1
|
Zhang JJ, Ni P, Song Y, Gao MJ, Guo XY, Zhao BQ. Effective protective mechanisms of HO-1 in diabetic complications: a narrative review. Cell Death Discov 2024; 10:433. [PMID: 39389941 PMCID: PMC11466965 DOI: 10.1038/s41420-024-02205-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder with persistent hyperglycemia caused by a variety of underlying factors. Chronic hyperglycemia can lead to diverse serious consequences and diversified complications, which pose a serious threat to patients. Among the major complications are cardiovascular disease, kidney disease, diabetic foot ulcers, diabetic retinopathy, and neurological disorders. Heme oxygenase 1 (HO-1) is a protective enzyme with antioxidant, anti-inflammatory and anti-apoptotic effects, which has been intensively studied and plays an important role in diabetic complications. By inducing the expression and activity of HO-1, it can enhance the antioxidant, anti-inflammatory, and anti-apoptotic capacity of tissues, and thus reduce the degree of damage in diabetic complications. The present study aims to review the relationship between HO-1 and the pathogenesis of diabetes and its complications. HO-1 is involved in the regulation of macrophage polarization and promotes the M1 state (pro-inflammatory) towards to the M2 state (anti-inflammatory). Induction of HO-1 expression in dendritic cells inhibits them maturation and secretion of pro-inflammatory cytokines and promotes regulatory T cell (Treg cell) responses. The induction of HO-1 can reduce the production of reactive oxygen species, thereby reducing oxidative stress and inflammation. Besides, HO-1 also has an important effect in novel programmed cell death such as pyroptosis and ferroptosis, thereby playing a protective role against diabetes. In conclusion, HO-1 plays a significant role in the occurrence and development of diabetic complications and is closely associated with a variety of complications. HO-1 is anticipated to serve as a novel target for addressing diabetic complications, and it holds promise as a potential therapeutic agent for diabetes and its associated complications. We hope to provide inspiration and ideas for future studies in the mechanism and targets of HO-1 through this review.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Ping Ni
- Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Yi Song
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Man-Jun Gao
- Schools of Pharmacy and Hubei University of Science and Technology, Xianning, China
| | - Xi-Ying Guo
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| | - Bao-Qing Zhao
- Medicine Research Institute & Hubei Key Laboratory of Diabetes and Angiopathy, Xianning, Hubei, China.
| |
Collapse
|
2
|
Aghayants S, Zhu J, Yu J, Tao R, Li S, Zhou S, Zhou Y, Zhu Z. The emerging modulators of non-coding RNAs in diabetic wound healing. Front Endocrinol (Lausanne) 2024; 15:1465975. [PMID: 39439564 PMCID: PMC11493653 DOI: 10.3389/fendo.2024.1465975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Diabetic wound healing is a complex physiological process often hindered by the underlying metabolic dysfunctions associated with diabetes. Despite existing treatments, there remains a critical need to explore innovative therapeutic strategies to improve patient outcomes. This article comprehensively examines the roles of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating key phases of the wound healing process: inflammation, angiogenesis, re-epithelialization, and tissue remodeling. Through a deep review of current literature, we discuss recent discoveries of ncRNAs that have been shown to either promote or impair the wound healing process in diabetic wound healing, which were not covered in earlier reviews. This review highlights the specific mechanisms by which these ncRNAs impact cellular behaviors and pathways critical to each healing stage. Our findings indicate that understanding these recently identified ncRNAs provides new insights into their potential roles in diabetic wound healing, thereby contributing valuable knowledge for future research directions in this field.
Collapse
Affiliation(s)
- Sis Aghayants
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jinjin Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shengzhi Zhou
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Sou YL, Chilian WM, Ratnam W, Zain SM, Syed Abdul Kadir SZ, Pan Y, Pung YF. Exosomal miRNAs and isomiRs: potential biomarkers for type 2 diabetes mellitus. PRECISION CLINICAL MEDICINE 2024; 7:pbae021. [PMID: 39347441 PMCID: PMC11438237 DOI: 10.1093/pcmedi/pbae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease that is characterized by chronic hyperglycaemia. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play important roles in post-transcriptional gene regulation. They are negative regulators of their target messenger RNAs (mRNAs), in which they bind either to inhibit mRNA translation, or to induce mRNA decay. Similar to proteins, miRNAs exist in different isoforms (isomiRs). miRNAs and isomiRs are selectively loaded into small extracellular vesicles, such as the exosomes, to protect them from RNase degradation. In T2DM, exosomal miRNAs produced by different cell types are transported among the primary sites of insulin action. These interorgan crosstalk regulate various T2DM-associated pathways such as adipocyte inflammation, insulin signalling, and β cells dysfunction among many others. In this review, we first focus on the mechanism of exosome biogenesis, followed by miRNA biogenesis and isomiR formation. Next, we discuss the roles of exosomal miRNAs and isomiRs in the development of T2DM and provide evidence from clinical studies to support their potential roles as T2DM biomarkers. Lastly, we highlight the use of exosomal miRNAs and isomiRs in personalized medicine, as well as addressing the current challenges and future opportunities in this field. This review summarizes how research on exosomal miRNAs and isomiRs has developed from the very basic to clinical applications, with the goal of advancing towards the era of personalized medicine.
Collapse
Affiliation(s)
- Yong Ling Sou
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Wickneswari Ratnam
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Shamsul Mohd Zain
- Department of Pharmacology, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Yan Pan
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia
| |
Collapse
|
4
|
Li Y, Zhu Z, Li S, Xie X, Qin L, Zhang Q, Yang Y, Wang T, Zhang Y. Exosomes: compositions, biogenesis, and mechanisms in diabetic wound healing. J Nanobiotechnology 2024; 22:398. [PMID: 38970103 PMCID: PMC11225131 DOI: 10.1186/s12951-024-02684-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
Diabetic wounds are characterized by incomplete healing and delayed healing, resulting in a considerable global health care burden. Exosomes are lipid bilayer structures secreted by nearly all cells and express characteristic conserved proteins and parent cell-associated proteins. Exosomes harbor a diverse range of biologically active macromolecules and small molecules that can act as messengers between different cells, triggering functional changes in recipient cells and thus endowing the ability to cure various diseases, including diabetic wounds. Exosomes accelerate diabetic wound healing by regulating cellular function, inhibiting oxidative stress damage, suppressing the inflammatory response, promoting vascular regeneration, accelerating epithelial regeneration, facilitating collagen remodeling, and reducing scarring. Exosomes from different tissues or cells potentially possess functions of varying levels and can promote wound healing. For example, mesenchymal stem cell-derived exosomes (MSC-exos) have favorable potential in the field of healing due to their superior stability, permeability, biocompatibility, and immunomodulatory properties. Exosomes, which are derived from skin cellular components, can modulate inflammation and promote the regeneration of key skin cells, which in turn promotes skin healing. Therefore, this review mainly emphasizes the roles and mechanisms of exosomes from different sources, represented by MSCs and skin sources, in improving diabetic wound healing. A deeper understanding of therapeutic exosomes will yield promising candidates and perspectives for diabetic wound healing management.
Collapse
Affiliation(s)
- Yichuan Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhanyong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Sicheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, China
| | - Xiaohang Xie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Qin
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Zhang
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, Hubei, 437000, China
| | - Yan Yang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ting Wang
- Department of Medical Ultrasound, Tongji Hospital of Tongji Medical College of Huazhong, University of Science and Technology, Wuhan, 430030, China.
| | - Yong Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Chen Y, Zhang Y, Jiang M, Ma H, Cai Y. HMOX1 as a therapeutic target associated with diabetic foot ulcers based on single-cell analysis and machine learning. Int Wound J 2024; 21:e14815. [PMID: 38468410 PMCID: PMC10928352 DOI: 10.1111/iwj.14815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/15/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are a serious chronic complication of diabetes mellitus and a leading cause of disability and death in diabetic patients. However, current treatments remain unsatisfactory. Although macrophages are associated with DFU, their exact role in this disease remains uncertain. This study sought to detect macrophage-related genes in DFU and identify possible therapeutic targets. Single-cell datasets (GSE223964) and RNA-seq datasets (GSM68183, GSE80178, GSE134431 and GSE147890) associated with DFU were retrieved from the gene expression omnibus (GEO) database for this study. Analysis of the provided single-cell data revealed the distribution of macrophage subpopulations in the DFU. Four independent RNA-seq datasets were merged into a single DFU cohort and further analysed using bioinformatics. This included differential expression (DEG) analysis, multiple machine learning algorithms to identify biomarkers and enrichment analysis. Finally, key results were validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western bolt. Finally, the findings were validated using RT-qPCR and western blot. We obtained 802 macrophage-related genes in single-cell analysis. Differential expression analysis yielded 743 DEGs. Thirty-seven macrophage-associated DEGs were identified by cross-analysis of marker genes with macrophage-associated DEGs. Thirty-seven intersections were screened and cross-analysed using four machine learning algorithms. Finally, HMOX1 was identified as a potentially valuable biomarker. HMOX1 was significantly associated with biological pathways such as the insulin signalling pathway. The results showed that HMOX1 was significantly overexpressed in DFU samples. In conclusion, the analytical results of this study identified HMOX1 as a potentially valuable biomarker associated with macrophages in DFU. The results of our analysis improve our understanding of the mechanism of macrophage action in this disease and may be useful in developing targeted therapies for DFU.
Collapse
Affiliation(s)
- Yiqi Chen
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Yixin Zhang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of Breast SurgeryYantai City Yantai Hill hospitalYantaiChina
| | - Ming Jiang
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| | - Hong Ma
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
- Department of BurnHanzhong Central HospitalHanZhongChina
| | - Yuhui Cai
- Department of Burn and Plastic SurgeryAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
6
|
Bonnici L, Suleiman S, Schembri-Wismayer P, Cassar A. Targeting Signalling Pathways in Chronic Wound Healing. Int J Mol Sci 2023; 25:50. [PMID: 38203220 PMCID: PMC10779022 DOI: 10.3390/ijms25010050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wounds fail to achieve complete closure and are an economic burden to healthcare systems due to the limited treatment options and constant medical attention. Chronic wounds are characterised by dysregulated signalling pathways. Research has focused on naturally derived compounds, stem-cell-based therapy, small molecule drugs, oligonucleotide delivery nanoparticles, exosomes and peptide-based platforms. The phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wingless-related integration (Wnt)/β-catenin, transforming growth factor-β (TGF-β), nuclear factor erythroid 2-related factor 2 (Nrf2), Notch and hypoxia-inducible factor 1 (HIF-1) signalling pathways have critical roles in wound healing by modulating the inflammatory, proliferative and remodelling phases. Moreover, several regulators of the signalling pathways were demonstrated to be potential treatment targets. In this review, the current research on targeting signalling pathways under chronic wound conditions will be discussed together with implications for future studies.
Collapse
Affiliation(s)
| | | | | | - Analisse Cassar
- Department of Anatomy, University of Malta, MSD 2080 Msida, Malta; (L.B.); (S.S.); (P.S.-W.)
| |
Collapse
|
7
|
Du Y, Wang J, Fan W, Huang R, Wang H, Liu G. Preclinical study of diabetic foot ulcers: From pathogenesis to vivo/vitro models and clinical therapeutic transformation. Int Wound J 2023; 20:4394-4409. [PMID: 37438679 PMCID: PMC10681512 DOI: 10.1111/iwj.14311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Diabetic foot ulcer (DFU), a common intractable chronic complication of diabetes mellitus (DM), has a prevalence of up to 25%, with more than 17% of the affected patients at risk of amputation or even death. Vascular risk factors, including vascular stenosis or occlusion, dyslipidemia, impaired neurosensory and motor function, and skin infection caused by trauma, all increase the risk of DFU in patients with diabetes. Therefore, diabetic foot is not a single pathogenesis. Preclinical studies have contributed greatly to the pathogenesis determination and efficacy evaluation of DFU. Many therapeutic tools are currently being investigated using DFU animal models for effective clinical translation. However, preclinical animal models that completely mimic the pathogenesis of DFU remain unexplored. Therefore, in this review, the preparation methods and evaluation criteria of DFU animal models with three major pathological mechanisms: neuropathy, angiopathy and DFU infection were discussed in detail. And the advantages and disadvantages of various DFU animal models for clinical sign simulation. Furthermore, the current status of vitro models of DFU and some preclinical studies have been transformed into clinical treatment programs, such as medical dressings, growth factor therapy, 3D bioprinting and pre-vascularization, Traditional Chinese Medicine treatment. However, because of the complexity of the pathological mechanism of DFU, the clinical transformation of DFU model still faces many challenges. We need to further optimize the existing preclinical studies of DFU to provide an effective animal platform for the future study of pathophysiology and clinical treatment of DFU.
Collapse
Affiliation(s)
- Yuqing Du
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jie Wang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- Endocrinology departmentShanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weijing Fan
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Renyan Huang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hongfei Wang
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guobin Liu
- Department of Peripheral Vascular SurgeryInstitute of surgery of traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
8
|
Sousa P, Lopes B, Sousa AC, Moreira A, Coelho A, Alvites R, Alves N, Geuna S, Maurício AC. Advancements and Insights in Exosome-Based Therapies for Wound Healing: A Comprehensive Systematic Review (2018-June 2023). Biomedicines 2023; 11:2099. [PMID: 37626596 PMCID: PMC10452374 DOI: 10.3390/biomedicines11082099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Exosomes have shown promising potential as a therapeutic approach for wound healing. Nevertheless, the translation from experimental studies to commercially available treatments is still lacking. To assess the current state of research in this field, a systematic review was performed involving studies conducted and published over the past five years. A PubMed search was performed for English-language, full-text available papers published from 2018 to June 2023, focusing on exosomes derived from mammalian sources and their application in wound healing, particularly those involving in vivo assays. Out of 531 results, 148 papers were selected for analysis. The findings revealed that exosome-based treatments improve wound healing by increasing angiogenesis, reepithelization, collagen deposition, and decreasing scar formation. Furthermore, there was significant variability in terms of cell sources and types, biomaterials, and administration routes under investigation, indicating the need for further research in this field. Additionally, a comparative examination encompassing diverse cellular origins, types, administration pathways, or biomaterials is imperative. Furthermore, the predominance of rodent-based animal models raises concerns, as there have been limited advancements towards more complex in vivo models and scale-up assays. These constraints underscore the substantial efforts that remain necessary before attaining commercially viable and extensively applicable therapeutic approaches using exosomes.
Collapse
Affiliation(s)
- Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal;
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Turin, Italy;
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal; (P.S.); (B.L.); (A.C.S.); (A.M.); (A.C.); (R.A.)
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
9
|
Dong J, Wu B, Tian W. How to maximize the therapeutic effect of exosomes on skin wounds in diabetes mellitus: Review and discussion. Front Endocrinol (Lausanne) 2023; 14:1146991. [PMID: 37051206 PMCID: PMC10083381 DOI: 10.3389/fendo.2023.1146991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Chronic skin wound healing, especially in diabetes mellitus, is still unsolved. Although many efforts have been made to treat diabetic skin wounds, current strategies have achieved limited effectiveness. Nowadays, a great number of studies have shown that exosomes might be a promising approach for treating diabetic wounds. Many studies and reviews have focused on investigating and discussing the effectiveness and mechanism of exosomes. However, maximizing its value in treating skin wounds in diabetes mellitus requires further consideration. In this review, we reviewed and discussed the aspects that could be further improved in this process, including finding a better source of exosomes, engineering exosomes, adjusting dosage and frequency, and combining more efficient delivery methods. This review provided an overview and idea of what we can do to improve the therapeutic effect of exosomes on skin wounds in diabetes mellitus. Only by combining all the factors that affect the effectiveness of exosomes in diabetic wound healing can we further promote their clinical usefulness.
Collapse
Affiliation(s)
- Jia Dong
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jia Dong, ; Weidong Tian,
| | - Bin Wu
- Department of Stomatology, People's Hospital of Longhua Shenzhen, Shenzhen, Guangdong, China
| | - Weidong Tian
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Oral Regenerative Medicine, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Jia Dong, ; Weidong Tian,
| |
Collapse
|