1
|
Madrid J, Agarwal P, Müller-Peltzer K, Benning L, Selig M, Rolauffs B, Diehl P, Kalbhenn J, Trummer G, Utzolino S, Wengenmayer T, Busch HJ, Stolz D, Rieg S, Panning M, Bamberg F, Schlett CL, Askani E. Cardioprotective effects of vaccination in hospitalized patients with COVID-19. Clin Exp Med 2024; 24:103. [PMID: 38758248 PMCID: PMC11101587 DOI: 10.1007/s10238-024-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
COVID-19 vaccination has been shown to prevent and reduce the severity of COVID-19 disease. The aim of this study was to explore the cardioprotective effect of COVID-19 vaccination in hospitalized COVID-19 patients. In this retrospective, single-center cohort study, we included hospitalized COVID-19 patients with confirmed vaccination status from July 2021 to February 2022. We assessed outcomes such as acute cardiac events and cardiac biomarker levels through clinical and laboratory data. Our analysis covered 167 patients (69% male, mean age 58 years, 42% being fully vaccinated). After adjustment for confounders, vaccinated hospitalized COVID-19 patients displayed a reduced relative risk for acute cardiac events (RR: 0.33, 95% CI [0.07; 0.75]) and showed diminished troponin T levels (Cohen's d: - 0.52, 95% CI [- 1.01; - 0.14]), compared to their non-vaccinated peers. Type 2 diabetes (OR: 2.99, 95% CI [1.22; 7.35]) and existing cardiac diseases (OR: 4.31, 95% CI [1.83; 10.74]) were identified as significant risk factors for the emergence of acute cardiac events. Our findings suggest that COVID-19 vaccination may confer both direct and indirect cardioprotective effects in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Julian Madrid
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany.
| | - Prerana Agarwal
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Leo Benning
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Intensive Care Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Utzolino
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Xiong Y, Li Y, Qian W, Zhang Q. RNA m5C methylation modification: a potential therapeutic target for SARS-CoV-2-associated myocarditis. Front Immunol 2024; 15:1380697. [PMID: 38715608 PMCID: PMC11074473 DOI: 10.3389/fimmu.2024.1380697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024] Open
Abstract
The Corona Virus Disease (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has quickly spread worldwide and resulted in significant morbidity and mortality. Although most infections are mild, some patients can also develop severe and fatal myocarditis. In eukaryotic RNAs, 5-methylcytosine (m5C) is a common kind of post-transcriptional modification, which is involved in regulating various biological processes (such as RNA export, translation, and stability maintenance). With the rapid development of m5C modification detection technology, studies related to viral m5C modification are ever-increasing. These studies have revealed that m5C modification plays an important role in various stages of viral replication, including transcription and translation. According to recent studies, m5C methylation modification can regulate SARS-CoV-2 infection by modulating innate immune signaling pathways. However, the specific role of m5C modification in SARS-CoV-2-induced myocarditis remains unclear. Therefore, this review aims to provide insights into the molecular mechanisms of m5C methylation in SARS-CoV-2 infection. Moreover, the regulatory role of NSUN2 in viral infection and host innate immune response was also highlighted. This review may provide new directions for developing therapeutic strategies for SARS-CoV-2-associated myocarditis.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| | - Yanan Li
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiwei Qian
- Emergency Department, Shangjinnanfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, and Disaster Medical Center, Sichuan University, Chengdu, Sichuan, China
| | - Qing Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
4
|
Ooi SH, Ng KP, Sthaneshwar P, Lim SK, Khor PY, Lim JY, Siow WS, Lim KW, Azlan M. A study of hospitalized COVID-19 patients with AKI in a setting of multiracial developing country. BMC Nephrol 2024; 25:122. [PMID: 38580977 PMCID: PMC10998399 DOI: 10.1186/s12882-024-03498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 02/12/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The commonest indication for hospitalization in COVID-19 patients is hypoxemia or severe respiratory symptoms. However, COVID-19 disease may result in extrapulmonary complications including kidney-related pathology. The reported incidence of renal involvement related to COVID infection varies based on geographical location. OBJECTIVE This study aimed to assess the incidence rate of AKI in hospitalized COVID-19 patients and identify risk factors and prognostic predictors. METHOD In this retrospective study, we recruited hospitalized COVID-19 patients from January 2021 until June 2021 at the University Malaya Medical Center. The inclusion criteria were hospitalized for ≥ 48 h with confirmed COVID-19 infection and at least 18 years old. Patient demographic and clinical data were collected from electronic medical records. The staging of AKI was based on criteria as per KDIGO guidelines. RESULTS One thousand five hundred twenty-nine COVID patients fulfilled the inclusion criteria with a male-to-female ratio of 759 (49.6%) to 770 (50.3%). The median age was 55 (IQR: 36-66). 500 patients (32.7%) had diabetes, 621 (40.6%) had hypertension, and 5.6% (n = 85) had pre-existing chronic kidney disease (CKD). The incidence rate of AKI was 21.1% (n = 323). The percentage of COVID patients in different AKI stages of 1,2 and 3 were 16.3%, 2.1%, and 2.7%, respectively. Fifteen hospitalized patients (0.98%) required renal replacement therapy. 58.8% (n = 190) of AKI group had complete recovery of kidney function. Demographic factors included age (p < 0.001), diabetes (p < 0.001), hypertension (p < 0.012), CKD (p < 0.001), and vaccination status (p = 0.042) were associated with an increased risk of developing AKI. We found that the AKI cohort had statistically significant lower platelet counts and higher ferritin levels than the non-AKI cohort. AKI is a risk predictor of prolonged hospitalization (p < 0.001) and higher mortality rates (P < 0.001). CONCLUSION AKI is a common clinical complication among hospitalized COVID-19 patients. The etiology of AKI is multifactorial and may have an adverse impact on patient morbidity and mortality.
Collapse
Affiliation(s)
- S H Ooi
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - K P Ng
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia.
| | | | - S K Lim
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - P Y Khor
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - J Y Lim
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - W S Siow
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - K W Lim
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Muhummad Azlan
- Internal Medicine Department, University Malaya Medical Center, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Peiró ÓM, Delgado-Cornejo JR, Sánchez-Giménez R, del-Moral-Ronda V, Lal-Trehan N, Rocamora-Horrach M, Carrasquer A, Peraire J, Fort-Gallifa I, Bardaji A. Prevalence and prognostic implications of myocardial injury across different waves of COVID-19. Front Cardiovasc Med 2024; 11:1297824. [PMID: 38455719 PMCID: PMC10917998 DOI: 10.3389/fcvm.2024.1297824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction The prognostic ability of myocardial injury across different waves of the COVID-19 pandemic is not well established. The purpose of this study was to evaluate the prevalence and prognostic implications of myocardial injury in the first and sixth wave of COVID-19. Methods We conducted a retrospective observational study that included patients admitted to the emergency department with COVID-19 with data on concentrations of cardiac troponin during the first and sixth wave. We compared the prevalence of myocardial injury and its predictive capacity for 30-day all-cause death in both waves. Results and discussion A total of 346 patients were included (1st wave 199 and 6th wave 147 patients). The prevalence of myocardial injury was 21% with non-significant differences between waves. Myocardial injury was associated, in both waves, with a higher prevalence of comorbidities and with an increased risk of 30-day all-cause death [1st wave HR: 3.73 (1.84-7.55); p < 0.001 and 6th wave HR: 3.13 (1.23-7.92); p = 0.016], with non-significant differences in predictive capacity between groups after ROC curve analysis [AUC: 1st wave 0.829 (95% CI: 0.764-0.895) and 6th wave 0.794 (95% CI: 0.711-0.876)]. As limitations, this is a retrospective study with a relatively small simple size and troponin assay was performed at the discretion of the emergency physician so selection bias could be present. In conclusion, the prevalence of myocardial injury and its prognostic capacity was similar in both waves despite vaccination programs. Myocardial injury predicts short-term mortality in all COVID-19 patients, so they should be treated intensively.
Collapse
Affiliation(s)
- Óscar M. Peiró
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| | - Juan R. Delgado-Cornejo
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| | - Raúl Sánchez-Giménez
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| | - Víctor del-Moral-Ronda
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| | - Nisha Lal-Trehan
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| | - Mar Rocamora-Horrach
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| | - Anna Carrasquer
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| | - Joaquim Peraire
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
- Department of Internal Medicine, Joan XXIII University Hospital, Tarragona, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC)-Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Fort-Gallifa
- Clinical Laboratory, Catalan Institute of Health, Camp de Tarragona-Terres de l’Ebre, Tarragona, Spain
| | - Alfredo Bardaji
- Department of Cardiology, Joan XXIII University Hospital, Tarragona, Spain
- Pere Virgili Health Research Institute, Rovira i Virgili University, Tarragona, Spain
- Department of Medicine and Surgery, Rovira i Virgili University, Tarragona, Spain
| |
Collapse
|
6
|
Kapusta J, Babicki M, Pieniawska-Śmiech K, Kałuzińska-Kołat Ż, Kołat D, Jankowski P, Kasprzak JD, Wejner-Mik P, Bianek-Bodzak A, Chudzik M. Clinical and electrocardiographic correlates of myocardial dysfunction after COVID-19 in nonhospitalised patients in long-term follow-up. Data from the polish long-covid cardiovascular study. J Med Virol 2023; 95:e29331. [PMID: 38112151 DOI: 10.1002/jmv.29331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Clinical evidence indicates that COVID-19 is a multiorgan disease that significantly impacts the cardiovascular system. However, little is known about the predictors of myocardial dysfunction after SARS-CoV-2 infection. Therefore, this research aimed to evaluate the clinical and electrocardiographic correlates of myocardial dysfunction after SARS-CoV-2 infection in nonhospitalised patients without previously diagnosed cardiovascular disease. This observational study included 448 patients selected from the database of 4142 patients in the Polish Long-Covid Cardiovascular study. All patients underwent a 12-lead electrocardiogram (ECG); 24-h Holter ECG monitoring, 24/7 ambulatory blood pressure monitoring, echocardiography, and cardiac magnetic resonance imaging. According to the results of diagnostic tests, patients were divided into two groups depending on the occurrence of myocardial dysfunction after COVID-19. Group 1-without myocardial dysfunction after COVID-19-consisted of 419 patients, with a mean age of 48.82 (SD ± 11.91), and Group 2 (29 patients)-with myocardial dysfunction after COVID-19, with a mean age of 51.45 (SD ± 12.92). When comparing the analysed groups, there were significantly more men in Group 2 (p = 0.006). QRS (corresponds to the time of ventricular contraction in an electrocardiographic examination) fragmentation (p = 0.031), arrhythmias (atrial fibrillation, supraventricular extrasystole, ventricular extrasystole) (p = 0.008), and male gender (p = 0.007) were independently associated with myocardial dysfunction after COVID-19. The study showed that myocardial damage after COVID-19 affects men more often and is independent of typical clinical factors and the severity of the disease course. The QRS fragmentation and arrhythmias observed in the ECG indicate the possibility of myocardial dysfunction in patients after COVID-19, which may be a valuable marker for physicians.
Collapse
Affiliation(s)
- Joanna Kapusta
- Department of Internal Diseases, Rehabilitation, and Physical Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Babicki
- Department of Family Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Karolina Pieniawska-Śmiech
- Department of Immunology and Pediatrics, The J. Gromkowski Provincial Specialist Hospital, Wroclaw, Poland
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Jarosław D Kasprzak
- I Chair and Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | - Paulina Wejner-Mik
- I Chair and Department of Cardiology, Medical University of Lodz, Lodz, Poland
| | | | - Michał Chudzik
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Zakynthinos GE, Tsolaki V, Oikonomou E, Vavouranakis M, Siasos G, Zakynthinos E. New-Onset Atrial Fibrillation in the Critically Ill COVID-19 Patients Hospitalized in the Intensive Care Unit. J Clin Med 2023; 12:6989. [PMID: 38002603 PMCID: PMC10672690 DOI: 10.3390/jcm12226989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
New-onset atrial fibrillation (NOAF) is the most frequently encountered cardiac arrhythmia observed in patients with COVID-19 infection, particularly in Intensive Care Unit (ICU) patients. The purpose of the present review is to delve into the occurrence of NOAF in COVID-19 and thoroughly review recent, pertinent data. However, the causality behind this connection has yet to be thoroughly explored. The proposed mechanisms that could contribute to the development of AF in these patients include myocardial damage resulting from direct virus-induced cardiac injury, potentially leading to perimyocarditis; a cytokine crisis and heightened inflammatory response; hypoxemia due to acute respiratory distress; disturbances in acid-base and electrolyte levels; as well as the frequent use of adrenergic drugs in critically ill patients. Additionally, secondary bacterial sepsis and septic shock have been suggested as primary causes of NOAF in ICU patients. This notion gains strength from the observation of a similar prevalence of NOAF in septic non-COVID ICU patients with ARDS. It is plausible that both myocardial involvement from SARS-CoV-2 and secondary sepsis play pivotal roles in the onset of arrhythmia in ICU patients. Nonetheless, there exists a significant variation in the prevalence of NOAF among studies focused on severe COVID-19 cases with ARDS. This discrepancy could be attributed to the inclusion of mixed populations with varying degrees of illness severity, encompassing not only patients in general wards but also those admitted to the ICU, whether intubated or not. Furthermore, the occurrence of NOAF is linked to increased morbidity and mortality. However, it remains to be determined whether NOAF independently influences outcomes in critically ill COVID-19 ICU patients or if it merely reflects the disease's severity. Lastly, the management of NOAF in these patients has not been extensively studied. Nevertheless, the current guidelines for NOAF in non-COVID ICU patients appear to be effective, while accounting for the specific drugs used in COVID-19 treatment that may prolong the QT interval (although drugs like lopinavir/ritonavir, hydrochlorothiazide, and azithromycin have been discontinued) or induce bradycardia (e.g., remdesivir).
Collapse
Affiliation(s)
- George E. Zakynthinos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Vasiliki Tsolaki
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Manolis Vavouranakis
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
| | - Gerasimos Siasos
- 3rd Department of Cardiology, “Sotiria” Chest Diseases Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (G.E.Z.); (E.O.); (M.V.); (G.S.)
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Epaminondas Zakynthinos
- Critical Care Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
8
|
Mikhaleva L, Gioeva Z, Varyasin V, Berezhnaja E, Vandysheva R, Gutyrchik N, Pechnikova V, Kontorshchikov A, Midiber K, Kakturskij L. Pathomorphological Features of the Novel Coronavirus Disease in Patients with Systemic Amyloidosis. Biomedicines 2023; 11:2811. [PMID: 37893183 PMCID: PMC10604009 DOI: 10.3390/biomedicines11102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Amyloidosis is one of the rare systemic illnesses characterized by the deposition of amyloid fibrils in various organs and tissues. There is a common point between COVID-19 and systemic amyloidosis regarding the multiorgan involvement in the pathological process which leads to a heightened risk for severe morbidity and mortality in amyloidosis patients who contracted COVID-19. We performed a pathomorphological analysis of the autopsy records of 22 patients who had COVID-19 and pre-existing systemic amyloidosis. The premortem diagnosis of systemic amyloidosis was established in 55% of patients, and in other 45% of cases, amyloidosis was found at autopsy. Based on the results of immunohistochemical amyloid typing, amyloid A (AA) amyloidosis was detected in 23%, amyloid light chain (AL) lambda in 32%, AL kappa-in 9%, and transthyretin (ATTR) amyloidosis-in 36% of observations. Immunohistochemical staining with an antibody against SARS-CoV-2 Spike (S) protein revealed positive immune reactions in type II alveolocytes in 59% of deceased persons. The analysis of autopsy findings indicates that patients with systemic amyloidosis are more likely to experience an aggressive clinical course of COVID-19 which leads to a multiorgan failure and a higher risk of fatal outcome.
Collapse
Affiliation(s)
- Liudmila Mikhaleva
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Zarina Gioeva
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | | | | | - Rositsa Vandysheva
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Nikita Gutyrchik
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
- Medical Institute, Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Valentina Pechnikova
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Andrej Kontorshchikov
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Konstantin Midiber
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| | - Lev Kakturskij
- Avtsyn Research Institute of Human Morphology, Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 117418 Moscow, Russia
| |
Collapse
|
9
|
Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA, Lin MJ, Wu HP. Mesenchymal Stem Cells in the Treatment of COVID-19. Int J Mol Sci 2023; 24:14800. [PMID: 37834246 PMCID: PMC10573267 DOI: 10.3390/ijms241914800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Since the emergence of the coronavirus disease 2019 (COVID-19) pandemic, many lives have been tragically lost to severe infections. The COVID-19 impact extends beyond the respiratory system, affecting various organs and functions. In severe cases, it can progress to acute respiratory distress syndrome (ARDS) and multi-organ failure, often fueled by an excessive immune response known as a cytokine storm. Mesenchymal stem cells (MSCs) have considerable potential because they can mitigate inflammation, modulate immune responses, and promote tissue regeneration. Accumulating evidence underscores the efficacy and safety of MSCs in treating severe COVID-19 and ARDS. Nonetheless, critical aspects, such as optimal routes of MSC administration, appropriate dosage, treatment intervals, management of extrapulmonary complications, and potential pediatric applications, warrant further exploration. These research avenues hold promise for enriching our understanding and refining the application of MSCs in confronting the multifaceted challenges posed by COVID-19.
Collapse
Affiliation(s)
- Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 43503, Taiwan
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
10
|
Burhan E, Mubarak F, Adilah SASU, Sari CYI, Ismail E, Astuti P, Hanifah Y, Wiyarta E, Suryana NM. Association between cardiovascular diseases and COVID-19 pneumonia outcome in Indonesia: a multi-center cohort study. Front Med (Lausanne) 2023; 10:1190148. [PMID: 37457562 PMCID: PMC10339801 DOI: 10.3389/fmed.2023.1190148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Background COVID-19 is a pandemic affecting 185 countries, including Indonesia. Cardiovascular diseases (CVD) in COVID-19 patients were linked to worse clinical outcomes. However, the association remained inconclusive due to limited data in Indonesia. This study aimed to determine the association between CVD in COVID-19 pneumonia patients with its clinical outcomes. Methods This retrospective cohort study was conducted in four Indonesian hospitals, enrolling 584 adult COVID-19 pneumonia patients from September 2020 to July 2021. Patients were categorized into two groups: non-CVD and CVD [hypertension, coronary artery disease (CAD), chronic heart failure (CHF), hypertensive heart disease (HHD), arrhythmia, cardiomegaly, left ventricular hypertrophy (LVH), mitral regurgitation (MR), and myocardial injury (MI)]. Clinical outcomes include in-hospital mortality, intensive care unit admission, ventilator use, earlier death, and prolonged hospital stay. Mann-Whitney test was used for analysis. Results The most common CVD was hypertension (48.1%), followed by MI (10.6%), CAD (9.2%), CHF (6.8%), HHD (3.1%), arrhythmia (1.7%), and others (0.7%). The in-hospital mortality rate was 24%, and patients were hospitalized for a median of 12 days. MI was the only CVD that increased in-hospital mortality (RR 2.105). It was also significantly increased in patients with diabetes mellitus (RR 1.475) and chronic kidney disease (RR 2.079). Meanwhile, prolonged hospital stay was associated with any CVD (RR 1.553), hypertension (RR 1.511), MI (RR 1.969), CHF (RR 1.595), diabetes mellitus (RR 1.359), and cerebrovascular disease (RR 2.203). Conclusion COVID-19 pneumonia in patients with CVD, specifically MI and hypertension, worsens the COVID-19 clinical outcomes.
Collapse
Affiliation(s)
- Erlina Burhan
- Department of Pulmonology and Respiratory Medicine, Persahabatan Central General Hospital, Universitas Indonesia, Jakarta, Indonesia
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Farhan Mubarak
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | | | - Cut Yulia Indah Sari
- Department of Pulmonology, Jakarta Islam Hospital Cempaka Putih, Jakarta, Indonesia
| | - Efriadi Ismail
- Department of Pulmonology, Yarsi Hospital, Jakarta, Indonesia
| | - Puji Astuti
- Department of Pulmonology, Cengkareng District General Hospital, Jakarta, Indonesia
| | - Yasmina Hanifah
- Department of Cardiology and Vascular Medicine, Persahabatan Central General Hospital, Jakarta, Indonesia
| | - Elvan Wiyarta
- Department of Medical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nana Maya Suryana
- Department of Cardiology and Vascular Medicine, Persahabatan Central General Hospital, Jakarta, Indonesia
| |
Collapse
|
11
|
Kehara H, Mangukia C, Sunagawa G, Iturra SA, Yanagida R, Kashem M, Persidsky Y, Shenoy K, Mamary AJ, Marchetti N, Cordova F, Criner GJ, Toyoda Y, Shigemura N. Lung Transplantation for COVID-19 Pulmonary Sequelae. Transplantation 2023; 107:449-456. [PMID: 36525557 PMCID: PMC9875795 DOI: 10.1097/tp.0000000000004428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The role of lung transplantation for coronavirus disease 2019 (COVID-19)-related lung failure is evolving as the pandemic persists. METHODS From January 2021 to April 2022, 20 patients (median age 62 y; range 31-77) underwent lung transplantation for COVID-related lung failure at our institution. We reviewed their clinical and intraoperative characteristics and early outcomes including postoperative complications. RESULTS Eleven patients (55%) had chronic lung disease when they contracted COVID-19. All 20 patients required hospitalization for antivirus treatment. Median lung allocation score was 74.7 (33.1-94.0). Thirteen patients (65%) underwent single-lung transplants, and 7 patients (35%) underwent double-lung transplants. Concomitant coronary artery bypass graft surgery was performed in 2 (10%) patients because of severe coronary artery disease. Postoperatively, venovenous extracorporeal membrane oxygenation was needed in 3 patients (15%) because of severe primary graft dysfunction; all were eventually weaned. Ten patients (50%) experienced deep venous thrombosis, and 1 eventually developed a major pulmonary embolus. The median intensive care unit stay and hospital stays were 6.5 d (3-44) and 18 d (7-77), respectively. During a median follow-up of 201 d (47-418), we experienced 1 late mortality due to COVID-19-related myocarditis. Among the 13 patients with single-lung transplant, 5 demonstrated improvement in their native lungs. CONCLUSIONS Lung transplantation yielded favorable early outcomes in a heterogeneous patient cohort that included older patients, obese patients, and patients with coronary artery disease or preexisting chronic lung disease. Our data also shed light on the transforming role of lung transplantation for the pulmonary sequelae of a complex multisystem COVID-19 disorder.
Collapse
Affiliation(s)
- Hiromu Kehara
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Chirantan Mangukia
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Gengo Sunagawa
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Sebastian A Iturra
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Roh Yanagida
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Mohammed Kashem
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Kartik Shenoy
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| | - Albert J Mamary
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| | - Francis Cordova
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| | - Yoshiya Toyoda
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA
| | - Norihisa Shigemura
- Division of Cardiovascular Surgery, Temple University and Lewis Katz School of Medicine, Philadelphia, PA.,Department of Thoracic Medicine and Surgery, Temple University Hospital, Philadelphia, PA
| |
Collapse
|
12
|
Donniacuo M, De Angelis A, Rafaniello C, Cianflone E, Paolisso P, Torella D, Sibilio G, Paolisso G, Castaldo G, Urbanek K, Rossi F, Berrino L, Cappetta D. COVID-19 and atrial fibrillation: Intercepting lines. Front Cardiovasc Med 2023; 10:1093053. [PMID: 36755799 PMCID: PMC9899905 DOI: 10.3389/fcvm.2023.1093053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Almost 20% of COVID-19 patients have a history of atrial fibrillation (AF), but also a new-onset AF represents a frequent complication in COVID-19. Clinical evidence demonstrates that COVID-19, by promoting the evolution of a prothrombotic state, increases the susceptibility to arrhythmic events during the infective stages and presumably during post-recovery. AF itself is the most frequent form of arrhythmia and is associated with substantial morbidity and mortality. One of the molecular factors involved in COVID-19-related AF episodes is the angiotensin-converting enzyme (ACE) 2 availability. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 to enter and infect multiple cells. Atrial ACE2 internalization after binding to SARS-CoV-2 results in a raise of angiotensin (Ang) II, and in a suppression of cardioprotective Ang(1-7) formation, and thereby promoting cardiac hypertrophy, fibrosis and oxidative stress. Furthermore, several pharmacological agents used in COVID-19 patients may have a higher risk of inducing electrophysiological changes and cardiac dysfunction. Azithromycin, lopinavir/ritonavir, ibrutinib, and remdesivir, used in the treatment of COVID-19, may predispose to an increased risk of cardiac arrhythmia. In this review, putative mechanisms involved in COVID-19-related AF episodes and the cardiovascular safety profile of drugs used for the treatment of COVID-19 are summarized.
Collapse
Affiliation(s)
- Maria Donniacuo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Concetta Rafaniello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Pasquale Paolisso
- Cardiovascular Center Aalst, OLV Hospital, Aalst, Belgium
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | | | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| |
Collapse
|
13
|
Rácz G, Takács H, Kormányos Á, Polestyuk B, Borbás J, Gyenes N, Schvartz N, Németh G, Kincses ZT, Sepp R, Nagy V. Screening for Myocardial Injury after Mild SARS-CoV-2 Infection with Advanced Transthoracic Echocardiography Modalities. Diagnostics (Basel) 2022; 12:diagnostics12081941. [PMID: 36010290 PMCID: PMC9406902 DOI: 10.3390/diagnostics12081941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 01/08/2023] Open
Abstract
Although the clinical manifestations of SARS-CoV-2 viral infection affect mainly the respiratory system, cardiac complications are common and are associated with increased morbidity and mortality. While echocardiographic alterations indicating myocardial involvement are widely reported in patients hospitalized for acute COVID-19 infection, much fewer data available in non-hospitalized, mildly symptomatic COVID-19 patients. In our work, we aimed to investigate subclinical cardiac alterations characterized by parameters provided by advanced echocardiographic techniques following mild SARS-CoV-2 viral infection. A total of 86 patients (30 males, age: 39.5 ± 13.0 yrs) were assessed 59 ± 33 days after mild SARS-CoV-2 viral infection (requiring no hospital or <5 days in-hospital treatment) by advanced echocardiographic examination including 2-dimensional (2D) speckle tracking echocardiography and non-invasive myocardial work analysis, and were compared to an age-and sex-matched control group. Altogether, variables from eleven echocardiographic categories representing morphological or functional echocardiographic parameters showed statistical difference between the post-COVID patient group and the control group. The magnitude of change was subtle or mild in the case of these parameters, ranging from 1−11.7% of relative change. Among the parameters, global longitudinal strain [−20.3 (−21.1−−19.0) vs. −19.1 (−20.4−−17.6) %; p = 0.0007], global myocardial work index [1975 (1789−2105) vs. 1829 (1656−2057) Hgmm%; p = 0.007] and right ventricular free wall strain values (−26.6 ± 3.80 vs. −23.8 ± 4.0%; p = 0.0003) showed the most significant differences between the two groups. Subclinical cardiac alterations are present following even mild SARS-CoV-2 viral infection. These more subtle alterations are difficult to detect by routine echocardiography. Extended protocols, involving speckle-tracking echocardiography, non-invasive measurement of cardiac hemodynamics, and possibly myocardial work are necessary for detection and adequate follow-up.
Collapse
Affiliation(s)
- Gergely Rácz
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Hedvig Takács
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Árpád Kormányos
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Bianka Polestyuk
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | - János Borbás
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Nándor Gyenes
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Noémi Schvartz
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | - Gergely Németh
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| | | | - Róbert Sepp
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
- Correspondence: ; Tel.: +36-30-267-5845; Fax: +36-62-545-820
| | - Viktória Nagy
- Division of Non-Invasive Cardiology, Department of Internal Medicine, University of Szeged, 6725 Szeged, Hungary
| |
Collapse
|
14
|
Yang S, Tong Y, Chen L, Yu W. Human Identical Sequences, hyaluronan, and hymecromone ─ the new mechanism and management of COVID-19. MOLECULAR BIOMEDICINE 2022; 3:15. [PMID: 35593963 PMCID: PMC9120813 DOI: 10.1186/s43556-022-00077-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/04/2022] [Indexed: 02/08/2023] Open
Abstract
COVID-19 caused by SARS-CoV-2 has created formidable damage to public health and market economy. Currently, SARS-CoV-2 variants has exacerbated the transmission from person-to-person. Even after a great deal of investigation on COVID-19, SARS-CoV-2 is still rampaging globally, emphasizing the urgent need to reformulate effective prevention and treatment strategies. Here, we review the latest research progress of COVID-19 and provide distinct perspectives on the mechanism and management of COVID-19. Specially, we highlight the significance of Human Identical Sequences (HIS), hyaluronan, and hymecromone ("Three-H") for the understanding and intervention of COVID-19. Firstly, HIS activate inflammation-related genes to influence COVID-19 progress through NamiRNA-Enhancer network. Accumulation of hyaluronan induced by HIS-mediated HAS2 upregulation is a substantial basis for clinical manifestations of COVID-19, especially in lymphocytopenia and pulmonary ground-glass opacity. Secondly, detection of plasma hyaluronan can be effective for evaluating the progression and severity of COVID-19. Thirdly, spike glycoprotein of SARS-CoV-2 may bind to hyaluronan and further serve as an allergen to stimulate allergic reaction, causing sudden adverse effects after vaccination or the aggravation of COVID-19. Finally, antisense oligonucleotides of HIS or inhibitors of hyaluronan synthesis (hymecromone) or antiallergic agents could be promising therapeutic agents for COVID-19. Collectively, Three-H could hold the key to understand the pathogenic mechanism and create effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Shuai Yang
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Ying Tong
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Lu Chen
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China
| | - Wenqiang Yu
- Laboratory of RNA Epigenetics, Institutes of Biomedical Sciences & Shanghai Public Health Clinical Center & Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Key Laboratory of Medical Epigenetics, Shanghai, 200032, People's Republic of China.
| |
Collapse
|