1
|
Lemos FFB, Lopes LW, Brito GC, Viana AIS, de Castro CT, Luz MS, Gonçalves AP, Dórea RSDM, da Silva FAF, de Brito BB, Santos MLC, Júnior GMS, de Lorenzo Barcia MTA, de Amorim Marques R, Botelho AB, Dantas ACS, Pinheiro FD, Teixeira AF, Souza CL, Oliveira MV, de Magalhães Queiroz DM, de Melo FF. Prognostic significance of cytokine dysregulation in critically ill COVID-19 patients. Cytokine 2025; 187:156867. [PMID: 39874939 DOI: 10.1016/j.cyto.2025.156867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Understanding the immunopathogenesis of COVID-19 has yielded valuable insights into predicting adverse outcomes-particularly mortality. However, significant gaps persist in our comprehension of the complex interplay among the proposed pathophysiological mechanisms. Here, we aim to investigate the immunological factors associated with mortality in critically ill, unvaccinated COVID-19 patients admitted to the intensive care unit (ICU). METHODS We conducted a single-center, prospective study involving 56 unvaccinated COVID-19 patients admitted to the ICU. Plasma cytokine levels at admission were quantified using enzyme-linked immunosorbent assay (ELISA). Continuous variables were presented as median (IQR), and categorical variables as frequencies and percentages. Non-parametric tests assessed group differences. Logistic regression and receiver operating characteristic (ROC) curve analyses identified predictors of mortality, with bootstrapping (1000 re-samplings; 95 % BCa CI) applied for model validation. RESULTS Deceased patients exhibited significantly higher levels of interleukin (IL)-1β, IL-2, IL-6, transforming growth factor (TGF)-β, and interferon (IFN)-γ compared to survivors. Conversely, IL-10 and IL-27 were associated with favorable outcomes. Logistic regression modeling identified elevated IL-2 and IFN-γ levels as significant predictors of mortality. Notably, individual ROC curve analyses demonstrated that IL-1β and TGF-β had excellent discriminatory ability for mortality, while IFN-γ, IL-2, and IL-27 showed very good to excellent discriminatory capacity. CONCLUSION Our results indicate that distinct cytokine profiles differentiate survivors from non-survivors in critically ill, unvaccinated COVID-19 patients. These findings highlight the importance of cytokine dysregulation in severe COVID-19 cases and suggest potential targets for prognostic approaches. Further research is warranted to validate these results and translate them into effective clinical management strategies.
Collapse
Affiliation(s)
- Fabian Fellipe Bueno Lemos
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Weber Lopes
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Gabriel Carvalho Brito
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Airton Idalecio Sousa Viana
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Marcel Silva Luz
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - André Pereira Gonçalves
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | - Breno Bittencourt de Brito
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Maria Luísa Cordeiro Santos
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | | | | | - André Bezerra Botelho
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Anna Carolina Saúde Dantas
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fillipe Dantas Pinheiro
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Adriano Fernandes Teixeira
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Cláudio Lima Souza
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Márcio Vasconcelos Oliveira
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Fabrício Freire de Melo
- Multidisciplinary Health Institute, Federal University of Bahia, Vitória da Conquista 45029-094, Bahia, Brazil.
| |
Collapse
|
2
|
Lim HX, Khalid K, Abdullah ADI, Lee LH, Raja Ali RA. Subphenotypes of Long COVID and the clinical applications of probiotics. Biomed Pharmacother 2025; 183:117855. [PMID: 39862702 DOI: 10.1016/j.biopha.2025.117855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/25/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
As the number of infections and deaths attributable to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection continues to rise, it is now becoming apparent that the health impacts of the Coronavirus disease (COVID-19) may not be limited to infection and the subsequent resolution of symptoms. Reports have shown that patients with SARS-CoV-2 infection may experience multiple symptoms across different organ systems that are associated with adverse health outcomes and develop new cardiac, renal, respiratory, musculoskeletal, and nervous conditions, a condition known as Long COVID or the post-acute sequelae of COVID-19 (PASC). This review provides insights into distinct subphenotypes of Long COVID and identifies microbiota dysbiosis as a common theme and crucial target for future therapies. Another important finding is that Long COVID is associated with prolonged and increased inflammation, potentially attributable to immune system dysfunction. A promising solution lies in the potential of probiotics to mitigate Long COVID symptoms by restoring gut microbiota balance and modulating the immune response. By evaluating the current clinical development landscape of the use of probiotics to treat Long COVID symptoms, this paper provides recommendations for future research by stressing the need to understand the modulation of bacterium strains followed by probiotic therapy to understand the association of microbiota dysbiosis with Long COVID symptoms. This will facilitate the development of effective probiotic formulations that could serve as reliable therapies against Long COVID.
Collapse
Affiliation(s)
- Hui Xuan Lim
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | - Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| | | | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham, Ningbo 315000, China
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Petaling Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
3
|
Vinutha M, Sharma UR, Swamy G, Rohini S, Vada S, Janandri S, Haribabu T, Taj N, Gayathri SV, Jyotsna SK, Mudagal MP. COVID-19-related liver injury: Mechanisms, diagnosis, management; its impact on pre-existing conditions, cancer and liver transplant: A comprehensive review. Life Sci 2024; 356:123022. [PMID: 39214285 DOI: 10.1016/j.lfs.2024.123022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
AIMS This review explores the mechanisms, diagnostic approaches, and management strategies for COVID-19-induced liver injury, with a focus on its impact on patients with pre-existing liver conditions, liver cancer, and those undergoing liver transplantation. MATERIALS AND METHODS A comprehensive literature review included studies on clinical manifestations of liver injury due to COVID-19. Key areas examined were direct viral effects, drug-induced liver injury, cytokine storms, and impacts on individuals with chronic liver diseases, liver transplants, and the role of vaccination. Data were collected from clinical trials, observational studies, case reports, and review literature. KEY FINDINGS COVID-19 can cause a spectrum of liver injuries, from mild enzyme elevations to severe hepatic dysfunction. Injury mechanisms include direct viral invasion, immune response alterations, drug toxicity, and hypoxia-reperfusion injury. Patients with chronic liver conditions (such as alcohol-related liver disease, nonalcoholic fatty liver disease, cirrhosis, and hepatocellular carcinoma) face increased risks of severe outcomes. The pandemic has worsened pre-existing liver conditions, disrupted cancer treatments, and complicated liver transplantation. Vaccination remains crucial for reducing severe disease, particularly in chronic liver patients and transplant recipients. Telemedicine has been beneficial in managing patients and reducing cross-infection risks. SIGNIFICANCE This review discusses the importance of improved diagnostic methods and management strategies for liver injury caused by COVID-19. It emphasizes the need for close monitoring and customized treatment for high-risk groups, advocating for future research to explore long-term effects, novel therapies, and evidence-based approaches to improve liver health during and after the pandemic.
Collapse
Affiliation(s)
- M Vinutha
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Uday Raj Sharma
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India.
| | - Gurubasvaraja Swamy
- Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S Rohini
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Surendra Vada
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Suresh Janandri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - T Haribabu
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Nageena Taj
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S V Gayathri
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - S K Jyotsna
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| | - Manjunatha P Mudagal
- Department of Pharmacology, Acharya & BM Reddy College of Pharmacy, Acharya Dr. Sarvepalli Radhakrishna Road, Achit Nagar (Post), Soldevanahalli, Bengaluru, India
| |
Collapse
|
4
|
van der Mescht MA, de Beer Z, Steel HC, Anderson R, Masenge A, Moore PL, Bastard P, Casanova JL, Abdullah F, Ueckermann V, Rossouw TM. Aberrant innate immune profile associated with COVID-19 mortality in Pretoria, South Africa. Clin Immunol 2024; 266:110323. [PMID: 39029640 DOI: 10.1016/j.clim.2024.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The African continent reported the least number of COVID-19 cases and deaths of all the continents, although the exact reasons for this are still unclear. In addition, little is known about the immunological profiles associated with COVID-19 mortality in Africa. The present study compared clinical and immunological parameters, as well as treatment outcomes in patients admitted with COVID-19 in Pretoria, South Africa, to determine if these parameters correlated with mortality in this population. The in-hospital mortality rate for the cohort was 15.79%. The mortality rate in people living with HIV (PLWH) was 10.81% and 17.16% in people without HIV (p = 0.395). No differences in age (p = 0.099), gender (p = 0.127) or comorbidities were found between deceased patients and those who survived. All four of the PLWH who died had a CD4+ T-cell count <200 cells/mm3, a significantly higher HIV viral load than those who survived (p = 0.009), and none were receiving antiretroviral therapy. Seven of 174 (4%) patients had evidence of auto-antibodies neutralizing Type 1 interferons (IFNs). Two of the them died, and their presence was significantly associated with mortality (p = 0.042). In the adjusted model, the only clinical parameters associated with mortality were: higher fraction of inspired oxygen (FiO2) (OR: 3.308, p = 0.011) indicating a greater need for oxygen, high creatinine (OR: 4.424, p = 0.001) and lower platelet counts (OR: 0.203, p = 0.009), possibly secondary to immunothrombosis. Overall, expression of the co-receptor CD86 (p = 0.021) on monocytes and percentages of CD8+ effector memory 2 T-cells (OR: 0.45, p = 0.027) was lower in deceased patients. Decreased CD86 expression impairs the development and survival of effector memory T-cells. Deceased patients had higher concentrations of RANTES (p = 0.003), eotaxin (p = 0.003) and interleukin (IL)-8 (p < 0.001), all involved in the activation and recruitment of innate immune cells. They also had lower concentrations of transforming growth factor (TGF)-β1 (p = 0.40), indicating an impaired anti-inflammatory response. The immunological profile associated with COVID-19 mortality in South Africa points to the role of aberrate innate immune responses.
Collapse
Affiliation(s)
- Mieke A van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Zelda de Beer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane District Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Penny L Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa; Office of AIDS and TB Research, South African Medical Research Council, Pretoria, South Africa; Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
5
|
Zheng Y, Cai S, Zhao Z, Wang X, Dai L, Song D. Roles of telocytes dominated cell–cell communication in fibroproliferative acute respiratory distress syndrome. CLINICAL AND TRANSLATIONAL DISCOVERY 2024; 4. [DOI: 10.1002/ctd2.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/30/2024] [Indexed: 01/03/2025]
Abstract
AbstractTelocytes (TCs) are a new type of interstitial cell identified in multiple tissues of mammals, including the human lung, and mediate homocellular or heterocellular cell‐cell communication. Acute respiratory distress syndrome (ARDS) is characterized by acute hypoxemia respiratory failure and combined with direct and indirect lung injury, which is induced by pneumonia, sepsis, burns, etc. Pulmonary fibrosis is a progressive lung disease that occurs due to increased fibrosis of lung tissue in response to chronic injury of the epithelium and gets more and more attention as a well‐recognized sequela of ARDS or mechanical ventilation. However, the existing intervention measures could not prevent the progression of pulmonary fibrosis. Although the protective effect of TCs in acute lung injury had been demonstrated in both cellular and animal models in previous studies by our or other researchers, the roles of TCs mediated cell‐cell communication in fibroproliferative ARDS is unclear. This review is aimed at integrating our understanding of TC‐mediated cell–cell communication in lung diseases with pulmonary fibrosis after ARDS.
Collapse
Affiliation(s)
- Yonghua Zheng
- Department of Pulmonary Medicine Shanghai Jinshan Tinglin Hospital Shanghai China
| | - Songshan Cai
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai China
| | - Zongfeng Zhao
- Shanghai Xuhui Central Hospital Zhongshan‐Xuhui Hospital Fudan University Shanghai P. R. China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine Zhongshan Hospital Shanghai Medical College Fudan University Shanghai China
- Zhongshan Hospital Institute of Clinical Science Shanghai Medical College Fudan University Shanghai China
- Shanghai Institute of Clinical Bioinformatics Shanghai China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Shanghai China
| | - Lihua Dai
- Emergency and Intensive Care Unit Shidong Hospital affiliated to University of Shanghai for Science and Technology, Yangpu District Shanghai P. R. China
| | - Dongli Song
- Shanghai Xuhui Central Hospital Zhongshan‐Xuhui Hospital Fudan University Shanghai P. R. China
- Department of Pulmonary and Critical Care Medicine Zhongshan Hospital Shanghai Medical College Fudan University Shanghai China
- Zhongshan Hospital Institute of Clinical Science Shanghai Medical College Fudan University Shanghai China
- Shanghai Institute of Clinical Bioinformatics Shanghai China
- Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases Shanghai China
| |
Collapse
|
6
|
Passi R, Cholewa-Waclaw J, Wereski R, Bennett M, Veizades S, Berkeley B, Caporali A, Li Z, Rodor J, Dewerchin M, Mills NL, Beqqali A, Brittan M, Baker AH. COVID-19 plasma induces subcellular remodelling within the pulmonary microvascular endothelium. Vascul Pharmacol 2024; 154:107277. [PMID: 38266794 DOI: 10.1016/j.vph.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect multiple organ systems, including the pulmonary vasculature. Endothelial cells (ECs) are thought to play a key role in the propagation of COVID-19, however, our understanding of the exact scale of dysregulation sustained by the pulmonary microvasculature (pMV) remains incomplete. Here we aim to identify transcriptional, phenotypic, and functional changes within the pMV induced by COVID-19. METHODS AND RESULTS Human pulmonary microvascular endothelial cells (HPMVEC) treated with plasma acquired from patients hospitalised with severe COVID-19 were compared to HPMVEC treated with plasma from patients hospitalised without COVID-19 but with other severe illnesses. Exposure to COVID-19 plasma caused a significant functional decline in HPMVECs as seen by a decrease in both cell viability via the WST-1 cell-proliferation assay and cell-to-cell barrier function as measured by electric cell-substrate impedance sensing. High-content imaging using a Cell Painting image-based assay further quantified morphological variations within sub-cellular organelles to show phenotypic changes in the whole endothelial cell, nucleus, mitochondria, plasma membrane and nucleolus morphology. RNA-sequencing of HPMVECs treated with COVID-19 plasma suggests the observed phenotype may, in part, be regulated by genes such as SMAD7, BCOR, SFMBT1, IFIT5 and ZNF566 which are involved in transcriptional regulation, protein monoubiquitination and TGF-β signalling. CONCLUSION AND IMPACT During COVID-19, the pMV undergoes significant remodelling, which is evident based on the functional, phenotypic, and transcriptional changes seen following exposure to COVID-19 plasma. The observed morphological variation may be responsible for downstream complications, such as a decline in overall cellular function and cell-to-cell barrier integrity. Moreover, genes identified through bulk RNA sequencing may contribute to our understanding of the observed phenotype and assist in developing strategies that can inform the rescue of the dysregulated endothelium.
Collapse
Affiliation(s)
- Rainha Passi
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Justyna Cholewa-Waclaw
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, Edinburgh Bioquarter, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Ryan Wereski
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Matthew Bennett
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Stefan Veizades
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Stanford Cardiovascular Institute, Stanford University, Stanford 94305, CA, USA
| | - Bronwyn Berkeley
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrea Caporali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ziwen Li
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Julie Rodor
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, and VIB Centre for Cancer Biology, VIB, Leuven, Belgium
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Mairi Brittan
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
7
|
Duijvelaar E, Gisby J, Peters JE, Bogaard HJ, Aman J. Longitudinal plasma proteomics reveals biomarkers of alveolar-capillary barrier disruption in critically ill COVID-19 patients. Nat Commun 2024; 15:744. [PMID: 38272877 PMCID: PMC10811341 DOI: 10.1038/s41467-024-44986-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
The pathobiology of respiratory failure in COVID-19 consists of a complex interplay between viral cytopathic effects and a dysregulated host immune response. In critically ill patients, imatinib treatment demonstrated potential for reducing invasive ventilation duration and mortality. Here, we perform longitudinal profiling of 6385 plasma proteins in 318 hospitalised patients to investigate the biological processes involved in critical COVID-19, and assess the effects of imatinib treatment. Nine proteins measured at hospital admission accurately predict critical illness development. Next to dysregulation of inflammation, critical illness is characterised by pathways involving cellular adhesion, extracellular matrix turnover and tissue remodelling. Imatinib treatment attenuates protein perturbations associated with inflammation and extracellular matrix turnover. These proteomic alterations are contextualised using external pulmonary RNA-sequencing data of deceased COVID-19 patients and imatinib-treated Syrian hamsters. Together, we show that alveolar capillary barrier disruption in critical COVID-19 is reflected in the plasma proteome, and is attenuated with imatinib treatment. This study comprises a secondary analysis of both clinical data and plasma samples derived from a clinical trial that was registered with the EU Clinical Trials Register (EudraCT 2020-001236-10, https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-001236-10/NL ) and Netherlands Trial Register (NL8491, https://www.trialregister.nl/trial/8491 ).
Collapse
Affiliation(s)
- Erik Duijvelaar
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| | - Jack Gisby
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - James E Peters
- Department of Immunology and Inflammation, Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Martucci LF, Eichler RA, Silva RN, Costa TJ, Tostes RC, Busatto GF, Seelaender MC, Duarte AJ, Souza HP, Ferro ES. Intracellular peptides in SARS-CoV-2-infected patients. iScience 2023; 26:107542. [PMID: 37636076 PMCID: PMC10448160 DOI: 10.1016/j.isci.2023.107542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological significance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results revealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the results of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, revealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the relative plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.
Collapse
Affiliation(s)
- Luiz Felipe Martucci
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | | | - Renée N.O. Silva
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
| | - Tiago J. Costa
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, Ribeirão Preto 14049-900, Brazil
| | - Geraldo F. Busatto
- Department of Psichiatry, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Marilia C.L. Seelaender
- Department of Surgery, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Alberto J.S. Duarte
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Heraldo P. Souza
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| | - Emer S. Ferro
- Department of Pharmacology, Biomedical Sciences Institute, São Paulo 05508-000, Brazil
- Department of Patology, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
- Department of Internal Medicine, Medical School and Hospital das Clínicas, University of São Paulo, 01246-903 SP, Brazil
| |
Collapse
|
9
|
Ahmad W, Gull B, Baby J, Panicker NG, Khader TA, Akhlaq S, Rizvi TA, Mustafa F. Differentially-regulated miRNAs in COVID-19: A systematic review. Rev Med Virol 2023:e2449. [PMID: 37145095 DOI: 10.1002/rmv.2449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for coronavirus disease of 2019 (COVID-19) that infected more than 760 million people worldwide with over 6.8 million deaths to date. COVID-19 is one of the most challenging diseases of our times due to the nature of its spread, its effect on multiple organs, and an inability to predict disease prognosis, ranging from being completely asymptomatic to death. Upon infection, SARS-CoV-2 alters the host immune response by changing host-transcriptional machinery. MicroRNAs (miRNAs) are regarded as post-transcriptional regulators of gene expression that can be perturbed by invading viruses. Several in vitro and in vivo studies have reported such dysregulation of host miRNA expression upon SARS-CoV-2 infection. Some of this could occur as an anti-viral response of the host to the viral infection. Viruses themselves can counteract that response by mounting their own pro-viral response that facilitates virus infection, an aspect which may cause pathogenesis. Thus, miRNAs could serve as possible disease biomarkers in infected people. In the current review, we have summarised and analysed the existing data about miRNA dysregulation in patients infected with SARS-CoV-2 to determine their concordance between studies, and identified those that could serve as potential biomarkers during infection, disease progression, and death, even in people with other co-morbidities. Having such biomarkers can be vital in not only predicting COVID-19 prognosis, but also the development of novel miRNA-based anti-virals and therapeutics which can become invaluable in case of the emergence of new viral variants with pandemic potential in the future.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bushra Gull
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jasmin Baby
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Neena G Panicker
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Thanumol A Khader
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shaima Akhlaq
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tahir A Rizvi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Research Institute in Precision Medicine, Abu Dhabi, United Arab Emirates
| | - Farah Mustafa
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences (ZCHS), College of Medicine & Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Expression and Function of BMP and Activin Membrane-Bound Inhibitor (BAMBI) in Chronic Liver Diseases and Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24043473. [PMID: 36834884 PMCID: PMC9964332 DOI: 10.3390/ijms24043473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
BAMBI (bone morphogenetic protein and activin membrane-bound inhibitor) is a transmembrane pseudoreceptor structurally related to transforming growth factor (TGF)-β type 1 receptors (TGF-β1Rs). BAMBI lacks a kinase domain and functions as a TGF-β1R antagonist. Essential processes such as cell differentiation and proliferation are regulated by TGF-β1R signaling. TGF-β is the best-studied ligand of TGF-βRs and has an eminent role in inflammation and fibrogenesis. Liver fibrosis is the end stage of almost all chronic liver diseases, such as non-alcoholic fatty liver disease, and at the moment, there is no effective anti-fibrotic therapy available. Hepatic BAMBI is downregulated in rodent models of liver injury and in the fibrotic liver of patients, suggesting that low BAMBI has a role in liver fibrosis. Experimental evidence convincingly demonstrated that BAMBI overexpression is able to protect against liver fibrosis. Chronic liver diseases have a high risk of hepatocellular carcinoma (HCC), and BAMBI was shown to exert tumor-promoting as well as tumor-protective functions. This review article aims to summarize relevant studies on hepatic BAMBI expression and its role in chronic liver diseases and HCC.
Collapse
|