1
|
Al-Sammarraie MR, Al-Sammarraie MR, Azaiez F, Al-Rubae ZMM, Litaiem H, Taay YM. mRNA vaccination reduces the thrombotic possibility in COVID-19: Inflammation risk estimates. Int Immunopharmacol 2024; 140:112776. [PMID: 39079343 DOI: 10.1016/j.intimp.2024.112776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Thrombosis is a common clinical feature associated with morbidity and mortality in coronavirus disease-2019 (COVID-19) patients. Cytokine storm in COVID-19 increases patients' systemic inflammation, which can cause multiple health consequences. In this work, we aimed to indicate the effect of Pfizer-BioNTech vaccination on the modulation of monocyte chemoattractant protein-3 (MCP-3), matrix metalloproteinase 1 (MMP-1), and tumor necrosis factor-alpha (TNF-α) levels, and other systemic inflammatory biomarkers that associates with COVID-19 severity in patients who suffers from thrombosis consequences. For this purpose, ninety people were collected from Ibn Al-Nafees Hospital and divided into three groups each of which contained 30 people, 15 of them were venous thromboembolism (VTE) positive and the other were VTE negative. The three groups were non-vaccinated COVID-19, vaccinated COVID-19, and control. The levels of MCP-3 and TNF-α were significantly (p < 0.05) increased in vaccinated and non-vaccinated COVID-19 patients regardless of their thrombosis condition, while MMP-1 level was non-significantly (p > 0.05) higher in vaccinated patients compared to control. MCP-3 and TNF-α were correlated positively with D-dimer (r = 0.544 and r = 0.513, respectively) in non-vaccinated patients, while MMP-1 and TNF-α were correlated positively with D-dimer (r = 0.624 and r = 0.575, respectively) in vaccinated patients. The odds ratio of MCP-3 (2.252), MMP-1 (1.062), and TNF-α (1.360) were reduced in vaccinated patients (2.093, 1.022, and 1.301 for MCP-3, MMP-1, and TNF-α respectively). Thus, MCP-3 plays a vital role in COVID-19 pathophysiology, and vaccination can reduce the risk of developing VTE in COVID-19 patients, and improve the inflammatory condition of patients.
Collapse
Affiliation(s)
- Marwah Raad Al-Sammarraie
- Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq; Laboratory of Inorganic Chemistry, Faculty of Sciences, University of Sfax, Tunisia.
| | | | - Fatma Azaiez
- Laboratory Clinical Virology Pasteur Institute and Department of Toxicology, Faculty of Pharmacy Monastir, Tunisia
| | - Zeinab M M Al-Rubae
- Department of Chemistry, College of Education for Pure Science, University of Baghdad, Baghdad, Iraq
| | - Hejer Litaiem
- Laboratory of Inorganic Chemistry, Faculty of Sciences, University of Sfax, Tunisia
| | - Yasser M Taay
- Department of Chemistry, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
2
|
Kounatidis D, Papadimitropoulos V, Vallianou N, Poulaki A, Dimitriou K, Tsiara I, Avramidis K, Alexopoulou A, Vassilopoulos D. Renal Vein Thrombosis Secondary to Pyelonephritis: Targeting a Thrombo-Inflammatory Entity. Clin Pract 2024; 14:1110-1122. [PMID: 38921266 PMCID: PMC11202970 DOI: 10.3390/clinpract14030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Renal vein thrombosis (RVT) is a relatively uncommon condition that is most frequently observed in individuals with nephrotic syndrome. While rare, pyelonephritis (PN) may serve as a predisposing factor for secondary RVT. In such cases, one should consider the possibility of RVT when patients fail to respond to appropriate antibiotic treatment. Typically, these patients require additional anticoagulation therapy for a duration of 3 to 6 months, with a generally favorable prognosis. In this report, we present the case of a 74-year-old female who developed RVT due to Klebsiella pneumoniae PN. Additionally, we reviewed 11 cases of PN complicated by RVT, which were documented in the PubMed database over a span of 40 years, emphasizing key elements in diagnostic and therapeutic approaches. Lastly, we elaborated upon the role of thrombo-inflammation, especially in the context of sepsis.
Collapse
Affiliation(s)
| | | | - Natalia Vallianou
- 2nd Department of Internal Medicine, Hippokration University Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (V.P.); (K.D.); (K.A.); (D.V.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Žigon P, Shao B. Editorial: Inflammation, the link between venous and arterial thrombosis. Front Cardiovasc Med 2024; 11:1433858. [PMID: 38873263 PMCID: PMC11171132 DOI: 10.3389/fcvm.2024.1433858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Polona Žigon
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- FAMNIT, University of Primorska, Koper, Slovenia
| | - Bojing Shao
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| |
Collapse
|
4
|
Liu Z, Li L, Zhang H, Pang X, Qiu Z, Xiang Q, Cui Y. Platelet factor 4(PF4) and its multiple roles in diseases. Blood Rev 2024; 64:101155. [PMID: 38008700 DOI: 10.1016/j.blre.2023.101155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Platelet factor 4 (PF4) combines with heparin to form an antigen that could produce IgG antibodies and participate in heparin-induced thrombocytopenia (HIT). PF4 has attracted wide attention due to its role in novel coronavirus vaccine-19 (COVID-9)-induced immune thrombotic thrombocytopenia (VITT) and cognitive impairments. The electrostatic interaction between PF4 and negatively charged molecules is vital in the progression of VITT, which is similar to HIT. Emerging evidence suggests its multiple roles in hematopoietic and angiogenic inhibition, platelet coagulation interference, host inflammatory response promotion, vascular inhibition, and antitumor properties. The emerging pharmacological effects of PF4 may help deepen the exploration of its mechanism, thus accelerating the development of targeted therapies. However, due to its pleiotropic properties, the development of drugs targeting PF4 is at an early stage and faces many challenges. Herein, we discussed the characteristics and biological functions of PF4, summarized PF4-mediated signaling pathways, and discussed its multiple roles in diseases to inform novel approaches for successful clinical translational research.
Collapse
Affiliation(s)
- Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Longtu Li
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Zhiwei Qiu
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, China; Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China; Institute of Clinical Pharmacology, Peking University First Hospital, China.
| |
Collapse
|
5
|
Lin L, Niu M, Gao W, Wang C, Wu Q, Fang F, Wang Y, Wang W. Predictive role of glycocalyx components and MMP-9 in cardiopulmonary bypass patients for ICU stay. Heliyon 2024; 10:e23299. [PMID: 38163126 PMCID: PMC10756997 DOI: 10.1016/j.heliyon.2023.e23299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background Shedding of glycocalyx is relevant to worse prognosis in surgical patients, and elevated levels of serum matrix metalloproteinase-9 (MMP-9) are associated with this phenomenon. This study aimed to investigate the dynamic alterations of serum glycocalyx components and MMP-9 during cardiopulmonary bypass (CPB), and evaluate their predictive capacities for prolonged intensive care unit (ICU) stay, as well as their correlation with coagulation dysfunction. Methods This retrospective study analyzed serum levels of syndecan-1, heparan sulfate (HS), and MMP-9 at different time points during CPB, and assessed their association with prolonged ICU stay and coagulation dysfunction. Results Syndecan-1, HS, and MMP-9 exhibited divergent changes during CPB. Serum levels of syndecan-1 (AUC = 78.0 %) and MMP-9 (AUC = 78.4 %) were validated as reliable predictors for prolonged ICU stay, surpassing the predictive value of creatinine (AUC = 70.0 %). Syndecan-1 (rho = 0.566, P < 0.01 at T1 and rho = 0.526, P < 0.01 at T2) and HS (rho = 0.403, P < 0.05 at T4) exhibited correlations with activated partial thromboplastin time (APTT) ratio beyond the normal range. Conclusions Our findings advocate the potential efficacy of serum glycocalyx components and MMP-9 as early predictive indicators for extended ICU stay following cardiac surgery with CPB. Additionally, we observed a correlation between glycocalyx disruption during CPB and coagulation dysfunction. Further studies with expansive cohorts are warranted to consolidate our findings and explore the predictive potential of other glycocalyx components.
Collapse
Affiliation(s)
- Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Mengying Niu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, 100191, China
| | - Wei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Chundong Wang
- Department of Anesthesiology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, 322100, China
| | - Qiaolin Wu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Yongan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Weijian Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
6
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
7
|
Hanumegowda SM, Srinivasa C, Shivaiah A, Venkatappa MM, Shankar RL, Lakshmaiah RK, Gonchigar SJ, Sannaningaiah D. Kenaf Seed Cysteine Protease (KSCP) Inhibits the Intrinsic Pathway of the Blood Coagulation Cascade and Platelet Aggregation. Curr Protein Pept Sci 2024; 25:394-408. [PMID: 38031777 DOI: 10.2174/0113892037265109231114065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Thrombosis is the key event that obstructs the flow of blood throughout the circulatory system, leading to stroke, myocardial infarction and severe cardiovascular complications. Currently, available antithrombotic drugs trigger several life-threatening side effects. INTRODUCTION Antithrombotic agents from natural sources devoid of adverse effects are grabbing high attention. In our previous study, we reported the antioxidant, anticoagulant and antiplatelet properties of kenaf seed protein extract. Therefore, in the current study, purification and characterization of cysteine protease from kenaf seed protein extract responsible for potential antithrombotic activity was undertaken. METHODS Purification of KSCP (Kenaf Seed Cysteine Protease) was carried out using gel permeation and ion exchange column chromatography. The purity of the enzyme was evaluated by SDS PAGE (Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis). RP-HPLC (Reverse Phase High-Performance Liquid Chromatography), MALDI-TOF (Matrix-Assisted Laser Desorption Ionization Time-Of-Flight) and CD (Circular Dichroism techniques) were employed for its characterization. Proteolytic, fibrinolytic and kinetic study was done using spectroscopy. Plasma recalcification time, Prothrombin Time (PT), Thrombin clotting time (TCT), Activated Partial Thromboplastin Time (APTT), bleeding time and platelet aggregation studies were carried out for antithrombotic activity of KSCP. RESULT A single sharp band of KSCP was observed under both reduced and non-reduced conditions, having a molecular mass of 24.1667kDa. KSCP was found to contain 30.3% helix turns and 69.7% random coils without a beta-pleated sheet. KSCP digested casein and fibrin, and its activity was inhibited by iodoacetic acid (IAA). KSCP was optimally active at pH 6.0 at the temperature of 40°C. KSCP exhibited anticoagulant properties by interfering in the intrinsic pathway of the blood coagulation cascade. Furthermore, KSCP dissolved both whole blood and plasma clots and platelet aggregation. CONCLUSION KSCP purified from kenaf seed extract showed antithrombotic potential. Hence, it could be a better candidate for the management of thrombotic complications.
Collapse
Affiliation(s)
- Sujatha M Hanumegowda
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta-577451, Shivamogga, Karnataka, India
| | - Chandramma Srinivasa
- Department of Studies and Research in Biochemistry, Tumkur University-572102, Tumkur, Karnataka, India
| | - Ashwini Shivaiah
- Department of Studies and Research in Biochemistry, Tumkur University-572102, Tumkur, Karnataka, India
| | - Manjula M Venkatappa
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta-577451, Shivamogga, Karnataka, India
| | - Rohith L Shankar
- Department of Seribiotechnology, Yuvaraja's College, University of Mysore-57005, Karnataka, India
| | - Ramesh K Lakshmaiah
- Department of Food Science, Maharani College for Women, University of Mysore-570004, Karnataka, India
| | - Sathisha J Gonchigar
- Department of Biochemistry Jnansahydri, Kuvempu University, Shankarghatta-577451, Shivamogga, Karnataka, India
| | - Devaraja Sannaningaiah
- Department of Studies and Research in Biochemistry, Tumkur University-572102, Tumkur, Karnataka, India
| |
Collapse
|
8
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Scioscia M, Siwetz M, Robillard PY, Brizzi A, Huppertz B. Placenta and maternal endothelium during preeclampsia: Disruption of the glycocalyx explains increased inositol phosphoglycans and angiogenic factors in maternal blood. J Reprod Immunol 2023; 160:104161. [PMID: 37857160 DOI: 10.1016/j.jri.2023.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
The etiology of the pregnancy syndrome preeclampsia is still unclear, while most hypotheses center on the placenta as the major contributor of the syndrome. Especially changes of the placental metabolism, including the use of glucose to produce energy, are important features. As an example, inositol phosphoglycan P-type molecules, second messengers involved in the glucose metabolism of all cells, can be retrieved from maternal urine of preeclamptic women, even before the onset of clinical symptoms. Alterations in the placental metabolism may subsequently lead to negative effects on the plasma membrane of the placental syncytiotrophoblast. This in turn may have deleterious effects on the glycocalyx of this layer and a disruption of this layer in all types of preeclampsia. The interruption of the glycocalyx in preeclampsia may result in changes of inositol phosphoglycan P-type signaling pathways and the release of these molecules as well as the release of soluble receptors such as sFlt-1 and sEndoglin. The release of placental factors later affects the maternal endothelium and disrupts the endothelial glycocalyx as well. This in turn may pave the way for edema, endothelial dysfunction, coagulation, all typical symptoms of preeclampsia.
Collapse
Affiliation(s)
- Marco Scioscia
- Department of Obstetrics and Gynecology, Mater Dei Hospital, Via SF Hahnemann 10, 70125 Bari, Italy.
| | - Monika Siwetz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Pierre-Yves Robillard
- Centre d'Études Périnatales Océan Indien, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre, La Réunion, France; Service de Néonatologie, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre, La Réunion, France, Centre Hospitalier Universitaire Sud Réunion, Saint-Pierre, La Réunion, France
| | - Agostino Brizzi
- General and Locoregional Anesthesia Department, Santa Maria Clinic, Via A de Ferrariis, 22, 70124 Bari, Italy
| | - Berthold Huppertz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| |
Collapse
|
10
|
Azman SS, Yazid MD, Abdul Ghani NA, Raja Sabudin RZA, Abdul Rahman MR, Sulaiman N. Generation of a novel ex-vivo model to study re-endothelialization. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:408-416. [PMID: 37584645 DOI: 10.1080/21691401.2023.2245456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Endothelial dysfunction initiates the pathogenesis of a myriad of cardiovascular diseases, yet the precise underlying mechanisms remain unclear. Current model utilises mechanical denudation of arteries resulting in an arterial-injury model with onset of intimal hyperplasia (IH). Our study shows that 5 min enzymatic denudation of human umbilical artery (hUA) lumen at 37 °C efficiently denudes hUA while maintaining vessel integrity without significantly increase intima-media thickness after 7 days in culture. This ex-vivo model will be a valuable tool in understanding the mechanism of re-endothelialization prior to smooth muscle cells (SMC) activation thus placating IH at an early stage.
Collapse
Affiliation(s)
- Siti Sarah Azman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA, Perak Branch, Tapah Campus, Perak, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Hospital Canselor Tuanku Mukhriz, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
| | - Raja Zahratul Azma Raja Sabudin
- Hospital Canselor Tuanku Mukhriz, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohd Ramzisham Abdul Rahman
- Hospital Canselor Tuanku Mukhriz, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| |
Collapse
|
11
|
Zhang W, Jiang H, Wu G, Huang P, Wang H, An H, Liu S, Zhang W. The pathogenesis and potential therapeutic targets in sepsis. MedComm (Beijing) 2023; 4:e418. [PMID: 38020710 PMCID: PMC10661353 DOI: 10.1002/mco2.418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as "a life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection." At present, sepsis continues to pose a grave healthcare concern worldwide. Despite the use of supportive measures in treating traditional sepsis, such as intravenous fluids, vasoactive substances, and oxygen plus antibiotics to eradicate harmful pathogens, there is an ongoing increase in both the morbidity and mortality associated with sepsis during clinical interventions. Therefore, it is urgent to design specific pharmacologic agents for the treatment of sepsis and convert them into a novel targeted treatment strategy. Herein, we provide an overview of the molecular mechanisms that may be involved in sepsis, such as the inflammatory response, immune dysfunction, complement deactivation, mitochondrial damage, and endoplasmic reticulum stress. Additionally, we highlight important targets involved in sepsis-related regulatory mechanisms, including GSDMD, HMGB1, STING, and SQSTM1, among others. We summarize the latest advancements in potential therapeutic drugs that specifically target these signaling pathways and paramount targets, covering both preclinical studies and clinical trials. In addition, this review provides a detailed description of the crosstalk and function between signaling pathways and vital targets, which provides more opportunities for the clinical development of new treatments for sepsis.
Collapse
Affiliation(s)
- Wendan Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Honghong Jiang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Faculty of PediatricsNational Engineering Laboratory for Birth defects prevention and control of key technologyBeijing Key Laboratory of Pediatric Organ Failurethe Chinese PLA General HospitalBeijingChina
| | - Gaosong Wu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Pengli Huang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haonan Wang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Huazhasng An
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational MedicineThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Sanhong Liu
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical BiologyInstitute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of PhytochemistrySchool of PharmacySecond Military Medical UniversityShanghaiChina
- The Research Center for Traditional Chinese MedicineShanghai Institute of Infectious Diseases and BiosecurityShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Bonetti NR, Jouppila AS, Saeedi Saravi SS, Cooley BC, Pasterk L, Liberale LL, Gobbato S, Lüscher TF, Camici GG, Lassila RP, Beer JH. Intravenously administered APAC, a dual AntiPlatelet AntiCoagulant, targets arterial injury site to inhibit platelet thrombus formation and tissue factor activity in mice. Thromb Res 2023; 228:163-171. [PMID: 37331119 DOI: 10.1016/j.thromres.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 06/20/2023]
Abstract
INTRODUCTION Arterial thrombosis is the main underlying mechanism of acute atherothrombosis. Combined antiplatelet and anticoagulant regimens prevent thrombosis but increase bleeding rates. Mast cell-derived heparin proteoglycans have local antithrombotic properties, and their semisynthetic dual AntiPlatelet and AntiCoagulant (APAC) mimetic may provide a new efficacious and safe tool for arterial thrombosis. We investigated the in vivo impact of intravenous APAC (0.3-0.5 mg/kg; doses chosen according to pharmacokinetic studies) in two mouse models of arterial thrombosis and the in vitro actions in mouse platelets and plasma. MATERIALS AND METHODS Platelet function and coagulation were studied with light transmission aggregometry and clotting times. Carotid arterial thrombosis was induced either by photochemical injury or surgically exposing vascular collagen after infusion of APAC, UFH or vehicle. Time to occlusion, targeting of APAC to the vascular injury site and platelet deposition on these sites were assessed by intra-vital imaging. Tissue factor activity (TF) of the carotid artery and in plasma was captured. RESULTS APAC inhibited platelet responsiveness to agonist stimulation (collagen and ADP) and prolonged APTT and thrombin time. After photochemical carotid injury, APAC-treatment prolonged times to occlusion in comparison with UFH or vehicle, and decreased TF both in carotid lysates and plasma. Upon binding from circulation to vascular collagen-exposing injury sites, APAC reduced the in situ platelet deposition. CONCLUSIONS Intravenous APAC targets arterial injury sites to exert local dual antiplatelet and anticoagulant actions and attenuates thrombosis upon carotid injuries in mice. Systemic APAC provides local efficacy, highlighting APAC as a novel antithrombotic to reduce cardiovascular complications.
Collapse
Affiliation(s)
- Nicole R Bonetti
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Annukka S Jouppila
- Helsinki University Hospital Clinical Research Institute, Helsinki, Finland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Brian C Cooley
- Department of Pathology and Laboratory Medicine, Animal Surgery Core Lab, McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Pasterk
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Luca L Liberale
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Sara Gobbato
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Royal Brompton and Harefield Hospital Trusts and National Heart and Lung Institute, Imperial College, London, UK
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; University Heart Center, University Hospital Zurich, Switzerland; Department of Research and Education, University Hospital Zurich, Switzerland
| | - Riitta P Lassila
- Coagulation Disorders Unit, University of Helsinki and Departments of Hematology and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland; Helsinki University, Faculty of Medicine, Research Program in Systems Oncology, Helsinki, Finland; Aplagon Ltd., Helsinki, Finland.
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital Baden, Switzerland
| |
Collapse
|
13
|
Barachini S, Ghelardoni S, Madonna R. Vascular Progenitor Cells: From Cancer to Tissue Repair. J Clin Med 2023; 12:jcm12062399. [PMID: 36983398 PMCID: PMC10059009 DOI: 10.3390/jcm12062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.
Collapse
Affiliation(s)
- Serena Barachini
- Laboratory for Cell Therapy, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
14
|
Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals (Basel) 2023; 16:437. [PMID: 36986536 PMCID: PMC10132487 DOI: 10.3390/ph16030437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Pentosan polysulfate (PPS), a small semi-synthetic highly sulfated heparan sulfate (HS)-like molecule, shares many of the interactive properties of HS. The aim of this review was to outline the potential of PPS as an interventional therapeutic protective agent in physiological processes affecting pathological tissues. PPS is a multifunctional molecule with diverse therapeutic actions against many disease processes. PPS has been used for decades in the treatment of interstitial cystitis and painful bowel disease, it has tissue-protective properties as a protease inhibitor in cartilage, tendon and IVD, and it has been used as a cell-directive component in bioscaffolds in tissue engineering applications. PPS regulates complement activation, coagulation, fibrinolysis and thrombocytopenia, and it promotes the synthesis of hyaluronan. Nerve growth factor production in osteocytes is inhibited by PPS, reducing bone pain in osteoarthritis and rheumatoid arthritis (OA/RA). PPS also removes fatty compounds from lipid-engorged subchondral blood vessels in OA/RA cartilage, reducing joint pain. PPS regulates cytokine and inflammatory mediator production and is also an anti-tumor agent that promotes the proliferation and differentiation of mesenchymal stem cells and the development of progenitor cell lineages that have proven to be useful in strategies designed to effect repair of the degenerate intervertebral disc (IVD) and OA cartilage. PPS stimulates proteoglycan synthesis by chondrocytes in the presence or absence of interleukin (IL)-1, and stimulates hyaluronan production by synoviocytes. PPS is thus a multifunctional tissue-protective molecule of potential therapeutic application for a diverse range of disease processes.
Collapse
Affiliation(s)
- Margaret M. Smith
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
| | - James Melrose
- Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, Faculty of Health and Science, University of Sydney at Royal North Shore Hospital, St. Leonards, NSW 2065, Australia;
- Graduate Schools of Biomedical Engineering, University of NSW, Sydney, NSW 2052, Australia
- Sydney Medical School, Northern Campus, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| |
Collapse
|
15
|
Kong J, Li S, Li Y, Chen M. Effects of Salvia miltiorrhiza active compounds on placenta-mediated pregnancy complications. Front Cell Dev Biol 2023; 11:1034455. [PMID: 36711034 PMCID: PMC9880055 DOI: 10.3389/fcell.2023.1034455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Placenta-mediated pregnancy complications (PMPCs), including preeclampsia (PE), fetal growth restriction (FGR), and recurrent spontaneous abortion (RSA), occur in approximately 5% of pregnancies and are caused by abnormal placenta development. The development of effective therapies for PMPCs is still challenging due to the complicated pathogenesis, such as disrupted vascular homeostasis and subsequent abnormal placentation. Synthetic drugs have been recommended for treating PMPCs; however, they tend to cause adverse reactions in the mother and fetus. Salvia miltiorrhiza (S. miltiorrhiza) has potential effects on PMPCs owing to its advantages in treating cardiovascular disorders. S. miltiorrhiza and its active compounds could attenuate the symptoms of PMPCs through anticoagulation, vasodilation, antioxidation, and endothelial protection. Thus, in this review, we summarize the literature and provide comprehensive insights on S. miltiorrhiza and its phytochemical constituents, pharmacological activities, and on PMPCs, which would be valuable to explore promising drugs.
Collapse
Affiliation(s)
- Jingyin Kong
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songjun Li
- Department of Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yingting Li
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Chen
- Department of Prenatal Diagnosis and Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Min Chen,
| |
Collapse
|
16
|
An Updated Review on Glycoprotein IIb/IIIa Inhibitors as Antiplatelet Agents: Basic and Clinical Perspectives. High Blood Press Cardiovasc Prev 2023; 30:93-107. [PMID: 36637623 DOI: 10.1007/s40292-023-00562-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The glycoprotein (GP) IIb/IIIa receptor is found integrin present in platelet aggregations. GP IIb/IIIa antagonists interfere with platelet cross-linking and platelet-derived thrombus formation through the competition with fibrinogen and von Willebrand factor. Currently, three parenteral GP IIb/IIIa competitors (tirofiban, eptifibatide, and abciximab) are approved for clinical use in patients affected by percutaneous coronary interventions (PCI) in the location of acute coronary syndrome (ACS). GP IIb/IIIa antagonists have their mechanism of action in platelet aggregation prevention, distal thromboembolism, and thrombus formation, whereas the initial platelet binding to damage vascular areas is preserved. This work is aimed to provide a comprehensive review of the significance of GP IIb/IIIa inhibitors as a sort of antiplatelet agent. Their mechanism of action is based on factors that affect their efficacy. On the other hand, drugs that inhibit GP IIb/IIIa already approved by the FDA were reviewed in detail. Results from major clinical trials and regulatory practices and guidelines to deal with GP IIb/IIIa inhibitors were deeply investigated. The cardiovascular pathology and neuro-interventional surgical application of GP IIb/IIIa inhibitors as a class of antiplatelet agents were developed in detail. The therapeutic risk/benefit balance of currently available GP IIb/IIa receptor antagonists is not yet well elucidated in patients with ACS who are not clinically evaluated regularly for early cardiovascular revascularization. On the other hand, in patients who have benefited from PCI, the antiplatelet therapy intensification by the addition of a GP IIb/IIIa receptor antagonist (intravenously) may be an appropriate therapeutic strategy in reducing the occurrence of risks of thrombotic complications related to the intervention. Development of GP IIb/IIIa inhibitors with oral administration has the potential to include short-term antiplatelet benefits compared with intravenous GP IIb/IIIa inhibitors for long-term secondary preventive therapy in cardiovascular disease. But studies showed that long-term oral administration of GP IIb/IIIa receptor inhibitors has been ineffective in preventing ischemic events. Paradoxically, they have been linked to a high risk of side effects by producing prothrombotic and pro-inflammatory events.
Collapse
|
17
|
Accommodation in allogeneic and xenogeneic organ transplantation: Prevalence, impact, and implications for monitoring and for therapeutics. Hum Immunol 2023; 84:5-17. [PMID: 36244871 DOI: 10.1016/j.humimm.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/04/2022]
Abstract
Accommodation refers to acquired resistance of organs or tissues to immune or inflammatory reactions that might otherwise cause severe injury or rejection. As first observed in ABO-incompatible kidney transplants and heterotopic cardiac xenografts, accommodation was identified when organ transplants continued to function despite the presence of anti-graft antibodies and/or other reactants in the blood of recipients. Recent evidence suggests many and perhaps most organ transplants have accommodation, as most recipients mount B cell responses specific for the graft. Wide interest in the impact of graft-specific antibodies on the outcomes of transplants prompts questions about which mechanisms confer protection against such antibodies, how accommodation might be detected and whether and how rejection could be superimposed on accommodation. Xenotransplantation offers a unique opportunity to address these questions because immune responses to xenografts are easily detected and the pathogenic impact of immune responses is so severe. Xenotransplantation also provides a compelling need to apply these and other insights to decrease the intensity and toxicity of immunosuppression that otherwise could limit clinical application.
Collapse
|