1
|
Tripoli BA, Smyth JT. Septins regulate heart contractility through modulation of cardiomyocyte store-operated calcium entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621876. [PMID: 39574715 PMCID: PMC11580947 DOI: 10.1101/2024.11.04.621876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Highly regulated cardiomyocyte Ca 2+ fluxes drive heart contractions. Recent findings from multiple organisms demonstrate that the specific Ca 2+ transport mechanism known as store-operated Ca 2+ entry (SOCE) is essential in cardiomyocytes for proper heart function, and SOCE dysregulation results in cardiomyopathy. Mechanisms that regulate SOCE in cardiomyocytes are poorly understood. Here we tested the role of cytoskeletal septin proteins in cardiomyocyte SOCE regulation. Septins are essential SOCE modulators in other cell types, but septin functions in cardiomyocytes are nearly completely unexplored. We show using targeted genetics and intravital imaging of heart contractility in Drosophila that cardiomyocyte-specific depletion of septins 1, 2, and 4 results in heart dilation that phenocopies the effects of SOCE suppression. Heart dilation caused by septin 2 depletion was suppressed by SOCE upregulation, supporting the hypothesis that septin 2 is required in cardiomyocytes for sufficient SOCE function. A major function of SOCE is to support SERCA-dependent sarco/endoplasmic reticulum (S/ER) Ca 2+ stores, and augmenting S/ER store filling by SERCA overexpression also suppressed the septin 2 phenotype. We also ruled out several potential SOCE-independent septin functions, as septin 2 phenotypes were not due to septin function during development and septin 2 was not required for z-disk organization as defined by α-actinin labeling. These results demonstrate, for the first time, an essential role of septins in cardiomyocyte physiology and heart function that is due, at least in part, to septin regulation of SOCE function.
Collapse
|
2
|
Sambuceti G, Cossu V, Vitale F, Bianconi E, Carta S, Venturi C, Chiesa S, Lanfranchi F, Emionite L, Carlone S, Sofia L, D'Amico F, Di Raimondo T, Chiola S, Orengo AM, Morbelli S, Ameri P, Bauckneht M, Marini C. Mandatory role of endoplasmic reticulum and its pentose phosphate shunt in the myocardial defense mechanisms against the redox stress induced by anthracyclines. Mol Cell Biochem 2024; 479:2973-2987. [PMID: 38082185 PMCID: PMC11473616 DOI: 10.1007/s11010-023-04903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 10/15/2024]
Abstract
Anthracyclines' cardiotoxicity involves an accelerated generation of reactive oxygen species. This oxidative damage has been found to accelerate the expression of hexose-6P-dehydrogenase (H6PD), that channels glucose-6-phosphate (G6P) through the pentose phosphate pathway (PPP) confined within the endoplasmic/sarcoplasmic reticulum (SR). To verify the role of SR-PPP in the defense mechanisms activated by doxorubicin (DXR) in cardiomyocytes, we tested the effect of this drug in H6PD knockout mice (H6PD-/-). Twenty-eight wildtype (WT) and 32 H6PD-/- mice were divided into four groups to be treated with intraperitoneal administration of saline (untreated) or DXR (8 mg/Kg once a week for 3 weeks). One week thereafter, survivors underwent imaging of 18F-deoxyglucose (FDG) uptake and were sacrificed to evaluate the levels of H6PD, glucose-6P-dehydrogenase (G6PD), G6P transporter (G6PT), and malondialdehyde. The mRNA levels of SR Ca2+-ATPase 2 (Serca2) and ryanodine receptors 2 (RyR2) were evaluated and complemented with Hematoxylin/Eosin staining and transmission electron microscopy. During the treatment period, 1/14 DXR-WT and 12/18 DXR-H6PD-/- died. At microPET, DXR-H6PD-/- survivors displayed an increase in left ventricular size (p < 0.001) coupled with a decreased urinary output, suggesting a severe hemodynamic impairment. At ex vivo analysis, H6PD-/- condition was associated with an oxidative damage independent of treatment type. DXR increased H6PD expression only in WT mice, while G6PT abundance increased in both groups, mismatching a generalized decrease of G6PD levels. Switching-off SR-PPP impaired reticular accumulation of Ca2+ decelerating Serca2 expression and upregulating RyR2 mRNA level. It thus altered mitochondrial ultrastructure eventually resulting in a cardiomyocyte loss. The recognized vulnerability of SR to the anthracycline oxidative damage is counterbalanced by an acceleration of G6P flux through a PPP confined within the reticular lumen. The interplay of SR-PPP with the intracellular Ca2+ exchanges regulators in cardiomyocytes configure the reticular PPP as a potential new target for strategies aimed to decrease anthracycline toxicity.
Collapse
Affiliation(s)
- Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Vanessa Cossu
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, 16132, Genoa, Italy.
| | | | - Eva Bianconi
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Sonia Carta
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Sabrina Chiesa
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Laura Emionite
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Luca Sofia
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Francesca D'Amico
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Tania Di Raimondo
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Silvia Chiola
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | | | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Pietro Ameri
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine, University of Genoa, 16132, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, 16132, Genoa, Italy
| | - Cecilia Marini
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), 20054, Milan, Italy
| |
Collapse
|
3
|
Weber DK, Reddy UV, Robia SL, Veglia G. Pathological mutations in the phospholamban cytoplasmic region affect its topology and dynamics modulating the extent of SERCA inhibition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184370. [PMID: 38986894 PMCID: PMC11457527 DOI: 10.1016/j.bbamem.2024.184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Phospholamban (PLN) is a 52 amino acid regulin that allosterically modulates the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in the heart muscle. In its unphosphorylated form, PLN binds SERCA within its transmembrane (TM) domains, approximately 20 Å away from the Ca2+ binding site, reducing SERCA's apparent Ca2+ affinity (pKCa) and decreasing cardiac contractility. During the enzymatic cycle, the inhibitory TM domain of PLN remains anchored to SERCA, whereas its cytoplasmic region transiently binds the ATPase's headpiece. Phosphorylation of PLN at Ser16 by protein kinase A increases the affinity of its cytoplasmic domain to SERCA, weakening the TM interactions with the ATPase, reversing its inhibitory function, and augmenting muscle contractility. How the structural changes caused by pathological mutations in the PLN cytoplasmic region are transmitted to its inhibitory TM domain is still unclear. Using solid-state NMR spectroscopy and activity assays, we analyzed the structural and functional effects of a series of mutations and their phosphorylated forms located in the PLN cytoplasmic region and linked to dilated cardiomyopathy. We found that these missense mutations affect the overall topology and dynamics of PLN and ultimately modulate its inhibitory potency. Also, the changes in the TM tilt angle and cytoplasmic dynamics of PLN caused by these mutations correlate well with the extent of SERCA inhibition. Our study unveils new molecular determinants for designing variants of PLN that outcompete endogenous PLN to regulate SERCA in a tunable manner.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - U Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
4
|
Ponce-Balbuena D, Tyrrell DJ, Cruz-Cortés C, Guerrero-Serna G, Da Rocha AM, Herron TJ, Song J, Raza DS, Anumonwo J, Goldstein DR, Espinoza-Fonseca LM. Paradoxical SERCA dysregulation contributes to atrial fibrillation in a model of diet-induced obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606385. [PMID: 39149279 PMCID: PMC11326153 DOI: 10.1101/2024.08.02.606385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Obesity is a major risk factor for atrial fibrillation (AF) the most common serious cardiac arrhythmia, but the molecular mechanisms underlying diet-induced AF remain unclear. In this study, we subjected mice to a chronic high-fat diet and acute sympathetic activation ('two-hit' model) to study the mechanisms by which diet-induced obesity promotes AF. Surface electrocardiography revealed that diet-induced obesity and sympathetic activation synergize during intracardiac tachypacing to induce AF. At the cellular level, diet-induced obesity and acute adrenergic stimulation facilitate the formation of delayed afterdepolarizations in atrial myocytes, implicating altered Ca2+ dynamics as the underlying cause of AF. We found that diet-induced obesity does not alter the expression of major Ca2+-handling proteins in atria, including the sarcoplasmic reticulum Ca2+-ATPase (SERCA), a major component of beat-to-beat Ca2+ cycling in the heart. Paradoxically, obesity reduces phospholamban phosphorylation, suggesting decreased SERCA activity, yet atrial myocytes from obese mice showed a significantly increased Ca2+ transient amplitude and SERCA-mediated Ca2+ uptake. Adrenergic stimulation further increases the Ca2+ transient amplitude but does not affect Ca2+ reuptake in atrial myocytes from obese mice. Transcriptomics analysis showed that a high-fat diet prompts upregulation of neuronatin, a protein that has been implicated in obesity and is known to stimulate SERCA activity. We propose a mechanism in which obesity primes SERCA for paradoxical activation, and adrenergic stimulation facilitates AF conversion through a Ca2+-induced Ca2+ release gain in atrial myocytes. Overall, this study links obesity, altered Ca2+ signaling, and AF, and targeting this mechanism may prove effective for treating obesity-induced AF.
Collapse
Affiliation(s)
- Daniela Ponce-Balbuena
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Daniel J. Tyrrell
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carlos Cruz-Cortés
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Andre Monteiro Da Rocha
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Todd J. Herron
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Jianrui Song
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Danyal S. Raza
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Justus Anumonwo
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, MI 48109, USA
| | - L. Michel Espinoza-Fonseca
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Arrhythmia Research, University of Michigan, MI 48109, USA
| |
Collapse
|
5
|
Masjoan Juncos JX, Nadeem F, Shakil S, El-Husari M, Zafar I, Louch WE, Halade GV, Zaky A, Ahmad A, Ahmad S. Myocardial SERCA2 Protects Against Cardiac Damage and Dysfunction Caused by Inhaled Bromine. J Pharmacol Exp Ther 2024; 390:146-158. [PMID: 38772719 PMCID: PMC11192580 DOI: 10.1124/jpet.123.002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Myocardial sarcoendoplasmic reticulum calcium ATPase 2 (SERCA2) activity is critical for heart function. We have demonstrated that inhaled halogen (chlorine or bromine) gases inactivate SERCA2, impair calcium homeostasis, increase proteolysis, and damage the myocardium ultimately leading to cardiac dysfunction. To further elucidate the mechanistic role of SERCA2 in halogen-induced myocardial damage, we used bromine-exposed cardiac-specific SERCA2 knockout (KO) mice [tamoxifen-administered SERCA2 (flox/flox) Tg (αMHC-MerCreMer) mice] and compared them to the oil-administered controls. We performed echocardiography and hemodynamic analysis to investigate cardiac function 24 hours after bromine (600 ppm for 30 minutes) exposure and measured cardiac injury markers in plasma and proteolytic activity in cardiac tissue and performed electron microscopy of the left ventricle (LV). Cardiac-specific SERCA2 knockout mice demonstrated enhanced toxicity to bromine. Bromine exposure increased ultrastructural damage, perturbed LV shape geometry, and demonstrated acutely increased phosphorylation of phospholamban in the KO mice. Bromine-exposed KO mice revealed significantly enhanced mean arterial pressure and sphericity index and decreased LV end diastolic diameter and LV end systolic pressure when compared with the bromine-exposed control FF mice. Strain analysis showed loss of synchronicity, evidenced by an irregular endocardial shape in systole and irregular vector orientation of contractile motion across different segments of the LV in KO mice, both at baseline and after bromine exposure. These studies underscore the critical role of myocardial SERCA2 in preserving cardiac ultrastructure and function during toxic halogen gas exposures. SIGNIFICANCE STATEMENT: Due to their increased industrial production and transportation, halogens such as chlorine and bromine pose an enhanced risk of exposure to the public. Our studies have demonstrated that inhalation of these halogens leads to the inactivation of cardiopulmonary SERCA2 and results in calcium overload. Using cardiac-specific SERCA2 KO mice, these studies further validated the role of SERCA2 in bromine-induced myocardial injury. These studies highlight the increased susceptibility of individuals with pathological loss of cardiac SERCA2 to the effects of bromine.
Collapse
Affiliation(s)
- Juan Xavier Masjoan Juncos
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Fahad Nadeem
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Shazia Shakil
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Malik El-Husari
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Iram Zafar
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - William E Louch
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Ganesh V Halade
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Aftab Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| | - Shama Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama (J.X.M.J., F.N., S.S., M.E.-H., I.Z, A.Z., A.A., S.A.); Institute for Experimental Medical Research, Oslo University Hospital and KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway (W.E.L.); and Division of Cardiovascular Sciences, University of South Florida, Tampa, Florida (G.V.H.)
| |
Collapse
|
6
|
Li X, Li J, Samuelsson AM, Thakur H, Kapiloff MS. Protein phosphatase 2A anchoring disruptor gene therapy for familial dilated cardiomyopathy. Mol Ther Methods Clin Dev 2024; 32:101233. [PMID: 38572067 PMCID: PMC10988123 DOI: 10.1016/j.omtm.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Familial dilated cardiomyopathy is a prevalent cause of heart failure that results from the mutation of genes encoding proteins of diverse function. Despite modern therapy, dilated cardiomyopathy typically has a poor outcome and is the leading cause of cardiac transplantation. The phosphatase PP2A at cardiomyocyte perinuclear mAKAPβ signalosomes promotes pathological eccentric cardiac remodeling, as is characteristic of dilated cardiomyopathy. Displacement of PP2A from mAKAPβ, inhibiting PP2A function in that intracellular compartment, can be achieved by expression of a mAKAPβ-derived PP2A binding domain-derived peptide. To test whether PP2A anchoring disruption would be effective at preventing dilated cardiomyopathy-associated cardiac dysfunction, the adeno-associated virus gene therapy vector AAV9sc.PBD was devised to express the disrupting peptide in cardiomyocytes in vivo. Proof-of-concept is now provided that AAV9sc.PBD improves the cardiac structure and function of a cardiomyopathy mouse model involving transgenic expression of a mutant α-tropomyosin E54K Tpm1 allele, while AAV9sc.PBD has no effect on normal non-transgenic mice. At the cellular level, AAV9sc.PBD restores cardiomyocyte morphology and gene expression in the mutant Tpm1 mouse. As the mechanism of AAV9sc.PBD action suggests potential efficacy in dilated cardiomyopathy regardless of the underlying etiology, these data support the further testing of AAV9sc.PBD as a broad-based treatment for dilated cardiomyopathy.
Collapse
Affiliation(s)
- Xueyi Li
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Jinliang Li
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Anne-Maj Samuelsson
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Hrishikesh Thakur
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Michael S. Kapiloff
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Barry C, Rouhana S, Braun JL, Geromella MS, Fajardo VA, Pyle WG. Perimenopause Decreases SERCA2a Activity in the Hearts of a Mouse Model of Ovarian Failure. Biomolecules 2024; 14:675. [PMID: 38927078 PMCID: PMC11201532 DOI: 10.3390/biom14060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Risk of cardiovascular disease mortality rises in women after menopause. While increased cardiovascular risk is largely attributed to postmenopausal declines in estrogens, the molecular changes in the heart that contribute to risk are poorly understood. Disruptions in intracellular calcium handling develop in ovariectomized mice and have been implicated in cardiac dysfunction. Using a mouse model of menopause in which ovarian failure occurs over 120 days, we sought to determine if perimenopause impacted calcium removal mechanisms in the heart and identify the molecular mechanisms. Mice were injected with 4-vinylcyclohexene diepoxide (VCD) to induce ovarian failure over 120 days, mimicking perimenopause. Hearts were removed at 60 and 120 days after VCD injections, representing the middle and end of perimenopause. SERCA2a function was significantly diminished at the end of perimenopause. Neither SERCA2a nor phospholamban expression changed at either time point, but phospholamban phosphorylation at S16 and T17 was dynamically altered. Intrinsic SERCA inhibitors sarcolipin and myoregulin increased >4-fold at day 60, as did the native activator DWORF. At the end of perimenopause, sarcolipin and myoregulin returned to baseline levels while DWORF was significantly reduced below controls. Sodium-calcium exchanger expression was significantly increased at the end of perimenopause. These results show that the foundation for increased cardiovascular disease mortality develops in the heart during perimenopause and that regulators of calcium handling exhibit significant fluctuations over time. Understanding the temporal development of cardiovascular risk associated with menopause and the underlying mechanisms is critical to developing interventions that mitigate the rise in cardiovascular mortality that arises after menopause.
Collapse
Affiliation(s)
- Ciara Barry
- IMPART Team Canada Investigator Network, Dalhousie Medicine, Saint John, NB E2K 5E2, Canada
| | - Sarah Rouhana
- IMPART Team Canada Investigator Network, Dalhousie Medicine, Saint John, NB E2K 5E2, Canada
| | - Jessica L. Braun
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada (V.A.F.)
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Mia S. Geromella
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada (V.A.F.)
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Val A. Fajardo
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON L2S 3A1, Canada (V.A.F.)
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - W. Glen Pyle
- IMPART Team Canada Investigator Network, Dalhousie Medicine, Saint John, NB E2K 5E2, Canada
- Women’s Health Research Institute at BC Women’s Hospital + Health Centre, Vancouver, BC V6H 2N9, Canada
| |
Collapse
|
8
|
Li FJ, Fu S, Ye H, Hu YH, Chen J, Privratsky JR, Yu W, Dong F, Reiter RJ, Dong M, Guo J, Ren J. Metallothionein Alleviates Glutathione Depletion-Induced Oxidative Cardiomyopathy through CISD1-Dependent Regulation of Ferroptosis in Murine Hearts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:912-926. [PMID: 38417695 DOI: 10.1016/j.ajpath.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
This study was designed to discern the effect of heavy scavenger metallothionein on glutathione (GSH) deprivation-evoked cardiac anomalies and mechanisms involved with an emphasis on ferroptosis. Wild-type and cardiac metallothionein transgenic mice received GSH synthase inhibitor buthionine sulfoximine (BSO; 30 mmol/L in drinking water) for 14 days before assessment of myocardial morphology and function. BSO evoked cardiac remodeling and contractile anomalies, including cardiac hypertrophy, interstitial fibrosis, enlarged left ventricular chambers, deranged ejection fraction, fraction shortening, cardiomyocyte contractile capacity, intracellular Ca2+ handling, sarcoplasmic reticulum Ca2+ reuptake, loss of mitochondrial integrity (mitochondrial swelling, loss of aconitase activity), mitochondrial energy deficit, carbonyl damage, lipid peroxidation, ferroptosis, and apoptosis. Metallothionein itself did not affect myocardial morphology and function, although it mitigated BSO-provoked myocardial anomalies, loss of mitochondrial integrity and energy, and ferroptosis. Immunoblotting revealed down-regulated sarco(endo)plasmic reticulum Ca2+-ATPase 2a, glutathione peroxidase 4, ferroptosis-suppressing CDGSH iron-sulfur domain 1 (CISD1), and mitochondrial regulating glycogen synthase kinase-3β phosphorylation with elevated p53, myosin heavy chain-β isozyme, IκB phosphorylation, and solute carrier family 7 member 11 (SLC7A11) as well as unchanged SLC39A1, SLC1A5, and ferroptosis-suppressing protein 1 following BSO challenge, all of which, except glutamine transporter SLC7A11 and p53, were abrogated by metallothionein. Inhibition of CISD1 using pioglitazone nullified GSH-offered benefit against BSO-induced cardiomyocyte ferroptosis and contractile and intracellular Ca2+ derangement. Taken together, these findings support a regulatory modality for CISD1 in the impedance of ferroptosis in metallothionein-offered protection against GSH depletion-evoked cardiac aberration.
Collapse
Affiliation(s)
- Feng-Juan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Shouzhi Fu
- Department of ICU/Emergency, Wuhan Third Hospital, Wuhan University, Wuhan, China
| | - Hua Ye
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Burns and Plastic and Wound Repair, Ganzhou People's Hospital, Ganzhou, China
| | - Yi-Han Hu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jianxin Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jamie R Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Maolong Dong
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China.
| | - Jun Ren
- National Clinical Research Center for Interventional Medicine, Shanghai, China; Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Luan M, Feng Z, Zhu W, Xing Y, Ma X, Zhu J, Wang Y, Jia Y. Mechanism of metal ion-induced cell death in gastrointestinal cancer. Biomed Pharmacother 2024; 174:116574. [PMID: 38593706 DOI: 10.1016/j.biopha.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Collapse
Affiliation(s)
- Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
10
|
Reiter RJ, Sharma R, Chuffa LGDA, Simko F, Dominguez-Rodriguez A. Mitochondrial Melatonin: Beneficial Effects in Protecting against Heart Failure. Life (Basel) 2024; 14:88. [PMID: 38255703 PMCID: PMC10820220 DOI: 10.3390/life14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular disease is the cause of physical infirmity and thousands of deaths annually. Typically, during heart failure, cardiomyocyte mitochondria falter in terms of energy production and metabolic processing. Additionally, inflammation and the accumulation of non-contractile fibrous tissue contribute to cardiac malfunction. Melatonin, an endogenously produced molecule, experimentally reduces the initiation and progression of atherosclerotic lesions, which are often the basis of coronary artery disease. The current review critically analyzes published data related to the experimental use of melatonin to forestall coronary artery pathologies. Collectively, these studies document melatonin's anti-atherosclerotic actions in reducing LDL oxidation and triglyceride levels, lowering endothelial malfunction, limiting adhesion molecule formation, preventing macrophage polarization to the M1 pro-inflammatory phenotype, changing cellular metabolism, scavenging destructive reactive oxygen species, preventing the proliferation and invasion of arterial smooth muscle cells into the lesioned area, restricting the ingrowth of blood vessels from the vasa vasorum, and solidifying the plaque cap to reduce the chance of its rupture. Diabetic hyperglycemia, which aggravates atherosclerotic plaque formation, is also inhibited by melatonin supplementation in experimental animals. The potential value of non-toxic melatonin as a possible inhibitor of cardiac pathology in humans should be seriously considered by performing clinical trials using this multifunctional molecule.
Collapse
Affiliation(s)
- Russel J. Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Ramaswamy Sharma
- Applied Biomedical Sciences, School of Osteopathic Medicine, University of the Incarnate Word, San Antonio, TX 78235, USA
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu 18618-689, São Paulo, Brazil;
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;
| | | |
Collapse
|
11
|
Sule RO, Phinney BS, Salemi MR, Gomes AV. Mitochondrial and Proteasome Dysfunction Occurs in the Hearts of Mice Treated with Triazine Herbicide Prometryn. Int J Mol Sci 2023; 24:15266. [PMID: 37894945 PMCID: PMC10607192 DOI: 10.3390/ijms242015266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Prometryn is a methylthio-s-triazine herbicide used to control the growth of annual broadleaf and grass weeds in many cultivated plants. Significant traces of prometryn are documented in the environment, mainly in waters, soil, and plants used for human and domestic consumption. Previous studies have shown that triazine herbicides have carcinogenic potential in humans. However, there is limited information about the effects of prometryn on the cardiac system in the literature, or the mechanisms and signaling pathways underlying any potential cytotoxic effects are not known. It is important to understand the possible effects of exogenous compounds such as prometryn on the heart. To determine the mechanisms and signaling pathways affected by prometryn (185 mg/kg every 48 h for seven days), we performed proteomic profiling of male mice heart with quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) using ten-plex tandem mass tag (TMT) labeling. The data suggest that several major pathways, including energy metabolism, protein degradation, fatty acid metabolism, calcium signaling, and antioxidant defense system were altered in the hearts of prometryn-treated mice. Proteasome and immunoproteasome activity assays and expression levels showed proteasome dysfunction in the hearts of prometryn-treated mice. The results suggest that prometryn induced changes in mitochondrial function and various signaling pathways within the heart, particularly affecting stress-related responses.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brett S. Phinney
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Michelle R. Salemi
- Proteomics Core Facility, University of California, Davis, Davis, CA 95616, USA; (B.S.P.); (M.R.S.)
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, One Shields Ave., Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|