1
|
Zeng X, Li L, Tong L. Therapeutic Effects of Proanthocyanidins on Diabetic Erectile Dysfunction in Rats. Int J Mol Sci 2024; 25:11004. [PMID: 39456785 PMCID: PMC11506934 DOI: 10.3390/ijms252011004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The rising occurrence of erectile dysfunction related to diabetes mellitus (DMED) has led to the creation of new medications. Proanthocyanidins (PROs) is a potential agent for DMED. In this study, the DMED rat model was established using streptozotocin (STZ) and erectile function was assessed using apomorphine (APO) in rats. Following this, the rats were subjected to oral treatment with PRO. Then, we evaluated the influence of PROs on DMED rats. The findings suggest that PROs significantly enhance erectile function in DMED rats. PROs modulated glucose and lipid metabolism in DMED rats by decreasing blood glucose and lipid levels while increasing liver glycogen and serum insulin levels. Furthermore, PROs enhanced vascular endothelial function in DMED rats by augmenting nitric oxide (NO) levels and reducing the levels of endothelin-1 (ET-1) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). Additionally, PROs have been shown to elevate testosterone (T) levels, mitigate pathological testicular damage, and enhance sperm concentration and survival rates. Finally, the core targets were screened using network pharmacology, followed by validation through molecular docking, enzyme-linked immunoassay (ELISA), and real-time PCR methodologies. Our findings imply that PROs may treat DMED by elevating AKT1 levels while concurrently diminishing CASP3 levels, thereby effectively regulating the PI3K-Akt signaling pathway. Overall, these results support using PROs as a potential candidate for the treatment of DMED.
Collapse
Affiliation(s)
- Xiaoyan Zeng
- Qinghai University, Xining 810000, China; (X.Z.); (L.L.)
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| | - Lanlan Li
- Qinghai University, Xining 810000, China; (X.Z.); (L.L.)
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| | - Li Tong
- Qinghai University, Xining 810000, China; (X.Z.); (L.L.)
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Xining 810000, China
| |
Collapse
|
2
|
Hou Z, Sun A, Li Y, Song X, Liu S, Hu X, Luan Y, Guan H, He C, Sun Y, Chen J. What Are the Reliable Plasma Biomarkers for Mild Cognitive Impairment? A Clinical 4D Proteomics Study and Validation. Mediators Inflamm 2024; 2024:7709277. [PMID: 38883967 PMCID: PMC11178428 DOI: 10.1155/2024/7709277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Objective At present, Alzheimer's disease (AD) lacks effective treatment means, and early diagnosis and intervention are the keys to treatment. Therefore, for mild cognitive impairment (MCI) and AD patients, blood sample analysis using the 4D nonstandard (label-free) proteomic in-depth quantitative analysis, looking for specific protein marker expression differences, is important. These marker levels change as AD progresses, and the analysis of these biomarkers changes with this method, which has the potential to show the degree of disease progression and can be used for the diagnosis and preventive treatment of MCI and AD. Materials and Methods Patients were recruited according to the inclusion and exclusion criteria and divided into three groups according to scale scores. Elderly patients diagnosed with AD were selected as the AD group (n = 9). Patients diagnosed with MCI were classified into the MCI group (n = 10). Cognitively healthy elderly patients were included in the normal cognition control group (n = 10). Patients' blood samples were used for 4D label-free proteomic in-depth quantitative analysis to identify potential blood biomarkers. The sample size of each group was expanded (n = 30), and the selected biomarkers were verified by enzyme-linked immunosorbent assay (ELISA) to verify the accuracy of the proteomic prediction. Results Six specific blood markers, namely, APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8, were detected by 4D label-free proteomic quantitative analysis. These markers showed a statistically significant upregulation trend in the MCI and AD groups compared with the normal cognition control group (P < 0.05). ELISA results showed that the levels of these six proteins in the MCI group were significantly higher than those in the normal cognition control group, and the levels of these six proteins in the AD group were significantly higher than those in the MCI group (P < 0.05). Conclusion The plasma levels of APOE, MMP9, UBR5, PLA2G7, STAT5B, and S100A8 in cognitively healthy elderly patients and patients with MCI and AD were significantly different and, more importantly, showed a trend of increasing expression. These results indicate that these six human plasma markers have important diagnostic and therapeutic potential in the identification of cognitive impairment and have value for in-depth research and clinical application.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
- Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania, Philadelphia 19104, PA, USA
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing 100700, China
- The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin 150010, Heilongjiang, China
| | - Ailin Sun
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
- Pudong Hospital Affiliated with Fudan University, Shanghai 200120, China
| | - Yan Li
- The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin 150010, Heilongjiang, China
| | - Xiaochen Song
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Shu Liu
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Xinying Hu
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yihan Luan
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Huibo Guan
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Changyuan He
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Yuefeng Sun
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Jing Chen
- College of Basic Medical and Sciences Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| |
Collapse
|
3
|
Zhang Q, Meng H, Wang X, Chen Y, Yan Z, Ruan J, Meng F. Low expression of Notch1 may be associated with acute myocardial infarction. Front Cardiovasc Med 2024; 11:1367675. [PMID: 38841263 PMCID: PMC11150703 DOI: 10.3389/fcvm.2024.1367675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Background The transmembrane protein Notch1 is associated with cell growth, development, differentiation, proliferation, apoptosis, adhesion, and the epithelial mesenchymal transition. Proteomics, as a research method, uses a series of sequencing techniques to study the composition, expression levels, and modifications of proteins. Here, the association between Notch1 and acute myocardial infarction (AMI) was investigated using proteomics, to assess the possibility of using Notch1 as a biomarker for the disease. Methods Fifty-five eligible patients with AMI and 74 with chronic coronary syndrome (CCS) were enrolled, representing the experimental and control groups, respectively. The mRNA levels were assessed using RT-qPCR and proteins were measured using ELISA, and the results were compared and analyzed. Results Notch1 mRNA levels were 0.52 times higher in the peripheral blood mononuclear cells of the AMI group relative to the CCS group (p < 0.05) while Notch1 protein levels were 0.63 times higher in peripheral blood plasma in AMI patients (p < 0.05). Notch1 levels were not associated with older age, hypertension, smoking, high abdominal-blood glucose, high total cholesterol, and high LDL in AMI. Logistic regression indicated associations between AMI and reduced Notch1 expression, hypertension, smoking, and high fasting glucose. Conclusions Notch1 expression was reduced in the peripheral blood of patients with AMI relative to those with CCS. The low expression of Notch1 was found to be an independent risk factor for AMI and may thus be an indicator of the disease.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Heyu Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Xue Wang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Yanqiu Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Zhaohan Yan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Jianjun Ruan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| | - Fanbo Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, Jilin, China
| |
Collapse
|
4
|
Beck HC, Skovgaard AC, Mohammadnejad A, Palstrøm NB, Nielsen PF, Mengel-From J, Hjelmborg J, Rasmussen LM, Soerensen M. A Mass Spectrometry-Based Proteome Study of Twin Pairs Discordant for Incident Acute Myocardial Infarction within Three Years after Blood Sampling Suggests Novel Biomarkers. Int J Mol Sci 2024; 25:2638. [PMID: 38473885 DOI: 10.3390/ijms25052638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Acute myocardial infarction (AMI) is a major cause of mortality and morbidity worldwide, yet biomarkers for AMI in the short- or medium-term are lacking. We apply the discordant twin pair design, reducing genetic and environmental confounding, by linking nationwide registry data on AMI diagnoses to a survey of 12,349 twins, thereby identifying 39 twin pairs (48-79 years) discordant for their first-ever AMI within three years after blood sampling. Mass spectrometry of blood plasma identified 715 proteins. Among 363 proteins with a call rate > 50%, imputation and stratified Cox regression analysis revealed seven significant proteins (FDR < 0.05): FGD6, MCAM, and PIK3CB reflected an increased level in AMI twins relative to their non-AMI co-twins (HR > 1), while LBP, IGHV3-15, C1RL, and APOC4 reflected a decreased level in AMI twins relative to their non-AMI co-twins (HR < 1). Additional 50 proteins were nominally significant (p < 0.05), and bioinformatics analyses of all 57 proteins revealed biology within hemostasis, coagulation cascades, the immune system, and the extracellular matrix. A protein-protein-interaction network revealed Fibronectin 1 as a central hub. Finally, technical validation confirmed MCAM, LBP, C1RL, and APOC3. We put forward novel biomarkers for incident AMI, a part of the proteome field where markers are surprisingly rare and where additional studies are highly needed.
Collapse
Affiliation(s)
- Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry, Odense University Hospital, J. B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Asmus Cosmos Skovgaard
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Afsaneh Mohammadnejad
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Nicolai Bjødstrup Palstrøm
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry, Odense University Hospital, J. B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Palle Fruekilde Nielsen
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry, Odense University Hospital, J. B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Jonas Mengel-From
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Jacob Hjelmborg
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Lars Melholt Rasmussen
- Center for Individualized Medicine in Arterial Diseases, Department of Clinical Biochemistry, Odense University Hospital, J. B. Winsloews Vej 4, 5000 Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, J. B. Winsloews Vej 4, 5000 Odense, Denmark
| |
Collapse
|
5
|
Wang SF, Wu TT, Zheng YY, Hou XG, Yang HT, Yang Y, Xie X. Serum Globulin to Albumin Ratio as a Novel Predictor of Adverse Clinical Outcomes in Coronary Artery Disease Patients Who Underwent PCI. Rev Cardiovasc Med 2023; 24:278. [PMID: 39077558 PMCID: PMC11273180 DOI: 10.31083/j.rcm2410278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 04/23/2023] [Indexed: 07/31/2024] Open
Abstract
Background Coronary heart disease is one of the main causes of Mortality. Many biological indicators have been used to predict the prognosis of patients with coronary heart disease. The ratio of serum globulin to albumin (GAR) has been used to predict the prognosis of patients with various cancers. It has been proven that GAR is related to the prognosis of patients with stroke. However, GAR's role in cardiovascular disease remains unclear. Our purpose was to investigate the predictive value of GAR on clinical outcomes in post-percutaneous coronary intervention (PCI) patients with coronary artery disease (CAD). Methods From Dec. 2016 to Oct. 2021, a total of 14,994 patients undergoing PCI patients admitted to the First Affiliated Hospital of Xinjiang Medical University were divided into high GAR group (GAR ≥ 0.76, n = 4087) and low GAR group (GAR < 0.76, n = 10,907). The incidence of adverse outcomes including all-cause mortality (ACM), cardiovascular mortality (CM), major adverse cardiovascular events (MACE) and major adverse cardiovascular and cerebrovascular events (MACCE) was compared between the two groups. Multivariate Cox regression was used to adjust for the effects of confounding factors, while hazard ratios (HRs) and 95% confidence intervals (95% CI) were calculated. Median follow-up time was 24 months. Results Compared with the low GAR group, the high GAR group had significantly higher incidence of ACM (6.5% vs. 1.7%, p < 0.001); CM (4.9% vs. 1.2%, p < 0.001), MACE (10.5% vs. 6.7%, p < 0.001), and MACCE (11.3% vs. 7.5%, p < 0.001). Cox regression analysis showed the patients in the high GAR group had a 1.62-fold increased risk for ACM (HR = 2.622, 95% CI: 2.130-3.228, p < 0.01), a 1.782-fold increased risk for CM (HR = 2.782, 95% CI: 2.180-3.550, p < 0.01). There was a 37.2% increased risk for MACE (HR = 1.372, 95% CI: 1.204-1.564, p < 0.01), and 32.4% increased risk for MACCE (HR = 1.324, 95% CI: 1.169-1.500, p < 0.01), compared to the patients in the low GAR group. Conclusions The present study suggested that post-PCI CAD patients with higher GAR presented significantly increased mortality and adverse events GAR level at admission may 296 be considered as part of risk stratification when PCI is possible in patients with coronary heart disease. Clinical Trial Registration The detailed information of the PRACTICE study has been registered on http://Clinicaltrials.gov (Identifier: NCT05174143).
Collapse
Affiliation(s)
- Si-Fan Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Ting-Ting Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Hai-Tao Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical
University, 830054 Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Chen S, Xing X, Hou X, Zhuang Q, Tan N, Cui Y, Wang J, Zhang M, Hu S, Xiao Y. The molecular pathogenesis of achalasia: a paired lower esophageal sphincter muscle and serum 4D label-free proteomic study. Gastroenterol Rep (Oxf) 2023; 11:goad031. [PMID: 37324545 PMCID: PMC10260389 DOI: 10.1093/gastro/goad031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
Background Achalasia is a primary esophageal motility disorder with potential molecular pathogenesis remaining uncertain. This study aimed to identify the differentially expressed proteins and potential pathways among achalasia subtypes and controls to further reveal the molecular pathogenesis of achalasia. Methods Paired lower esophageal sphincter (LES) muscle and serum samples from 24 achalasia patients were collected. We also collected 10 normal serum samples from healthy controls and 10 normal LES muscle samples from esophageal cancer patients. The 4D label-free proteomic analysis was performed to identify the potential proteins and pathways involved in achalasia. Results Analysis of Similarities showed distinct proteomic patterns of serum and muscle samples between achalasia patients and controls (both P < 0.05). Functional enrichment analysis suggested that these differentially expressed proteins were immunity-, infection-, inflammation-, and neurodegeneration-associated. The mfuzz analysis in LES specimens showed that proteins involved in the extracellular matrix-receptor interaction increased sequentially between the control group, type III, type II, and type I achalasia. Only 26 proteins altered in the same directions in serum and muscle samples. Conclusions This first 4D label-free proteomic study of achalasia indicated that there were specific protein alterations in both the serum and muscle of achalasia, involving immunity, inflammation, infection, and neurodegeneration pathways. Distinct protein clusters between types I, II, and III revealed the potential molecular pathways associated with different disease stages. Analysis of proteins changed in both muscle and serum samples highlighted the importance of further studies on LES muscle and revealed potential autoantibodies.
Collapse
Affiliation(s)
| | | | - Xun Hou
- Gastrointestinal Surgery Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Qianjun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Niandi Tan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yi Cui
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jinhui Wang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Mengyu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yinglian Xiao
- Corresponding author. Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, Guangdong 510080, P. R. China. Tel: +86-13560172116;
| |
Collapse
|
7
|
Hu A, Zhang J, Shen H. Progress in Targeted Mass Spectrometry (Parallel Accumulation-Serial Fragmentation) and Its Application in Plasma/Serum Proteomics. Methods Mol Biol 2023; 2628:339-352. [PMID: 36781796 DOI: 10.1007/978-1-0716-2978-9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Targeted mass spectrometry using multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM) has been commonly used for protein biomarker validation in plasma, serum, or other clinically relevant specimens due to its high specificity, selectivity, and multiplexing capability compared with immunoassays. As the emerging mode termed parallel accumulation-serial fragmentation (prmPASEF) significantly improved analyte throughput (100-1000), sensitivity (attomole level), and acquisition speed, it promises to broaden the application of targeted mass spectrometry to simultaneous biomarker discovery and validation with high accuracy. Here, we summarize the general approach of the MRM and PRM techniques used for serum/plasma proteomics and describe a detailed step-by-step procedure for the development of MRM/PRM assays for secreted proteins.
Collapse
Affiliation(s)
- Anqi Hu
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai, China
| | - Jiayi Zhang
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai, China
| | - Huali Shen
- Institutes of Biomedical Sciences and Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Meng H, Ruan J, Chen Y, Yan Z, Liu J, Wang X, Meng X, Wang J, Zhang Q, Li X, Meng F. Trace Elements Open a New Direction for the Diagnosis of Atherosclerosis. Rev Cardiovasc Med 2023; 24:23. [PMID: 39076854 PMCID: PMC11270404 DOI: 10.31083/j.rcm2401023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 09/26/2023] Open
Abstract
Abnormal or excessive accumulation of adipose tissue leads to a condition called obesity. Long-term positive energy balance arises when energy intake surpasses energy expenditure, which increases the risk of metabolic and other chronic diseases, such as atherosclerosis. In industrialized countries, the prevalence of coronary heart disease is positively correlated with the human development index. Atherosclerotic cardiovascular disease (ACD) is among the primary causes of death on a global scale. There is evidence to support the notion that individuals from varied socioeconomic origins may experience varying mortality effects as a result of high blood pressure, high blood sugar, raised cholesterol levels, and high body mass index (BMI). However, it is believed that changes in the concentration of trace elements in the human body are the main contributors to the development of some diseases and the transition from a healthy to a diseased state. Metal trace elements, non-metal trace elements, and the sampling site will be examined to determine whether trace elements can aid in the diagnosis of atherosclerosis. This article will discuss whether trace elements, discussed under three sections of metal trace elements, non-metal trace elements, and the sampling site, can participate in the diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Heyu Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Jianjun Ruan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Yanqiu Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Zhaohan Yan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Jinsha Liu
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Xue Wang
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Xin Meng
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Jingru Wang
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Qiang Zhang
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Xiangdong Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Fanbo Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| |
Collapse
|
9
|
Meng H, Ruan J, Yan Z, Chen Y, Liu J, Li X, Meng F. New Progress in Early Diagnosis of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23168939. [PMID: 36012202 PMCID: PMC9409135 DOI: 10.3390/ijms23168939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary atherosclerosis is a potentially chronic circulatory condition that endangers human health. The biological cause underpinning cardiovascular disease is coronary atherosclerosis, and acute cardiovascular events can develop due to thrombosis, platelet aggregation, and unstable atherosclerotic plaque rupture. Coronary atherosclerosis is progressive, and three specific changes appear, with fat spots and stripes, atherosclerosis and thin-walled fiber atherosclerosis, and then complex changes in arteries. The progression and severity of cardiovascular disease are correlated with various levels of calcium accumulation in the coronary artery. The therapy and diagnosis of coronary atherosclerosis benefit from the initial assessment of the size and degree of calcification. This article will discuss the new progress in the early diagnosis of coronary atherosclerosis in terms of three aspects: imaging, gene and protein markers, and trace elements. This study intends to present the latest methods for diagnosing patients with early atherosclerosis through a literature review.
Collapse
Affiliation(s)
- Heyu Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jianjun Ruan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Zhaohan Yan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Yanqiu Chen
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jinsha Liu
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Xiangdong Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Fanbo Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Correspondence: ; Tel.: +86-15948346855
| |
Collapse
|
10
|
Association of Low Expression of NUMB in Peripheral Blood with Acute Myocardial Infarction. Cardiol Res Pract 2022; 2022:7981637. [PMID: 35529060 PMCID: PMC9072008 DOI: 10.1155/2022/7981637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 12/29/2022] Open
Abstract
Objective Our study's goal was to find out acute myocardial infarction (AMI) patients' NUMB gene expression patterns and to evaluate its role as a diagnostic marker for AMI detection. Methods Peripheral blood was drawn from 124 individuals who had an AMI and 115 patients who had stable coronary artery disease (SCAD). The real-time quantitative polymerase chain reaction was used to measure the mRNA expression level of the NUMB gene in peripheral blood. Results The AMI group's NUMB gene expression was 0.906 (0.181–0.954), whereas the SCAD group's expression was 1.024 (0.207–1.127). However, the AMI group had 0.885 times lower NUMB mRNA expression than the SCAD group (P < 0.05). Conclusion Multivariate logistic regression evaluation found that lower NUMB expression was correlated with an increased risk of coronary artery disease. However, age and fasting plasma glucose levels were not associated with decreased NUMB expression.
Collapse
|