal permeability analysis, the probiotics group, unfortunately, did not show any positive changes through ELISA analysis. Both probiotics and placebo groups exhibited a significant increase in the level of circulating zonulin (probiotics: 107.6 ng/mL ± 124.7, p = 0.005 vs. placebo: 106.9 ng/mL ± 101.3, p = 0.0002) and a significant decrease in circulating zonula occluden-1 (ZO-1) (probiotics: -34.51 ng/mL ± 18.38, p < 0.0001 vs. placebo: -33.34 ng/mL ± 16.62, p = 0.0001). The consumption of Lactobacillus and Bifidobacterium suggested the presence of a well-balanced gut microbiota composition. Probiotic supplementation improves dysbiosis in NAFLD patients. This eventually stabilised the expression of inflammatory cytokines and mucosal immune function. To summarise, more research on probiotic supplementation as a supplement to a healthy diet and lifestyle is required to address NAFLD and its underlying causes.
Collapse
|
11
|
Tian G, Wang W, Xia E, Chen W, Zhang S. Dendrobium officinale alleviates high-fat diet-induced nonalcoholic steatohepatitis by modulating gut microbiota. Front Cell Infect Microbiol 2023; 13:1078447. [PMID: 36860985 PMCID: PMC9968977 DOI: 10.3389/fcimb.2023.1078447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction The gut microbiota plays an important role in the development of nonalcoholic steatohepatitis (NASH). This study investigated the preventive effect of Dendrobium officinale (DO), including whether its effect was related to the gut microbiota, intestinal permeability and liver inflammation. Methods A NASH model was established in rats using a high-fat diet (HFD) and gavage with different doses of DO or Atorvastatin Calcium (AT) for 10 weeks. Body weight and body mass index along with liver appearance, weight, index, pathology, and biochemistry were measured to assess the preventive effects of DO on NASH rats. Changes in the gut microbiota were analyzed by 16S rRNA sequencing, and intestinal permeability and liver inflammation were determined to explore the mechanism by which DO treatment prevented NASH. Results Pathological and biochemical indexes showed that DO was able to protect rats against HFD-induced hepatic steatosis and inflammation. Results of 16S rRNA sequencing showed that Proteobacteria, Romboutsia, Turicibacter, Lachnoclostridium, Blautia, Ruminococcus_torques_group, Sutterella, Escherichia-Shigella, Prevotella, Alistipes, and Lactobacillus_acidophilus differed significantly at the phylum, genus, and species levels. DO treatment modulated the diversity, richness, and evenness of gut microbiota, downregulated the abundance of the Gram-negative bacteria Proteobacteria, Sutterella, and Escherichia-Shigella, and reduced gut-derived lipopolysaccharide (LPS) levels. DO also restored expression of the tight junction proteins, zona occludens-1 (ZO-1), claudin-1, and occludin in the intestine and ameliorated the increased intestinal permeability caused by HFD, gut microbiota such as Turicibacter, Ruminococcus, Escherichia-Shigella, and Sutterella, and LPS. Lower intestinal permeability reduced LPS delivery to the liver, thus inhibiting TLR4 expression and nuclear factor-kappaB (NF-κB) nuclear translocation, improving liver inflammation. Discussion These results suggest that DO may alleviate NASH by regulating the gut microbiota, intestinal permeability, and liver inflammation.
Collapse
Affiliation(s)
- Gege Tian
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China,The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China
| | - Wei Wang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China,College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Enrui Xia
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China,The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China,College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Shunzhen Zhang, ; Wenhui Chen,
| | - Shunzhen Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China,The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, China,*Correspondence: Shunzhen Zhang, ; Wenhui Chen,
| |
Collapse
|
12
|
Yang Z, Tian R, Zhang XJ, Cai J, She ZG, Li H. Effects of treatment of non-alcoholic fatty liver disease on heart failure with preserved ejection fraction. Front Cardiovasc Med 2023; 9:1120085. [PMID: 36712249 PMCID: PMC9877359 DOI: 10.3389/fcvm.2022.1120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
In the past few decades, non-alcoholic fatty liver disease (NAFLD) and heart failure with preserved ejection fraction (HFpEF) have become the most common chronic liver disease and the main form of heart failure (HF), respectively. NAFLD is closely associated with HFpEF by sharing common risk factors and/or by boosting systemic inflammation, releasing other secretory factors, and having an expansion of epicardial adipose tissue (EAT). Therefore, the treatments of NAFLD may also affect the development and prognosis of HFpEF. However, no specific drugs for NAFLD have been approved by the Food and Drug Administration (FDA) and some non-specific treatments for NAFLD are applied in the clinic. Currently, the treatments of NAFLD can be divided into non-pharmacological and pharmacological treatments. Non-pharmacological treatments mainly include dietary intervention, weight loss by exercise, caloric restriction, and bariatric surgery. Pharmacological treatments mainly include administering statins, thiazolidinediones, glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, and metformin. This review will mainly focus on analyzing how these treatments may affect the development and prognosis of HFpEF.
Collapse
Affiliation(s)
- Zifeng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Ruifeng Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China,School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China,*Correspondence: Zhi-Gang She,
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China,Institute of Model Animal, Wuhan University, Wuhan, China,School of Basic Medical Sciences, Wuhan University, Wuhan, China,Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China,Hongliang Li,
| |
Collapse
|
13
|
Sulaiman SA, Dorairaj V, Adrus MNH. Genetic Polymorphisms and Diversity in Nonalcoholic Fatty Liver Disease (NAFLD): A Mini Review. Biomedicines 2022; 11:106. [PMID: 36672614 PMCID: PMC9855725 DOI: 10.3390/biomedicines11010106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common liver disease with a wide spectrum of liver conditions ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. The prevalence of NAFLD varies across populations, and different ethnicities have specific risks for the disease. NAFLD is a multi-factorial disease where the genetics, metabolic, and environmental factors interplay and modulate the disease's development and progression. Several genetic polymorphisms have been identified and are associated with the disease risk. This mini-review discussed the NAFLD's genetic polymorphisms and focusing on the differences in the findings between the populations (diversity), including of those reports that did not show any significant association. The challenges of genetic diversity are also summarized. Understanding the genetic contribution of NAFLD will allow for better diagnosis and management explicitly tailored for the various populations.
Collapse
Affiliation(s)
- Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Jalan Yaa’cob Latiff, Cheras, Kuala Lumpur 56000, Malaysia; (V.D.); (M.N.H.A.)
| | | | | |
Collapse
|
14
|
Keles U, Ow JR, Kuentzel KB, Zhao LN, Kaldis P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol Life Sci 2022; 80:4. [PMID: 36477411 PMCID: PMC9729146 DOI: 10.1007/s00018-022-04658-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between metabolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in peripheral tissues. Due to the liver's specific role, we are covering lipid and bile mechanism-derived metabolites. We also discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better understand the development of fatty liver disease and associated diseases.
Collapse
Affiliation(s)
- Umur Keles
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Katharina Barbara Kuentzel
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Li Na Zhao
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden. .,Lund University Diabetes Centre (LUDC), Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
15
|
Is Fasting Good When One Is at Risk of Liver Cancer? Cancers (Basel) 2022; 14:cancers14205084. [PMID: 36291868 PMCID: PMC9600146 DOI: 10.3390/cancers14205084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the leading causes of cancer-related deaths worldwide, is a multistep process that usually develops in the background of cirrhosis, but also in a non-cirrhotic state in patients with non-alcoholic fatty liver disease (NAFLD) or viral hepatis. Emerging evidence suggests that intermittent fasting can reduce the risk of cancer development and could improve response and tolerance to treatment through the metabolic and hormonal adaptations induced by the low energy availability that finally impairs cancer cells’ adaptability, survival and growth. The current review will outline the beneficial effects of fasting in NAFLD/NASH patients and the possible mechanisms that can prevent HCC development, including circadian clock re-synchronization, with a special focus on the possibility of applying this dietary intervention to cirrhotic patients.
Collapse
|
16
|
Wei L, Zhang W, Li Y, Zhai J. The SIRT1-HMGB1 axis: Therapeutic potential to ameliorate inflammatory responses and tumor occurrence. Front Cell Dev Biol 2022; 10:986511. [PMID: 36081910 PMCID: PMC9448523 DOI: 10.3389/fcell.2022.986511] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammation is a common complication of many chronic diseases. It includes inflammation of the parenchyma and vascular systems. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase, which can directly participate in the suppression of inflammation. It can also regulate the activity of other proteins. Among them, high mobility group box 1 (HMGB1) signaling can be inhibited by deacetylating four lysine residues (55, 88, 90, and 177) in quiescent endothelial cells. HMGB1 is a ubiquitous nuclear protein, once translocated outside the cell, which can interact with various target cell receptors including the receptor for advanced glycation end-products (RAGE), toll-like receptor (TLR) 2, and TLR4 and stimulates the release of pro-inflammatory cyto-/chemokines. And SIRT1 has been reported to inhibit the activity of HMGB1. Both are related to the occurrence and development of inflammation and associated diseases but show an antagonistic relationship in controlling inflammation. Therefore, in this review, we introduce how this signaling axis regulates the emergence of inflammation-related responses and tumor occurrence, providing a new experimental perspective for future inflammation research. In addition, it explores diverse upstream regulators and some natural/synthetic activators of SIRT1 as a possible treatment for inflammatory responses and tumor occurrence which may encourage the development of new anti-inflammatory drugs. Meanwhile, this review also introduces the potential molecular mechanism of the SIRT1-HMGB1 pathway to improve inflammation, suggesting that SIRT1 and HMGB1 proteins may be potential targets for treating inflammation.
Collapse
Affiliation(s)
- Lanyi Wei
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Wenrui Zhang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueyang Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Jinghui Zhai,
| |
Collapse
|
17
|
Bikeyeva V, Abdullah A, Radivojevic A, Abu Jad AA, Ravanavena A, Ravindra C, Igweonu-Nwakile EO, Ali S, Paul S, Yakkali S, Teresa Selvin S, Thomas S, Hamid P. Nonalcoholic Fatty Liver Disease and Hypothyroidism: What You Need to Know. Cureus 2022; 14:e28052. [PMID: 36127957 PMCID: PMC9477544 DOI: 10.7759/cureus.28052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents one of the leading causes of chronic liver disease globally, perhaps because of the drastic increase in prevalence around the world during the last 20 years and continues growing. The disease starts from simple steatosis (NAFL) that can progress to non-alcoholic steatohepatitis (NASH) and, in some patients, progress to cirrhosis and hepatocellular carcinoma (HCC). The pathogenesis and pathophysiology of NAFLD are complex and involve different factors (genetic, metabolic, endocrinopathies, and others). One of the concerns that appeared in recent years is hypothyroidism-induced NAFLD. The pathogenesis is compound and not well understood, and an association between hypothyroidism and NAFLD remains controversial because of insufficient studies that can confirm it. More research is needed to determine the association between hypothyroidism and NAFLD and the underlying mechanisms. In this review, we will discuss a more in-depth analysis of the physiology of thyroid hormones (TH) as well as the pathophysiology of hypothyroidism-induced NAFLD and, based on the recent meta-analyses, the association of thyroid hormones and NAFLD.
Collapse
|
18
|
Passos E, Pereira C, Gonçalves IO, Faria A, Ascensão A, Monteiro R, Magalhães J, Martins MJ. Physical exercise positively modulates nonalcoholic steatohepatitis-related hepatic endoplasmic reticulum stress. J Cell Biochem 2022; 123:1647-1662. [PMID: 35467032 DOI: 10.1002/jcb.30250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Obesity is a predictive factor for the development of nonalcoholic steatohepatitis (NASH). Although some of the mechanisms associated with NASH development are still elusive, its pathogenesis relies on a complex broad spectrum of (interconnected) metabolic-based disorders. We analyzed the effects of voluntary physical activity (VPA) and endurance training (ET), as preventive and therapeutic nonpharmacological strategies, respectively, against hepatic endoplasmic reticulum (ER) stress, ER-related proapoptotic signaling, and oxidative stress in an animal model of high-fat diet (HFD)-induced NASH. Adult male Sprague-Dawley rats were divided into standard control liquid diet (SCLD) or HFD groups, with sedentary, VPA, and ET subgroups in both (sedentary animals with access to SCLD [SS], voluntarily physically active animals with access to SCLD [SV], and endurance-trained animals with access to SCLD [ST] in the former and sedentary animals with access to liquid HFD [HS], voluntarily physically active animals with access to liquid HFD [HV], and endurance-trained animals with access to liquid HFD [HT] in the latter, respectively). Hepatic ER stress and ER-related proapoptotic signaling were evaluated by Western blot and reverse transcriptase-polymerase chain reaction; redox status was evaluated through quantification of lipid peroxidation, protein carbonyls groups, and glutathione levels as well as antioxidant enzymes activity. In SCLD-treated animals, VPA significantly decreased eukaryotic initiation factor-2 alpha (eIF2α). In HFD-treated animals, VPA significantly decreased eIF2α and phospho-inositol requiring enzyme-1 alpha (IRE1α) but ET significantly decreased eIF2α and significantly increased both spliced X-box binding protein 1 (sXBP1) and unspliced X-box binding protein 1; a significant increase of phosphorylated-eIF2α (p-eIF2α) to eIF2α ratio occurred in ET versus VPA. HS compared to SS disclosed a significant increase of total and reduced glutathione, HV compared to SV a significant increase of oxidized glutathione, HT compared to ST a significant increase of p-eIF2α to eIF2α ratio and sXBP1. Physical exercise counteracts NASH-related ER stress and its associated deleterious consequences through a positive and dynamical modulation of the hepatic IRE1α-X-box binding protein 1 pathway.
Collapse
Affiliation(s)
- Emanuel Passos
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,National Anti-Doping Organization of Cape Verde, Praia, Cabo Verde.,Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Cidália Pereira
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal.,CiTechCare-Centre for Innovative Care and Health Technology, Polytechnic of Leiria, Leiria, Portugal
| | - Inês O Gonçalves
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Ana Faria
- Nutrition and Metabolism, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisboa, Portugal.,CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Comprehensive Health Research Centre, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - António Ascensão
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Rosário Monteiro
- CINTESIS-Center for Health Technology Services Research, Faculty of Medicine, University of Porto, Porto, Portugal.,Unidade de Saúde Familiar Homem do Leme, Agrupamento de Centros de Saúde Porto Ocidental, ARS Norte, Porto, Portugal.,MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Magalhães
- Laboratory for Integrative and Translational Research in Population Health (ITR), Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, Porto, Portugal
| | - Maria J Martins
- Department of Biomedicine, Unit of Biochemistry, Faculty of Medicine, University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Li H, Liu NN, Li JR, Dong B, Wang MX, Tan JL, Wang XK, Jiang J, Lei L, Li HY, Sun H, Jiang JD, Peng ZG. Combined Use of Bicyclol and Berberine Alleviates Mouse Nonalcoholic Fatty Liver Disease. Front Pharmacol 2022; 13:843872. [PMID: 35250593 PMCID: PMC8889073 DOI: 10.3389/fphar.2022.843872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), is a liver disease worldwide without approved therapeutic drugs. Anti-inflammatory and hepatoprotective drug bicyclol and multi-pharmacological active drug berberine, respectively, have shown beneficial effects on NAFLD in murine nutritional models and patients, though the therapeutic mechanisms remain to be illustrated. Here, we investigated the combined effects of bicyclol and berberine on mouse steatosis induced by Western diet (WD), and NASH induced by WD/CCl4. The combined use of these was rather safe and better reduced the levels of transaminase in serum and triglycerides and cholesterol in the liver than their respective monotherapy, accompanied with more significantly attenuating hepatic inflammation, steatosis, and ballooning in mice with steatosis and NASH. The combined therapy also significantly inhibited fibrogenesis, characterized by the decreased hepatic collagen deposition and fibrotic surface. As per mechanism, bicyclol enhanced lipolysis and β-oxidation through restoring the p62-Nrf2-CES2 signaling axis and p62-Nrf2-PPARα signaling axis, respectively, while berberine suppressed de novo lipogenesis through downregulating the expression of acetyl-CoA carboxylase and fatty acid synthetase, along with enrichment of lipid metabolism-related Bacteroidaceae (family) and Bacteroides (genus). Of note, the combined use of bicyclol and berberine did not influence each other but enhanced the overall therapeutic role in the amelioration of NAFLD. Conclusion: Combined use of bicyclol and berberine might be a new available strategy to treat NAFLD.
Collapse
Affiliation(s)
- Hu Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan-Nan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Biao Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei-Xi Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Li Tan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Kai Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Lei
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Ying Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Han Sun
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Biotechnology of Antibiotics, The National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Dorairaj V, Sulaiman SA, Abu N, Abdul Murad NA. Nonalcoholic Fatty Liver Disease (NAFLD): Pathogenesis and Noninvasive Diagnosis. Biomedicines 2021; 10:15. [PMID: 35052690 PMCID: PMC8773432 DOI: 10.3390/biomedicines10010015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Collapse
Affiliation(s)
| | - Siti Aishah Sulaiman
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur 56000, Malaysia; (V.D.); (N.A.); (N.A.A.M.)
| | | | | |
Collapse
|