1
|
Kritzer MF, Adler A, Locklear M. Androgen effects on mesoprefrontal dopamine systems in the adult male brain. Neuroscience 2024:S0306-4522(24)00306-3. [PMID: 38977069 DOI: 10.1016/j.neuroscience.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Epidemiological data show that males are more often and/or more severely affected by symptoms of prefrontal cortical dysfunction in schizophrenia, Parkinson's disease and other disorders in which dopamine circuits associated with the prefrontal cortex are dysregulated. This review focuses on research showing that these dopamine circuits are powerfully regulated by androgens. It begins with a brief overview of the sex differences that distinguish prefrontal function in health and prefrontal dysfunction or decline in aging and/or neuropsychiatric disease. This review article then spotlights data from human subjects and animal models that specifically identify androgens as potent modulators of prefrontal cortical operations and of closely related, functionally critical measures of prefrontal dopamine level or tone. Candidate mechanisms by which androgens dynamically control mesoprefrontal dopamine systems and impact prefrontal states of hypo- and hyper-dopaminergia in aging and disease are then considered. This is followed by discussion of a working model that identifies a key locus for androgen modulation of mesoprefrontal dopamine systems as residing within the prefrontal cortex itself. The last sections of this review critically consider the ways in which the organization and regulation of mesoprefrontal dopamine circuits differ in the adult male and female brain, and highlights gaps where more research is needed.
Collapse
Affiliation(s)
- Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| | - Alexander Adler
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States
| | | |
Collapse
|
2
|
Salgueiro WG, Soares MV, Martins CF, Paula FR, Rios-Anjos RM, Carrazoni T, Mori MA, Müller RU, Aschner M, Dal Belo CA, Ávila DS. Dopaminergic modulation by quercetin: In silico and in vivo evidence using Caenorhabditis elegans as a model. Chem Biol Interact 2023; 382:110610. [PMID: 37348670 PMCID: PMC10527449 DOI: 10.1016/j.cbi.2023.110610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Quercetin is a flavonol widely distributed in plants and has various described biological functions. Several studies have reported on its ability to restore neuronal function in a wide variety of disease models, including animal models of neurodegenerative disorders such as Parkinson's disease. Quercetin per se can act as a neuroprotector/neuromodulator, especially in diseases related to impaired dopaminergic neurotransmission. However, little is known about how quercetin interacts with the dopaminergic machinery. Here we employed the nematode Caenorhabditis elegans to study this putative interaction. After observing behavioral modulation, mutant analysis and gene expression in C. elegans upon exposure to quercetin at a concentration that does not protect against MPTP, we constructed a homology-based dopamine transporter protein model to conduct a docking study. This led to suggestive evidence on how quercetin may act as a dopaminergic modulator by interacting with C. elegans' dopamine transporter and alter the nematode's exploratory behavior. Consistent with this model, quercetin controls C. elegans behavior in a way dependent on the presence of both the dopamine transporter (dat-1), which is up-regulated upon quercetin exposure, and the dopamine receptor 2 (dop-2), which appears to be mandatory for dat-1 up-regulation. Our data propose an interaction with the dopaminergic machinery that may help to establish the effects of quercetin as a neuromodulator.
Collapse
Affiliation(s)
- Willian Goulart Salgueiro
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Marcell Valandro Soares
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cassiano Fiad Martins
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil
| | - Fávero Reisdorfer Paula
- Laboratory for Development and Quality Control in Medicines (LDCQ), Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Thiago Carrazoni
- Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, University of Campinas, Monteiro Lobato Avenue, 255, Campinas, São Paulo, 13083-862, Brazil; Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, SP, Brazil; Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Roman-Ulrich Müller
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany; Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Cháriston André Dal Belo
- Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil; Neurobiology and Toxinology Laboratory, (LANETOX), Federal University of Pampa - UNIPAMPA, CEP 97300-000, São Gabriel, RS, Brazil; Multidisciplinar Department, Federal University of São Paulo (UNIFESP), Angelica Street, 100- CEP 06110295, Osasco, SP, Brazil
| | - Daiana Silva Ávila
- Research Group in Biochemistry and Toxicology in Caenorhabditis elegans (GBToxCe), Federal University of Pampa - UNIPAMPA, CEP 97500-970, Uruguaiana, RS, Brazil; Department of Biochemistry and Molecular Biology, Post-graduate Program in Biological Sciences, Federal University of Santa Maria, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
3
|
Pilski A, Graves SM. Repeated Methamphetamine Administration Results in Axon Loss Prior to Somatic Loss of Substantia Nigra Pars Compacta and Locus Coeruleus Neurons in Male but Not Female Mice. Int J Mol Sci 2023; 24:13039. [PMID: 37685846 PMCID: PMC10487759 DOI: 10.3390/ijms241713039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Methamphetamine (meth) is a neurotoxic psychostimulant that increases monoamine oxidase (MAO)-dependent mitochondrial oxidant stress in axonal but not somatic compartments of substantia nigra pars compacta (SNc) and locus coeruleus (LC) neurons. Chronic meth administration results in the degeneration of SNc and LC neurons in male mice, and MAO inhibition is neuroprotective, suggesting that the deleterious effects of chronic meth begin in axons before advancing to the soma of SNc and LC neurons. To test this hypothesis, mice were administered meth (5 mg/kg) for 14, 21, or 28 days, and SNc and LC axonal lengths and numbers of neurons were quantified. In male mice, the SNc and LC axon lengths decreased with 14, 21, and 28 days of meth, whereas somatic loss was only observed after 28 days of meth; MAO inhibition (phenelzine; 20 mg/kg) prevented axonal and somatic loss of SNc and LC neurons. In contrast, chronic (28-day) meth had no effect on the axon length or numbers of SNc or LC neurons in female mice. The results demonstrate that repeated exposure to meth produces SNc and LC axonal deficits prior to somatic loss in male subjects, consistent with a dying-back pattern of degeneration, whereas female mice are resistant to chronic meth-induced degeneration.
Collapse
Affiliation(s)
| | - Steven M. Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
4
|
de la Rosa T, Calvo VS, Gonçalves VC, Ferreira CB, Cabral LM, Souza FDC, Scerni DA, Scorza FA, Moreira TS, Takakura AC. Respiratory deficits in a female rat model of Parkinson's Disease. Exp Physiol 2022; 107:1349-1359. [PMID: 36030407 DOI: 10.1113/ep090378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/23/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does 6-OHDA-induced Parkinson's Disease model affect the respiratory response in female rats? What effect does ovariectomy have on that response? What is the main finding and its importance? Our results suggest a protective effect of ovarian hormones in maintaining normal neuroanatomical integrity of the medullary respiratory nucleus in females. It was observed that ovariectomy alone reduced NK1r density in preBotc and BotC, and there was an incremental effect of 6-OHDA and ovariectomy on RTN neurons. ABSTRACT Emerging evidence indicates that Parkinson's disease (PD) courses with autonomic and respiratory deficiencies in addition to the classical motor symptoms. The prevalence of PD is lower in women, and it has been hypothesized that neuroprotection by ovarian hormones can explain this difference. While male PD animal models present changes in the central respiratory control areas, as well as ventilatory parameters under normoxia and hypercapnia, little is known about sex differences regarding respiratory deficits in this disease background. This study aimed to explore the neuroanatomical and functional respiratory changes in intact and ovariectomized female rats subjected to chemically induced PD via a bilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA). The respiratory parameters were evaluated by whole-body plethysmography, and the neuroanatomy was monitored using immunohistochemistry. It was found that dopaminergic neurons in the substantia nigra and neurokinin-1 receptor (NK1r) density in the rostral ventrolateral respiratory group, Botzinger and pre-Botzinger complex were reduced in the chemically induced PD animals. Additionally, reduced numbers of Phox2b neurons were only observed in the retrotrapezoid nucleus of PD-ovariectomized rats. Concerning respiratory parameters, in ovariectomized rats, the resting and hypercapnia-induced tidal volume (VT ) is reduced, and ventilation (VE ) changes independently of 6-OHDA administration. Notably, there is a reduction in the number of RTN phox2b neurons and hypercapnia-induced respiratory changes in PD-ovariectomized animals due to a 6-OHDA and OVX interaction. These results suggest a protective effect induced by ovarian hormones in neuroanatomical changes observed in a female experimental PD model. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tomás de la Rosa
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil.,Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain.,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Viviam S Calvo
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Valeria C Gonçalves
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline B Ferreira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lais M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Felipe da C Souza
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Débora A Scerni
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fúlvio A Scorza
- Neurology Department, Escola Paulista de Medicina Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Pinizzotto CC, Patwardhan A, Aldarondo D, Kritzer MF. Task-specific effects of biological sex and sex hormones on object recognition memories in a 6-hydroxydopamine-lesion model of Parkinson's disease in adult male and female rats. Horm Behav 2022; 144:105206. [PMID: 35653829 DOI: 10.1016/j.yhbeh.2022.105206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 01/13/2023]
Abstract
Many patients with Parkinson's disease (PD) experience cognitive or memory impairments with few therapeutic options available to mitigate them. This has fueled interest in determining how factors including sex and sex hormones modulate higher order function in this disease. The objective of this study was to use the Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms to compare the effects of a bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesion model of PD in gonadally intact male and female rats, in orchidectomized male rats and in orchidectomized males supplemented with 17β-estradiol or testosterone propionate on measures of recognition memory similar to those at risk in PD. These studies showed that 6-ODHA lesions impaired discrimination in both tasks in males but not females. Further, 6-OHDA lesions disrupted NOR performance similarly in all males regardless of whether they were gonadally intact, orchidectomized or hormone-supplemented. In contrast, OiP performance was disrupted in males that were orchidectomized or 6-OHDA-lesioned but was spared in orchidectomized and orchidectomized, 6-OHDA lesioned males supplemented with 17β-estradiol. The distinct effects that sex and/or sex hormones have on 6-OHDA lesion-induced NOR vs. OiP deficits identified here also differ from corresponding impacts recently described for 6-OHDA lesion-induced deficits in spatial working memory and episodic memory. Together, the collective data provide strong evidence for effects of sex and sex hormones on cognition and memory in PD as being behavioral task and behavioral domain specific. This specificity could explain why a cohesive clinical picture of endocrine impacts on higher order function in PD has remained elusive.
Collapse
Affiliation(s)
- Claudia C Pinizzotto
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Aishwarya Patwardhan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Daniel Aldarondo
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA.
| |
Collapse
|
6
|
Du Y, Choi S, Pilski A, Graves SM. Differential vulnerability of locus coeruleus and dorsal raphe neurons to chronic methamphetamine-induced degeneration. Front Cell Neurosci 2022; 16:949923. [PMID: 35936499 PMCID: PMC9354074 DOI: 10.3389/fncel.2022.949923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in axons of substantia nigra pars compacta (SNc), and ventral tegmental area (VTA) dopamine neurons. Chronic administration of meth results in SNc degeneration and MAO inhibition is neuroprotective, whereas, the VTA is resistant to degeneration. This differential vulnerability is attributed, at least in part, to the presence of L-type Ca2+ channel-dependent mitochondrial stress in SNc but not VTA dopamine neurons. MAO is also expressed in other monoaminergic neurons such as noradrenergic locus coeruleus (LC) and serotonergic dorsal raphe (DR) neurons. The impact of meth on mitochondrial stress in LC and DR neurons is unknown. In the current study we used a genetically encoded redox biosensor to investigate meth-induced MAO-dependent mitochondrial stress in LC and DR neurons. Similar to SNc and VTA neurons, meth increased MAO-dependent mitochondrial stress in axonal but not somatic compartments of LC norepinephrine and DR serotonin neurons. Chronic meth administration (5 mg/kg; 28-day) resulted in degeneration of LC neurons and MAO inhibition was neuroprotective whereas DR neurons were resistant to degeneration. Activating L-type Ca2+ channels increased mitochondrial stress in LC but not DR axons and inhibiting L-type Ca2+ channels in vivo with isradipine prevented meth-induced LC degeneration. These data suggest that similar to recent findings in SNc and VTA dopamine neurons, the differential vulnerability between LC and DR neurons can be attributed to the presence of L-type Ca2+ channel-dependent mitochondrial stress. Taken together, the present study demonstrates that both meth-induced MAO- and L-type Ca2+ channel-dependent mitochondrial stress are necessary for chronic meth-induced neurodegeneration.
Collapse
|
7
|
Poirier AA, Côté M, Bourque M, Jarras H, Lamontagne-Proulx J, Morissette M, Paolo TD, Soulet D. DIFFERENTIAL CONTRIBUTION OF ESTROGEN RECEPTORS TO THE INTESTINAL THERAPEUTIC EFFECTS OF 17β-ESTRADIOL IN A MURINE MODEL OF PARKINSON'S DISEASE. Brain Res Bull 2022; 187:85-97. [PMID: 35781029 DOI: 10.1016/j.brainresbull.2022.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/07/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022]
Abstract
Beneficial effects of estrogens have been reported in Parkinson's disease (PD) for many years. We previously reported their neuroprotective and anti-inflammatory potentials in the enteric nervous system of the intestine, a region possibly affected during the early stages of the disease according to Braak's hypothesis. Three different estrogen receptors have been characterized to date: the estrogen receptor alpha (ERα), the estrogen receptor beta (ERβ) and the G protein coupled estrogen receptor 1 (GPER1). The aim of the present study was to decipher the individual contribution of each estrogen receptor to the therapeutic properties of 17β-estradiol (E2) in the myenteric plexus of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Different agonists, 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT; ERα), 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN; ERβ), G1 (GPER1), and antagonists, ICI 182,780 (ERα and ERβ), G15 (GPER1), were used to analyze the involvement of each receptor. We confirmed that G1 protects dopamine (DA) neurons to a similar extent as E2. An anti-inflammatory effect on proinflammatory macrophages and cultured human monocytes was also demonstrated with E2 and G1. The effects of PPT and DPN were less potent than G1 with only a partial neuroprotection of DA neurons by PPT and a partial reduction of interleukin (IL)-1β production in monocytes by PPT and DPN. Overall, the present results indicate that the positive outcomes of estrogens are mainly through activation of GPER1. Therefore, this suggests that targeting GPER1 could be a promising approach for future estrogen-based hormone therapies during early PD.
Collapse
Affiliation(s)
- Andrée-Anne Poirier
- Centre de recherche du CHU de Québec, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Mélissa Côté
- Centre de recherche du CHU de Québec, Québec, QC, Canada
| | | | - Hend Jarras
- Centre de recherche du CHU de Québec, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Jérôme Lamontagne-Proulx
- Centre de recherche du CHU de Québec, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | | | - Thérèse Di Paolo
- Centre de recherche du CHU de Québec, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Québec, QC, Canada
| | - Denis Soulet
- Centre de recherche du CHU de Québec, Québec, QC, Canada; Faculté de pharmacie, Université Laval, Québec, QC, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.
| |
Collapse
|
8
|
LaDage LD. Seasonal variation in gonadal hormones, spatial cognition, and hippocampal attributes: More questions than answers. Horm Behav 2022; 141:105151. [PMID: 35299119 DOI: 10.1016/j.yhbeh.2022.105151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/04/2022]
Abstract
A large body of research has been dedicated to understanding the factors that modulate spatial cognition and attributes of the hippocampus, a highly plastic brain region that underlies spatial processing abilities. Variation in gonadal hormones impacts spatial memory and hippocampal attributes in vertebrates, although the direction of the effect has not been entirely consistent. To add complexity, individuals in the field must optimize fitness by coordinating activities with the appropriate environmental cues, and many of these behaviors are correlated tightly with seasonal variation in gonadal hormone release. As such, it remains unclear if the relationship among systemic gonadal hormones, spatial cognition, and the hippocampus also exhibits seasonal variation. This review presents an overview of the relationship among gonadal hormones, the hippocampus, and spatial cognition, and how the seasonal release of gonadal hormones correlates with seasonal variation in spatial cognition and hippocampal attributes. Additionally, this review presents other neuroendocrine mechanisms that may be involved in modulating the relationship among seasonality, gonadal hormone release, and the hippocampus and spatial cognition, including seasonal rhythms of steroid hormone binding globulins, neurosteroids, sex steroid hormone receptor expression, and hormone interactions. Here, endocrinology, ecology, and behavioral neuroscience are brought together to present an overview of the research demonstrating the mechanistic effects of systemic gonadal hormones on spatial cognition and the hippocampus, while, at a functional level, superimposing seasonal effects to examine ecologically-relevant circannual changes in gonadal hormones and spatial behaviors.
Collapse
Affiliation(s)
- Lara D LaDage
- Penn State Altoona, Division of Mathematics & Natural Sciences, 3000 Ivyside Dr., Altoona, PA 16601, USA.
| |
Collapse
|
9
|
Muscle function alterations in a Parkinson's disease animal model: Electromyographic recordings dataset. Data Brief 2022; 40:107712. [PMID: 35005127 PMCID: PMC8717462 DOI: 10.1016/j.dib.2021.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease (PD) is currently diagnosed based on characteristic motor dysfunctions induced by the loss of dopaminergic neurons in the substantia nigra pars compacta [1], [2]. The animal model most commonly used to reproduce PD-related motor deficits in rats is the massive degeneration of nigrostriatal neurons by using intracerebral infusion of 6-hydroxydopamine (6-OHDA) [3], [4]. This article presents data related to the research article “Quantifying muscle alterations in a Parkinson's disease animal model using electromyographic biomarkers” [5]. This study evaluated the effect of PD neurotoxic lesion model on muscle function of freely moving rats. The effects on muscle function considering the time post-lesion have never been described for this Parkinson's disease model. Electromyographic recordings were obtained from control and hemiparkinsonian rats walking in a circular treadmill. Chronic EMG electrodes were implanted subcutaneously in a hindlimb muscle - the biceps femoris muscle - for evaluating muscular activity during the gait. Five dataset of EMG recordings are presented in this article corresponding to control animals and four groups of lesioned animals at different time post-injury (three to six weeks after lesion). Stationarity of the EMG signals were established and the effective muscular contractions were detected by using signal processing methods described in [5]. Power spectrum density was characterized through the mean and median frequencies and signals probability distribution function analysis was also performed.These analyses have shown that PSD frequency contents progressively fall with time post-lesion suggesting muscle function changes along this enclosed time. This dataset could be reused to investigate muscular activation parameters under control and lesioned conditions in freely moving rats and for evaluating different signal processing methods for EMG patterns detection.
Collapse
|
10
|
Du Y, Lee YB, Graves SM. Chronic methamphetamine-induced neurodegeneration: Differential vulnerability of ventral tegmental area and substantia nigra pars compacta dopamine neurons. Neuropharmacology 2021; 200:108817. [PMID: 34610287 PMCID: PMC8556701 DOI: 10.1016/j.neuropharm.2021.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022]
Abstract
Methamphetamine (meth) increases monoamine oxidase (MAO)-dependent mitochondrial stress in substantia nigra pars compacta (SNc) axons; chronic administration produces SNc degeneration that is prevented by MAO inhibition suggesting that MAO-dependent axonal mitochondrial stress is a causal factor. To test whether meth similarly increases mitochondrial stress in ventral tegmental area (VTA) axons, we used a genetically encoded redox biosensor to assess mitochondrial stress ex vivo. Meth increased MAO-dependent mitochondrial stress in both SNc and VTA axons. However, despite having the same meth-induced stress as SNc neurons, VTA neurons were resistant to chronic meth-induced degeneration indicating that meth-induced MAO-dependent mitochondrial stress in axons was necessary but not sufficient for degeneration. To determine whether L-type Ca2+ channel-dependent stress differentiates SNc and VTA axons, as reported in the soma, the L-type Ca2+ channel activator Bay K8644 was used. Opening L-type Ca2+ channels increased axonal mitochondrial stress in SNc but not VTA axons. To first determine whether mitochondrial stress was necessary for SNc degeneration, mice were treated with the mitochondrial antioxidant mitoTEMPO. Chronic meth-induced SNc degeneration was prevented by mitoTEMPO thereby confirming the necessity of mitochondrial stress. Similar to results with the antioxidant, both MAO inhibition and L-type Ca2+ channel inhibition also prevented SNc degeneration. Taken together the presented data demonstrate that both MAO- and L-type Ca2+ channel-dependent mitochondrial stress is necessary for chronic meth-induced degeneration.
Collapse
Affiliation(s)
- Yijuan Du
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - You Bin Lee
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
de la Rosa T, Calvo VS, Gonçalves VC, Scerni DA, Scorza FA. 6-hydroxydopamine and ovariectomy has no effect on heart rate variability parameters of females. Clinics (Sao Paulo) 2021; 76:e3175. [PMID: 34644736 PMCID: PMC8478141 DOI: 10.6061/clinics/2021/e3175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES In addition to the classic motor symptoms of Parkinson's disease (PD), patients also present with non-motor symptoms, such as autonomic dysfunction, which is present in almost 90% of patients with PD, affecting the quality of life and mortality. Regarding sex differences in prevalence and presentation, there is increasing concern about how sex affects autonomic dysfunction. However, there are no previous data on autonomic cardiac function in females after 6-hydroxydopamine (6-OHDA) striatal injection. METHODS Wistar female rats were ovariectomized. After 20 days, the animals received bilateral injections of 6-OHDA (total dose per animal: 48 µg) or a vehicle solution in the striatum. Thirty days after 6-OHDA injection, subcutaneous electrodes were implanted for electrocardiogram (ECG) recording. Ten days after electrode implantation, ECG signals were recorded. Analyses of heart rate variability (HRV) parameters were performed, and the 6-OHDA lesion was confirmed by analyzing the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta (SNpc). RESULTS A high dose of 6-OHDA did not affect HRV of females, independent of ovariectomy. As expected, ovariectomy did not affect HRV or lesions in the SNpc after 6-OHDA injection. CONCLUSIONS We suggest that females with 6-OHDA present with cardioprotection, independent of ovarian hormones, which could be related to female vagal predominance.
Collapse
Affiliation(s)
- Tomás de la Rosa
- Departamento de Neurologia, Escola Paulista de Medicina/Universidade Federal de Sao Paulo (EPM/UNIFESP), Sao Paulo, SP, BR
| | | | | | | | | |
Collapse
|
12
|
Conner MR, Jang D, Anderson BJ, Kritzer MF. Biological Sex and Sex Hormone Impacts on Deficits in Episodic-Like Memory in a Rat Model of Early, Pre-motor Stages of Parkinson's Disease. Front Neurol 2020; 11:942. [PMID: 33041964 PMCID: PMC7527538 DOI: 10.3389/fneur.2020.00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/21/2020] [Indexed: 01/30/2023] Open
Abstract
Episodic memory deficits are among the earliest appearing and most commonly occurring examples of cognitive impairment in Parkinson's disease (PD). These enduring features can also predict a clinical course of rapid motor decline, significant cognitive deterioration, and the development of PD-related dementia. The lack of effective means to treat these deficits underscores the need to better understand their neurobiological bases. The prominent sex differences that characterize episodic memory in health, aging and in schizophrenia and Alzheimer's disease suggest that neuroendocrine factors may also influence episodic memory dysfunction in PD. However, while sex differences have been well-documented for many facets of PD, sex differences in, and sex hormone influences on associated episodic memory impairments have been less extensively studied and have never been examined in preclinical PD models. Accordingly, we paired bilateral neostriatal 6-hydroxydopamine (6-OHDA) lesions with behavioral testing using the What-Where-When Episodic-Like Memory (ELM) Task in adult rats to first determine whether episodic-like memory is impaired in this model. We further compared outcomes in gonadally intact female and male subjects, and in male rats that had undergone gonadectomy—with and without hormone replacement, to determine whether biological sex and/or sex hormones influenced the expression of dopamine lesioned-induced memory deficits. These studies showed that 6-OHDA lesions profoundly impaired recall for all memory domains in male and female rats. They also showed that in males, circulating gonadal hormones powerfully modulated the negative impacts of 6-OHDA lesions on What, Where, and When discriminations in domain-specific ways. Specifically, the absence of androgens was shown to fully attenuate 6-OHDA lesion-induced deficits in ELM for “Where” and to partially protect against lesion-induced deficits in ELM for “What.” In sum, these findings show that 6-OHDA lesions in rats recapitulate the vulnerability of episodic memory seen in early PD. Together with similar evidence recently obtained for spatial working memory, the present findings also showed that diminished androgen levels provide powerful, highly selective protections against the harmful effects that 6-OHDA lesions have on memory functions in male rats.
Collapse
Affiliation(s)
- Meagan R Conner
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, United States.,Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Doyeon Jang
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Brenda J Anderson
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
13
|
Nánási N, Veres G, Cseh EK, Martos D, Hadady L, Klivényi P, Vécsei L, Zádori D. The assessment of possible gender-related effect of endogenous striatal alpha-tocopherol level on MPTP neurotoxicity in mice. Heliyon 2020; 6:e04425. [PMID: 32685739 PMCID: PMC7358721 DOI: 10.1016/j.heliyon.2020.e04425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 11/19/2022] Open
Abstract
Several studies supported an increased vulnerability of males regarding Parkinson's disease (PD) and its animal models, the background of which has not been exactly revealed, yet. In addition to hormonal differences, another possible factor behind that may be a female-predominant increase in endogenous striatal alpha-tocopherol (αT) level with aging, even significant at 16 weeks of age, previously demonstrated by the authors. Accordingly, the aim of the current study was the assessment whether this difference in striatal αT concentration may contribute to the above-mentioned distinct vulnerability of genders to nigrostriatal injury. Female and male C57Bl/6 mice at the age of 16 weeks were injected with 12 mg/kg body weight 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 5 times at 2 h intervals or with saline. The levels of some biogenic amines (striatum) and αT (striatum and plasma) were determined by validated high performance liquid chromatography methods. Although the results proved previous findings, i.e., striatal dopamine decrease was less pronounced in females following MPTP treatment, and striatal αT level was significantly higher in female mice, the correlation between these 2 variables was not significant. Surprisingly, MPTP treatment did not affect striatal αT concentrations, but significantly decreased plasma αT levels without differences between genders. The current study, examining the possible role of elevated αT in female C57Bl/6 mice behind their decreased sensitivity to MPTP intoxication for the first time, was unable to demonstrate any remarkable connection between these 2 variables. These findings may further confirm that αT does not play a major role against neurotoxicity induced by MPTP.
Collapse
Affiliation(s)
- Nikolett Nánási
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Gábor Veres
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Edina K. Cseh
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Diána Martos
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Hadady
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- Corresponding author.
| |
Collapse
|
14
|
Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020; 15:114-164. [PMID: 31077015 PMCID: PMC6842680 DOI: 10.1007/s11481-019-09851-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/07/2019] [Indexed: 02/07/2023]
Abstract
Dopamine is well recognized as a neurotransmitter in the brain, and regulates critical functions in a variety of peripheral systems. Growing research has also shown that dopamine acts as an important regulator of immune function. Many immune cells express dopamine receptors and other dopamine related proteins, enabling them to actively respond to dopamine and suggesting that dopaminergic immunoregulation is an important part of proper immune function. A detailed understanding of the physiological concentrations of dopamine in specific regions of the human body, particularly in peripheral systems, is critical to the development of hypotheses and experiments examining the effects of physiologically relevant dopamine concentrations on immune cells. Unfortunately, the dopamine concentrations to which these immune cells would be exposed in different anatomical regions are not clear. To address this issue, this comprehensive review details the current information regarding concentrations of dopamine found in both the central nervous system and in many regions of the periphery. In addition, we discuss the immune cells present in each region, and how these could interact with dopamine in each compartment described. Finally, the review briefly addresses how changes in these dopamine concentrations could influence immune cell dysfunction in several disease states including Parkinson's disease, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, as well as the collection of pathologies, cognitive and motor symptoms associated with HIV infection in the central nervous system, known as NeuroHIV. These data will improve our understanding of the interactions between the dopaminergic and immune systems during both homeostatic function and in disease, clarify the effects of existing dopaminergic drugs and promote the creation of new therapeutic strategies based on manipulating immune function through dopaminergic signaling. Graphical Abstract.
Collapse
Affiliation(s)
- S M Matt
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - P J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA.
| |
Collapse
|
15
|
Jarras H, Bourque M, Poirier AA, Morissette M, Coulombe K, Di Paolo T, Soulet D. Neuroprotection and immunomodulation of progesterone in the gut of a mouse model of Parkinson's disease. J Neuroendocrinol 2020; 32:e12782. [PMID: 31430407 DOI: 10.1111/jne.12782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022]
Abstract
Gastrointestinal symptoms appear in Parkinson's disease patients many years before motor symptoms, suggesting the implication of dopaminergic neurones of the gut myenteric plexus. Inflammation is also known to be increased in PD. We previously reported neuroprotection with progesterone in the brain of mice lesioned with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and hypothesised that it also has neuroprotective and immunomodulatory activities in the gut. To test this hypothesis, we investigated progesterone administered to adult male C57BL/6 mice for 10 days and treated with MPTP on day 5. In an additional experiment, progesterone was administered for 5 days following MPTP treatment. Ilea were collected on day 10 of treatment and microdissected to isolate the myenteric plexus. Dopaminergic neurones were reduced by approximately 60% and pro-inflammatory macrophages were increased by approximately 50% in MPTP mice compared to intact controls. These changes were completely prevented by progesterone administered before and after MPTP treatment and were normalised by 8 mg kg-1 progesterone administered after MPTP. In the brain of MPTP mice, brain-derived neurotrophic peptide (BDNF) and glial fibrillary acidic protein (GFAP) were associated with progesterone neuroprotection. In the myenteric plexus, increased BDNF levels compared to controls were measured in MPTP mice treated with 8 mg kg-1 progesterone started post MPTP, whereas GFAP levels remained unchanged. In conclusion, the results obtained in the present study show neuroprotective and anti-inflammatory effects of progesterone in the myenteric plexus of MPTP mice that are similar to our previous findings in the brain. Progesterone is non-feminising and could be used for both men and women in the pre-symptomatic stages of the disease.
Collapse
Affiliation(s)
- Hend Jarras
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Mélanie Bourque
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Andrée-Anne Poirier
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Marc Morissette
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Katherine Coulombe
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
| | - Thérèse Di Paolo
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| | - Denis Soulet
- Axe Neurosciences, Centre de Recherche du CHU de Québec (Pavillon CHUL), Quebec, Canada
- Faculty of Pharmacy, Laval University, Quebec, Canada
| |
Collapse
|
16
|
Brandão ML, Fernandes AMTDA, Gonçalves-de-Freitas E. Male and female cichlid fish show cognitive inhibitory control ability. Sci Rep 2019; 9:15795. [PMID: 31673023 PMCID: PMC6823373 DOI: 10.1038/s41598-019-52384-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/14/2019] [Indexed: 12/13/2022] Open
Abstract
Inhibitory control is a way to infer cognitive flexibility in animals by inhibiting a behavioral propensity to obtain a reward. Here we tested whether there are differences in inhibitory control between females and males of the fish Nile tilapia owing to their distinct reproductive roles. Individuals were tested under a detour-reaching paradigm, consisting of training fish to feed behind an opaque barrier and, thereafter, testing them with a transparent one. Fish is expected to avoid trying to cross through the transparent barrier to achieve food (reward), thus showing inhibitory control by recovering the learned detour with the opaque apparatus. Both males and females learned to detour the transparent barrier with similar scores of correct responses, whereas females reached the food faster. This result is probably associated to their different sex roles in reproduction: females care for the eggs and fry inside their mouth (thus requiring a high inhibitory control not to swallow them), whereas males have to stay inside the territory defending it against intruder males, which also demands some inhibitory ability not to leave the spawning site and take the risk of losing it. Furthermore, this evidence of cognitive flexibility can enable social fish to deal with unpredictable interactions.
Collapse
Affiliation(s)
- Manuela Lombardi Brandão
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Ana Marina Tabah de Almeida Fernandes
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil
| | - Eliane Gonçalves-de-Freitas
- Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Cristóvão Colombo, 2265, 15054-000, São José do Rio Preto, SP, Brazil.
- Centro de Aquicultura da UNESP, São José do Rio Preto, SP, Brasil.
| |
Collapse
|
17
|
Kim IY, O'Reilly ÉJ, Hughes KC, Gao X, Schwarzschild MA, Ascherio A. Differences in Parkinson's Disease Risk with Caffeine Intake and Postmenopausal Hormone Use. JOURNAL OF PARKINSONS DISEASE 2018; 7:677-684. [PMID: 28984617 DOI: 10.3233/jpd-171175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Caffeine intake has been associated with a lower risk of Parkinson's disease (PD). This association is robust in men, but inconsistent in women due to a possible interaction with post-menopausal hormone (PMH) use. OBJECTIVE To (1) evaluate the association between caffeine intake and PD risk and (2) assess potential effect modification of the association by PMH use among women. METHODS We examined associations between caffeine intake and incident PD risk in the Nurses' Health Study (NHS) (N = 121,701 women) and the Health Professionals Follow-up Study (HPFS) (N = 51,529 men). Dietary data on coffee and caffeine from other sources were collected every four years using a validated semi-quantitative food frequency questionnaire for both cohorts. Information on lifestyle and incident PD diagnosis was updated biennially and PD diagnoses were confirmed by medical record review. We estimated hazard ratios (HR) and 95% confidence intervals (CI) using Cox proportional hazards models. RESULTS We documented a total of 1,219 PD cases over the follow-up period. The multivariable-adjusted HR comparing the highest to lowest quintile of caffeine intake was 0.50 (95% CI: 0.37, 0.68; Ptrend<0.0001) in the HPFS. Among women, there was a suggestion of an interaction between coffee intake and PMH use (P = 0.08). In the pooled analyses combining men and women who have never used PMH, the risk of PD was lower as coffee intake increased (Ptrend<0.001). CONCLUSIONS Our results support previous findings that increased caffeine intake may be associated with a decreased PD risk in men and women who have never used PMH.
Collapse
Affiliation(s)
- Iris Y Kim
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Éilis J O'Reilly
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,School of Public Health, University College Cork, Ireland
| | - Katherine C Hughes
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Xiang Gao
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael A Schwarzschild
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Alberto Ascherio
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Shimamoto A, Rappeneau V. Sex-dependent mental illnesses and mitochondria. Schizophr Res 2017; 187:38-46. [PMID: 28279571 PMCID: PMC5581986 DOI: 10.1016/j.schres.2017.02.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/11/2022]
Abstract
The prevalence of some mental illnesses, including major depression, anxiety-, trauma-, and stress-related disorders, some substance use disorders, and later onset of schizophrenia, is higher in women than men. While the higher prevalence in women could simply be explained by socioeconomic determinants, such as income, social status, or cultural background, extensive studies show sex differences in biological, pharmacokinetic, and pharmacological factors contribute to females' vulnerability to these mental illnesses. In this review, we focus on estrogens, chronic stress, and neurotoxicity from behavioral, pharmacological, biological, and molecular perspectives to delineate the sex differences in these mental illnesses. Particularly, we investigate a possible role of mitochondrial function, including biosynthesis, bioenergetics, and signaling, on mediating the sex differences in psychiatric disorders.
Collapse
Affiliation(s)
- Akiko Shimamoto
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37028-3599, United States.
| | - Virginie Rappeneau
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Blvd., Nashville, TN 37028-3599, United States
| |
Collapse
|
19
|
Neuroprotective and immunomodulatory effects of raloxifene in the myenteric plexus of a mouse model of Parkinson's disease. Neurobiol Aging 2016; 48:61-71. [DOI: 10.1016/j.neurobiolaging.2016.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/29/2016] [Accepted: 08/06/2016] [Indexed: 01/23/2023]
|
20
|
The impact of biological sex and sex hormones on cognition in a rat model of early, pre-motor Parkinson's disease. Neuroscience 2016; 345:297-314. [PMID: 27235739 DOI: 10.1016/j.neuroscience.2016.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
Parkinson's disease (PD) is well known for motor deficits such as bradykinesia. However, patients often experience additional deficits in working memory, behavioral selection, decision-making and other executive functions. Like other features of PD, the incidence and severity of these cognitive symptoms differ in males and females. However, preclinical models have not been used to systematically investigate the roles that sex or sex hormones may play in these complex signs. To address this, we used a Barnes maze spatial memory paradigm to compare the effects of a bilateral nigrostriatal dopamine lesion model of early PD on cognitive behaviors in adult male and female rats and in adult male rats that were gonadectomized or gonadectomized and supplemented with testosterone or estradiol. We found that dopamine lesions produced deficits in working memory and other executive operations, albeit only in male rats where circulating androgen levels were physiological. In males where androgen levels were depleted, lesions produced no additional Barnes maze deficits and attenuated those previously linked to androgen deprivation. We also found that while most measures of Barnes maze performance were unaffected by dopamine lesions in the females, lesions did induce dramatic shifts from their preferred use of thigmotactic navigation to the use of spatially guided place strategies similar to those normally preferred by males. These and other sex- and sex hormone-specific differences in the effects of nigrostriatal dopamine lesions on executive function highlight the potential of gonadal steroids as protective and/or therapeutic for the cognitive symptoms of PD. However, their complexity also indicates the need for a more thorough understanding of androgen and estrogen effects in guiding the development of hormone therapies that might effectively address these non-motor signs.
Collapse
|
21
|
Gender-related effects of sex steroids on histamine release and FcεRI expression in rat peritoneal mast cells. J Immunol Res 2015; 2015:351829. [PMID: 25973435 PMCID: PMC4417946 DOI: 10.1155/2015/351829] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 11/18/2022] Open
Abstract
Mast cells (MCs) are versatile effector and regulatory cells in various physiologic, immunologic, and pathologic processes. In addition to the well-characterized IgE/FcεRI-mediated degranulation, a variety of biological substances can induce MCs activation and release of their granule content. Sex steroids, mainly estradiol and progesterone, have been demonstrated to elicit MCs activation. Most published studies have been conducted on MCs lines or freshly isolated peritoneal and bone marrow-derived MC without addressing gender impact on MC response. Our goal was to investigate if the effect of estradiol, progesterone, testosterone, and dihydrotestosterone (DHT) on MCs may differ depending on whether female or male rats are used as MCs donors. Our results demonstrated that effect of sex steroids on MCs histamine release is dose- and gender-dependent and can be direct, synergistic, or inhibitory depending on whether hormones are used alone or to pretreat MCs followed by substance P-stimulation or upon IgE-mediated stimulation. In contrast, sex steroids did not have effect on the MC expression of the IgE high affinity receptor, FcεRI, no matter female or male rats were used. In conclusion, MCs degranulation is modulated by sex hormones in a gender-selective fashion, with MC from females being more susceptible than MC from males to the effects of sex steroids.
Collapse
|
22
|
Acaz-Fonseca E, Sanchez-Gonzalez R, Azcoitia I, Arevalo MA, Garcia-Segura LM. Role of astrocytes in the neuroprotective actions of 17β-estradiol and selective estrogen receptor modulators. Mol Cell Endocrinol 2014; 389:48-57. [PMID: 24444786 DOI: 10.1016/j.mce.2014.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 01/04/2023]
Abstract
Neuroprotective actions of 17β-estradiol (estradiol) are in part mediated by direct actions on neurons. Astrocytes, which play an essential role in the maintenance of the homeostasis of neural tissue, express estrogen receptors and are also involved in the neuroprotective actions of estradiol in the brain. Estradiol controls gliosis and regulates neuroinflammation, edema and glutamate transport acting on astrocytes. In addition, the hormone regulates the release of neurotrophic factors and other neuroprotective molecules by astrocytes. In addition, reactive astrocytes are a local source of neuroprotective estradiol for the injured brain. Since estradiol therapy is not free from peripheral risks, alternatives for the hormone have been explored. Some selective estrogen receptor modulators (SERMs), which are already in use in clinical practice for the treatment of breast cancer, osteoporosis or menopausal symptoms, exert similar actions to estradiol on astrocytes. Therefore, SERMs represent therapeutic alternatives to estradiol for the activation of astroglia-mediated neuroprotective mechanisms.
Collapse
Affiliation(s)
| | | | - Iñigo Azcoitia
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | |
Collapse
|
23
|
Stouffer EM, Barry JL. A sex difference in the onset of the latent learning impairment in rats. Dev Psychobiol 2013; 56:1134-41. [PMID: 24122647 DOI: 10.1002/dev.21168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022]
Abstract
The current study examined a sex difference in the onset of a latent learning impairment in Sprague-Dawley rats. Forty rats (20 male, 20 female) were tested on the Latent Cue Preference (LCP) task at 3 or 11 months of age. Additionally, 19 female rats were tested at 14 or 18 months of age. All rats were given four training trials in the LCP task using a three-compartment box, during which the rats explored a water-paired compartment and an unpaired compartment (each with a different visual cue) on consecutive days. Rats were then water-deprived for 23 hr and given a compartment preference test, in which more time spent in the water-paired compartment demonstrated latent learning. Results showed that 11-month old males and 18-month old females showed impaired latent learning, but 11- and 14-month old females showed intact latent learning, which may possibly be due to the neuroprotective effects of estrogen.
Collapse
Affiliation(s)
- Eric M Stouffer
- Department of Psychology, Bloomsburg University of Pennsylvania, 400 E 2nd Street, Bloomsburg, PA, 17815.
| | | |
Collapse
|