1
|
Hong Y, Kim I, Moon H, Lee J, Lertpatipanpong P, Ryu CH, Jung YS, Seok J, Kim Y, Ryu J, Baek SJ. Novel thrombospondin-1 transcript exhibits distinctive expression and activity in thyroid tumorigenesis. Oncogene 2023:10.1038/s41388-023-02692-9. [PMID: 37055552 DOI: 10.1038/s41388-023-02692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Thrombospondin 1 (TSP1) is known for its cell-specific functions in cancer progression, such as proliferation and migration. It contains 22 exons that may potentially produce several different transcripts. Here, we identified TSP1V as a novel TSP1-splicing variant produced by intron retention (IR) in human thyroid cancer cells and tissues. We observed that TSP1V functionally inhibited tumorigenesis contrary to TSP1 wild-type, as identified in vivo and in vitro. These activities of TSP1V are caused by inhibiting phospho-Smad and phospho-focal adhesion kinase. Reverse transcription polymerase chain reaction and minigene experiments revealed that some phytochemicals/non-steroidal anti-inflammatory drugs enhanced IR. We further found that RNA-binding motif protein 5 (RBM5) suppressed IR induced by sulindac sulfide treatment. Additionally, sulindac sulfide reduced phospho-RBM5 levels in a time-dependent manner. Furthermore, trans-chalcone demethylated TSP1V, thereby preventing methyl-CpG-binding protein 2 binding to TSP1V gene. In addition, TSP1V levels were significantly lower in patients with differentiated thyroid carcinoma than in those with benign thyroid nodule, indicating its potential application as a diagnostic biomarker in tumor progression.
Collapse
Affiliation(s)
- Yukyung Hong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Ilju Kim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Hyunjin Moon
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Jaehak Lee
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pattawika Lertpatipanpong
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Chang Hwan Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yuh-Seog Jung
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Jungirl Seok
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea
| | - Yonghwan Kim
- Department of Biological Sciences, Research Institute of Women's Health and Digital Humanity Center, Sookmyung Women's University, Seoul, 04310, Korea
| | - Junsun Ryu
- Department of Otolaryngology-Head and Neck Surgery, Center for Thyroid Cancer, Research Institute and Hospital, National Cancer Center, Goyang, Korea.
| | - Seung Joon Baek
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
Ham J, Wang B, Po JW, Singh A, Niles N, Lee CS. Cancer-associated fibroblasts (CAFs) in thyroid papillary carcinoma: molecular networks and interactions. J Clin Pathol 2021; 74:759-765. [PMID: 33619218 DOI: 10.1136/jclinpath-2020-207357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/04/2021] [Indexed: 01/17/2023]
Abstract
In 1989, Stephen Paget proposed the 'seed and soil' theory of cancer metastasis. This theory has led to previous researchers focusing on the role of a tumour as a cancer seed and antiangiogenesis agents as cancer soil fumigant; for the latter to be effective, it is important for them to be able to distinguish cancer cells from stromal cells. However, antiangiogenesis agents have not produced dramatic survival benefits in vivo. This may be related to their inability to destroy the supporting stroma that promote cancer cell growth. Therefore, in order to effectively arrest cancer cell growth for therapeutic purposes, a paradigm shift is required in our fundamental approach to decipher the molecular events and networks in the stromal environment that cancer cells can thrive and proliferate. The pathogenesis of cancer is a multidimensional process of pathological molecular and cellular pathways, influencing different stromal properties and achieving a mutually negotiated crosstalk between cancer cells and stromal cells. This review summarises the clinical presentation of current knowledge of classical papillary thyroid carcinoma (PTC), emerging molecular diagnostics and future directions of classical PTC research.
Collapse
Affiliation(s)
- Jeehoon Ham
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia
| | - Bin Wang
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Joseph William Po
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Centre for Oncology Education and Research Translation (CONCERT), Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia.,Surgical Innovation Unit, Department of Surgery, Westmead Hospital, Sydney, New South Wales, Australia
| | - Amandeep Singh
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia
| | - Navin Niles
- CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,Thyroid Cancer Group, Ingham Institute, Liverpool, New South Wales, Australia.,Department of Head & Neck Surgery, Liverpool Hospital, Liverpool, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia
| | - Cheok Soon Lee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia .,Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, New South Wales, Australia.,CONCERT Biobank, Ingham Institute, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia.,School of Medicine, Western Sydney University, Campbelltown Campus, Campbelltown, New South Wales, Australia.,Central Clinical School, University of Sydney, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Liverpool, New South Wales, Australia
| |
Collapse
|
3
|
Chan TSY, Picard D, Hawkins CE, Lu M, Pfister S, Korshunov A, Roussel MF, Wechsler-Reya RJ, Henkin J, Bouffet E, Huang A. Thrombospondin-1 mimetics are promising novel therapeutics for MYC-associated medulloblastoma. Neurooncol Adv 2021; 3:vdab002. [PMID: 33629064 PMCID: PMC7890793 DOI: 10.1093/noajnl/vdab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) comprises four subtypes of which group 3 MB are the most aggressive. Although overall survival for MB has improved, the outcome of group 3 MB remains dismal. C-MYC (MYC) amplification or MYC overexpression which characterizes group 3 MB is a strong negative prognostic factor and is frequently associated with metastases and relapses. We previously reported that MYC expression alone promotes highly aggressive MB phenotypes, in part via repression of thrombospondin-1 (TSP-1), a potent tumor suppressor. METHODS In this study, we examined the potential role of TSP-1 and TSP-1 peptidomimetic ABT-898 in MYC-amplified human MB cell lines and two distinct murine models of MYC-driven group 3 MBs. RESULTS We found that TSP-1 reconstitution diminished metastases and prolonged survival in orthotopic xenografts and promoted chemo- and radio-sensitivity via AKT signaling. Furthermore, we demonstrate that ABT-898 can recapitulate the effects of TSP-1 expression in MB cells in vitro and specifically induced apoptosis in murine group 3 MB tumor cells. CONCLUSION Our data underscore the importance of TSP-1 as a critical tumor suppressor in MB and highlight TSP-1 peptidomimetics as promising novel therapeutics for the most lethal subtype of MB.
Collapse
Affiliation(s)
- Tiffany S Y Chan
- Department of Pediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Picard
- Department of Pediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia E Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Lu
- Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefan Pfister
- Division of Pediatric Neurooncology, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrey Korshunov
- Division of Pediatric Neurooncology, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martine F Roussel
- Department of Tumour Cell Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - Jack Henkin
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - Eric Bouffet
- Department of Pediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Pediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
4
|
MacDonald L, Jenkins J, Purvis G, Lee J, Franco AT. The Thyroid Tumor Microenvironment: Potential Targets for Therapeutic Intervention and Prognostication. Discov Oncol 2020; 11:205-217. [PMID: 32548798 DOI: 10.1007/s12672-020-00390-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most common endocrine malignancy and incidences are rising rapidly, in both pediatric and adult populations. Many thyroid tumors are successfully treated which results in low mortality rates, but there is often a significant morbidity associated with thyroid cancer treatments. For patients with tumors that are not successfully treated with surgical resection or radioactive iodine treatment, prognosis is dramatically reduced. Patients diagnosed with anaplastic thyroid cancer face a very grim prognosis with a median survival of 6 months post-diagnosis. There is a critical need to identify patients who are at greatest risk of developing persistent disease and progressing to poorly differentiated or anaplastic disease. Furthermore, development of treatments associated with less morbidity would represent a significant improvement for thyroid cancer survivors. It is well established the stromal cells and components of the tumor microenvironment can drive tumor progression and resistance to therapy. Here we review the current state of what is known regarding the thyroid tumor microenvironment and how these factors may contribute to thyroid tumor pathogenesis. Study of the tumor microenvironment within thyroid cancer is a relatively new field, and more studies are needed to dissect the complex and dynamic crosstalk between thyroid tumor cells and its tumor niche.
Collapse
Affiliation(s)
| | | | - Grace Purvis
- Division of Endocrinology and Diabetes Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joshua Lee
- Division of Endocrinology and Diabetes Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aime T Franco
- Division of Endocrinology and Diabetes Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Lu S, Zhao R, Shen J, Zhang Y, Shi J, Xu C, Chen J, Lin R, Han W, Luo D. Integrated bioinformatics analysis to screen hub genes in the lymph node metastasis of thyroid cancer. Oncol Lett 2019; 19:1375-1383. [PMID: 31966069 PMCID: PMC6956406 DOI: 10.3892/ol.2019.11188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Thyroid cancer (TC) is one of the most common types of malignancy of the endocrine-system. At present, there is a lack of effective methods to predict neck lymph node metastasis (LNM) in TC. The present study compared the expression profiles from The Cancer Genome Atlas between N1M0 and N0M0 subgroups in each T1-4 stages TC in order to identify the four groups of TC LNM-associated differentially expressed genes (DEGs). Subsequently, DEGs were combined to obtain a total of 493 integrated DEGs by using the method of Robust Rank Aggregation. Furthermore, the underlying mechanisms of LNM were investigated. The results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that the identified DEGs may promote LNM via numerous pathways, including extracellular matrix-receptor interaction, PI3K-AKT signaling pathway and focal adhesion. Following construction of a protein-protein interaction network, the significance score for each gene was calculated and seven hub genes were screened, including interleukin 6, actinin α2, collagen type I α 1 chain, actin α1, calbindin 2, thrombospondin 1 and parathyroid hormone. These genes were predicted to serve crucial roles in TC with LNM. The results from the present study could therefore improve the understanding of LNM in TC. In addition, the seven DEGs identified may be considered as potential novel targets for the development of biomarkers that could be used in the diagnosis and therapy of TC.
Collapse
Affiliation(s)
- Si Lu
- Zhejiang Chinese Medical University Affiliated Hangzhou First Hospital, The Fourth Clinical College, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jie Shen
- Nanjing Medical University Affiliated Hangzhou Hospital, The First Clinical College, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Yu Zhang
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jingjing Shi
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Chenke Xu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiali Chen
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Renbin Lin
- Department of Gastroenterology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Dingcun Luo
- Department of Oncological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
6
|
Jimenez L, Yu H, McKenzie AJ, Franklin JL, Patton JG, Liu Q, Weaver AM. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs. J Proteome Res 2019; 18:947-959. [PMID: 30608700 DOI: 10.1021/acs.jproteome.8b00647] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are important mediators of cell-cell communication due to their cargo content of proteins, lipids, and RNAs. We previously reported that small EVs (SEVs) called exosomes promote directed and random cell motility, invasion, and serum-independent growth. In contrast, larger EVs (LEVs) were not active in those assays, but might have unique functional properties. In order to identify protein cargos that may contribute to different functions of SEVs and LEVs, we used isobaric tags for relative and absolute quantitation (iTRAQ)-liquid chromatography (LC) tandem mass spectrometry (MS) on EVs isolated from a colon cancer cell line. Bioinformatics analyses revealed that SEVs are enriched in proteins associated with cell-cell junctions, cell-matrix adhesion, exosome biogenesis machinery, and various signaling pathways. In contrast, LEVs are enriched in proteins associated with ribosome and RNA biogenesis, processing, and metabolism. Western blot analysis of EVs purified from two different cancer cell types confirmed the enrichment of cell-matrix and cell-cell adhesion proteins in SEVs. Consistent with those data, we found that cells exhibit enhanced adhesion to surfaces coated with SEVs compared to an equal protein concentration of LEVs. These data suggest that a major function of SEVs is to promote cellular adhesion.
Collapse
Affiliation(s)
- Lizandra Jimenez
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Hui Yu
- Department of Internal Medicine , University of New Mexico , Albuquerque , New Mexico 87131 , United States
| | - Andrew J McKenzie
- Sarah Cannon Research Institute , Nashville , Tennessee 37203 , United States
| | - Jeffrey L Franklin
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Medicine , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| | - James G Patton
- Department of Biological Sciences , Vanderbilt University School of Medicine , Nashville , Tennessee 37212 , United States
| | - Qi Liu
- Department of Biostatistics , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
| | - Alissa M Weaver
- Department of Cell and Developmental Biology , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States.,Department of Pathology, Microbiology and Immunology , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
| |
Collapse
|
7
|
Ferrari SM, Fallahi P, La Motta C, Elia G, Ragusa F, Ruffilli I, Patrizio A, Baldini E, Ulisse S, Antonelli A. Recent advances in precision medicine for the treatment of anaplastic thyroid cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1565940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Giusy Elia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesca Ragusa
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Ruffilli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Armando Patrizio
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Enke Baldini
- Department of Surgical Sciences, ‘Sapienza’ University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, ‘Sapienza’ University of Rome, Rome, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Metformin blocks progression of obesity-activated thyroid cancer in a mouse model. Oncotarget 2017; 7:34832-44. [PMID: 27145454 PMCID: PMC5085193 DOI: 10.18632/oncotarget.8989] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/16/2016] [Indexed: 12/22/2022] Open
Abstract
Compelling epidemiologic evidence indicates that obesity is associated with a high risk of human malignancies, including thyroid cancer. We previously demonstrated that a high fat diet (HFD) effectively induces the obese phenotype in a mouse model of aggressive follicular thyroid cancer (ThrbPV/PVPten+/−mice). We showed that HFD promotes cancer progression through aberrant activation of the leptin-JAK2-STAT3 signaling pathway. HFD-promoted thyroid cancer progression allowed us to test other molecular targets for therapeutic opportunity for obesity-induced thyroid cancer. Metformin is a widely used drug to treat patients with type II diabetes. It has been shown to reduce incidences of neoplastic diseases and cancer mortality in type II diabetes patients. The present study aimed to test whether metformin could be a therapeutic for obesity-activated thyroid cancer. ThrbPV/PVPten+/−mice were fed HFD together with metformin or vehicle-only, as controls, for 20 weeks. While HFD-ThrbPV/PVPten+/−mice had shorter survival than LFD-treated mice, metformin had no effects on the survival of HFD-ThrbPV/PVPten+/−mice. Remarkably, metformin markedly decreased occurrence of capsular invasion and completely blocked vascular invasion and anaplasia in HFD-ThrbPV/PVPten+/−mice without affecting thyroid tumor growth. The impeded cancer progression was due to the inhibitory effect of metformin on STAT3-ERK-vimentin and fibronectin-integrin signaling to decrease tumor cell invasion and de-differentiation. The present studies provide additional molecular evidence to support the link between obesity and thyroid cancer risk. Importantly, our findings suggest that metformin could be used as an adjuvant in combination with antiproliferative modalities to improve the outcome of patients with obesity-activated thyroid cancer.
Collapse
|
9
|
MYH9 binds to lncRNA gene PTCSC2 and regulates FOXE1 in the 9q22 thyroid cancer risk locus. Proc Natl Acad Sci U S A 2017; 114:474-479. [PMID: 28049826 DOI: 10.1073/pnas.1619917114] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A locus on chromosome 9q22 harbors a SNP (rs965513) firmly associated with risk of papillary thyroid carcinoma (PTC). The locus also comprises the forkhead box E1 (FOXE1) gene, which is implicated in thyroid development, and a long noncoding RNA (lncRNA) gene, papillary thyroid cancer susceptibility candidate 2 (PTCSC2). How these might interact is not known. Here we report that PTCSC2 binds myosin-9 (MYH9). In a bidirectional promoter shared by FOXE1 and PTCSC2, MYH9 inhibits the promoter activity in both directions. This inhibition can be reversed by PTCSC2, which acts as a suppressor. RNA knockdown of FOXE1 in primary thyroid cells profoundly interferes with the p53 pathway. We propose that the interaction between the lncRNA, its binding protein MYH9, and the coding gene FOXE1 underlies the predisposition to PTC triggered by rs965513.
Collapse
|
10
|
REC8 is a novel tumor suppressor gene epigenetically robustly targeted by the PI3K pathway in thyroid cancer. Oncotarget 2016; 6:39211-24. [PMID: 26472282 PMCID: PMC4770767 DOI: 10.18632/oncotarget.5391] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
The role of the PI3K pathway in human cancer has been well established, but much of its molecular mechanism, particularly the epigenetic aspect, remains to be defined. We hypothesized that aberrant methylation and hence altered expression of certain unknown important genes induced by the genetically activated PI3K pathway signaling is a major epigenetic mechanism in human tumorigenesis. Through a genome-wide search for such genes that were epigenetically controlled by the PI3K pathway in thyroid cancer cells, we found a wide range of genes with broad functions epigenetically targeted by the PI3K pathway. The most prominent among these genes was REC8, classically known as a meiotic-specific gene, which we found to be robustly down-regulated by the PI3K pathway through hypermethylation. REC8 hypermethylation was strongly associated with genetic alterations and activities of the PI3K pathway in thyroid cancer cell lines, thyroid cancer tumors, and some other human cancers; it was also associated with poor clinicopathological outcomes of thyroid cancer, including advanced disease stages and patient mortality. Demethylating the hypermethylated REC8 gene restored its expression in thyroid cancer cells in which the PI3K pathway was genetically over-activated and induced expression of REC8 protein inhibited the proliferation and colony formation of these cells. These findings are consistent with REC8 being a novel major bona fide tumor suppressor gene and a robust epigenetic target of the PI3K pathway. Aberrant inactivation of REC8 through hypermethylation by the PI3K pathway may represent an important mechanism mediating the oncogenic functions of the PI3K pathway.
Collapse
|
11
|
Vanhoutte D, Schips TG, Kwong JQ, Davis J, Tjondrokoesoemo A, Brody MJ, Sargent MA, Kanisicak O, Yi H, Gao QQ, Rabinowitz JE, Volk T, McNally EM, Molkentin JD. Thrombospondin expression in myofibers stabilizes muscle membranes. eLife 2016; 5. [PMID: 27669143 PMCID: PMC5063588 DOI: 10.7554/elife.17589] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/21/2016] [Indexed: 12/26/2022] Open
Abstract
Skeletal muscle is highly sensitive to mutations in genes that participate in membrane stability and cellular attachment, which often leads to muscular dystrophy. Here we show that Thrombospondin-4 (Thbs4) regulates skeletal muscle integrity and its susceptibility to muscular dystrophy through organization of membrane attachment complexes. Loss of the Thbs4 gene causes spontaneous dystrophic changes with aging and accelerates disease in 2 mouse models of muscular dystrophy, while overexpression of mouse Thbs4 is protective and mitigates dystrophic disease. In the myofiber, Thbs4 selectively enhances vesicular trafficking of dystrophin-glycoprotein and integrin attachment complexes to stabilize the sarcolemma. In agreement, muscle-specific overexpression of Drosophila Tsp or mouse Thbs4 rescues a Drosophila model of muscular dystrophy with augmented membrane residence of βPS integrin. This functional conservation emphasizes the fundamental importance of Thbs' as regulators of cellular attachment and membrane stability and identifies Thbs4 as a potential therapeutic target for muscular dystrophy.
Collapse
Affiliation(s)
- Davy Vanhoutte
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Tobias G Schips
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Jennifer Q Kwong
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Jennifer Davis
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Andoria Tjondrokoesoemo
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Matthew J Brody
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Michelle A Sargent
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Onur Kanisicak
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| | - Hong Yi
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, United States
| | - Quan Q Gao
- Center for Genetic Medicine, Northwestern University, Chicago, United States
| | | | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, United States
| | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, Cincinnati, United States.,Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| |
Collapse
|
12
|
Borrelli N, Ugolini C, Giannini R, Antonelli A, Giordano M, Sensi E, Torregrossa L, Fallahi P, Miccoli P, Basolo F. Role of gene expression profiling in defining indeterminate thyroid nodules in addition to BRAF analysis. Cancer Cytopathol 2016; 124:340-9. [PMID: 26749005 DOI: 10.1002/cncy.21681] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 11/09/2022]
Abstract
Fine-needle aspiration (FNA) is routinely used in the preoperative evaluation of thyroid nodules. However, 15% to 30% of aspirations yield indeterminate cytologic findings. Because the assessment of BRAF mutations seems to improve the diagnostic accuracy, this study evaluated BRAF mutations with Sanger sequencing and real-time methods in 650 consecutive thyroid aspirates. In addition, the expression of a large number of genes involved in basement membrane remodeling, extracellular matrix proteolysis, and cell adhesion was studied in both benign and malignant nodules to identify new diagnostic tools. In this prospective series, despite the use of a very sensitive BRAF mutational testing method, the frequency of a BRAF alteration being identified in indeterminate FNA samples was 3 of 68. Expression analysis revealed several genes that were differentially expressed between benign and malignant nodules (transforming growth factor, cadherin 1, collagen α1, catenin α1, integrin α3, and fibronectin 1 [FN1]), between follicular adenomas and follicular variant of papillary thyroid carcinoma (FN1, laminin γ1, integrin β2, connective tissue growth factor, catenin δ1, and integrin αV), and between BRAF-wild-type and BRAF-mutated papillary thyroid carcinomas (TIMP metallopeptidase inhibitor 1; catenin α1; secreted phosphoprotein 1; FN1; ADAM metallopeptidase with thrombospondin type 1 motif, 1; and selectin L). These data were partially confirmed with real-time polymerase chain reaction analysis and immunohistochemistry. When the cost/benefit ratio of the procedures was taken into account, BRAF mutational testing failed to increase diagnostic accuracy in cytologically indeterminate nodules. However, the additional analysis of the expression of specific molecular markers could have possible utility as a diagnostic tool, although further evidence based on a large series of samples is needed before definitive conclusions can be drawn. Cancer Cytopathol 2016;124:340-9. © 2015 American Cancer Society.
Collapse
Affiliation(s)
- Nicla Borrelli
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Riccardo Giannini
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mirella Giordano
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Elisa Sensi
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Liborio Torregrossa
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paolo Miccoli
- Section of Cytopathology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Fulvio Basolo
- Unit of Pathological Anatomy, Department of Surgical, Medical, and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Sadow PM, Dias-Santagata D, Zheng Z, Lin DT, Le LP, Nucera C. Identification of insertions in PTEN and TP53 in anaplastic thyroid carcinoma with angiogenic brain metastasis. Endocr Relat Cancer 2015; 22:L23-8. [PMID: 26472209 PMCID: PMC4609031 DOI: 10.1530/erc-15-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peter M Sadow
- Department of Pathology, WRN219, Harvard Medical School, Massachusetts General Hospital55 Fruit Street, Boston, Massachusetts, 02114USA Department of Pathology, WRN219, Harvard Medical School, Massachusetts General Hospital55 Fruit Street, Boston, Massachusetts, 02114USA
| | - Dora Dias-Santagata
- Department of Pathology, WRN219, Harvard Medical School, Massachusetts General Hospital55 Fruit Street, Boston, Massachusetts, 02114USA
| | - Zongli Zheng
- Department of Pathology, WRN219, Harvard Medical School, Massachusetts General Hospital55 Fruit Street, Boston, Massachusetts, 02114USA
| | - Derrick T Lin
- Department of Pathology, WRN219, Harvard Medical School, Massachusetts General Hospital55 Fruit Street, Boston, Massachusetts, 02114USA
| | - Long Phi Le
- Department of Pathology, WRN219, Harvard Medical School, Massachusetts General Hospital55 Fruit Street, Boston, Massachusetts, 02114USA
| | - Carmelo Nucera
- Department of Pathology, WRN219, Harvard Medical School, Massachusetts General Hospital55 Fruit Street, Boston, Massachusetts, 02114USA
| |
Collapse
|
14
|
Tsumagari K, Abd Elmageed ZY, Sholl AB, Friedlander P, Abdraboh M, Xing M, Boulares AH, Kandil E. Simultaneous suppression of the MAP kinase and NF-κB pathways provides a robust therapeutic potential for thyroid cancer. Cancer Lett 2015. [PMID: 26208433 DOI: 10.1016/j.canlet.2015.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The MAP kinase and NF-κB signaling pathways play an important role in thyroid cancer tumorigenesis. We aimed to examine the therapeutic potential of dually targeting the two pathways using AZD6244 and Bortezomib in combination. We evaluated their effects on cell proliferation, cell-cycle progression, apoptosis, cell migration assay, and the activation of the MAPK pathway in vitro and the in vivo using tumor size and immunohistochemical changes of Ki67 and ppRB. We found inhibition of cell growth rate by 10%, 20%, and 56% (p <0.05), migration to 55%, 61%, and 29% (p <0.05), and induction of apoptosis to 10%, 15%, and 38% (p <0.05) with AZD6244, Bortezomib, or combination, respectively. Induction of cell cycle arrest occurred only with drug combination. Dual drug treatment in the xenograft model caused a 94% reduction in tumor size (p <0.05) versus 15% with AZD6244 and 34% with Bortezomib (p < 0.05) and also reduced proliferative marker Ki67, and increased pRb dephosphorylation. Our results demonstrate a robust therapeutic potential of combining AZD6244 and Bortezomib as an effective strategy to overcome drug resistance encountered in monotherapy in the treatment of thyroid cancer, strongly supporting clinical trials to further test this strategy.
Collapse
Affiliation(s)
- Koji Tsumagari
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zakaria Y Abd Elmageed
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Andrew B Sholl
- Departments of Pathology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Paul Friedlander
- Departments of Otolaryngology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mohamed Abdraboh
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mingzhao Xing
- Division of Endocrinology and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Hamid Boulares
- The Stanley Scott Cancer Center, Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Emad Kandil
- Departments of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
15
|
Husain A, Hu N, Sadow PM, Nucera C. Expression of angiogenic switch, cachexia and inflammation factors at the crossroad in undifferentiated thyroid carcinoma with BRAF(V600E). Cancer Lett 2015; 380:577-585. [PMID: 26189429 DOI: 10.1016/j.canlet.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/11/2015] [Accepted: 07/13/2015] [Indexed: 02/07/2023]
Abstract
Cachexia is the result of complex metabolic alterations which cause morbidity and mortality in patients with advanced cancers including undifferentiated (anaplastic) thyroid carcinoma (ATC). ATC is a lethal disease with limited therapeutic options and unclear etiology for cachexia. We hypothesize that the BRAF(V600E) oncoprotein triggers microvascular endothelial cell tubule formation (in vitro angiogenesis) by means of factors which play a crucial role in angiogenic switch, inflammation/immune response and cachexia. We use human ATC cells and applied multiplex ELISA assay to screen for and measure angiogenic/cachectic and pro-inflammatory factors in the ATC-derived secretome. We find that vemurafenib anti-BRAF(V600E) therapy significantly reduces secreted VEGFA, VEGFC and IL6 protein levels compared to vehicle-treated ATC cells. As a result, the secretome from vemurafenib-treated ATC cells inhibits microvascular endothelial cell-related in vitro angiogenesis. Furthermore, ATC clinical samples express VEGFA, VEGFC and IL6 proteins. Our results suggest that angiogenic/cachectic and pro-inflammatory/immune response factors could play a crucial role in BRAF(V600E)-positive human ATC aggressiveness. Understanding the extent to which microenvironment-associated angiogenic factors participate in cachexia and cancer metabolism in advanced thyroid cancers will reveal new biomarkers and foster novel therapeutic approaches.
Collapse
Affiliation(s)
- Amjad Husain
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Nina Hu
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Cancer Biology and Angiogenesis, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carmelo Nucera
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA; Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Cancer Biology and Angiogenesis, Cancer Research Institute (CRI), Cancer Center, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Jayachandran A, Anaka M, Prithviraj P, Hudson C, McKeown SJ, Lo PH, Vella LJ, Goding CR, Cebon J, Behren A. Thrombospondin 1 promotes an aggressive phenotype through epithelial-to-mesenchymal transition in human melanoma. Oncotarget 2015; 5:5782-97. [PMID: 25051363 PMCID: PMC4170613 DOI: 10.18632/oncotarget.2164] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), in which epithelial cells loose their polarity and become motile mesenchymal cells, is a determinant of melanoma metastasis. We compared gene expression signatures of mesenchymal-like melanoma cells with those of epithelial-like melanoma cells, and identified Thrombospondin 1 (THBS1) as highly up-regulated in the mesenchymal phenotype. This study investigated whether THBS1, a major physiological activator of transforming growth factor (TGF)-beta, is involved in melanoma EMT-like process. We sought to examine expression patterns in distinct melanoma phenotypes including invasive, de-differentiated, label-retaining and drug resistant populations that are putatively associated with an EMT-like process. Here we show that THBS1 expression and secretion was elevated in melanoma cells exhibiting invasive, drug resistant, label retaining and mesenchymal phenotypes and correlated with reduced expression of genes involved in pigmentation. Elevated THBS1 levels were detected in Vemurafenib resistant melanoma cells and inhibition of THBS1 led to significantly reduced chemoresistance in melanoma cells. Notably, siRNA-mediated silencing of THBS1 and neutralizing antibody to THBS1 reduced invasion in mesenchymal-like melanoma cells, while ectopic THBS1 expression in epithelial-like melanoma cells enhanced invasion. Furthermore, the loss of THBS1 inhibited in vivo motility of melanoma cells within the embryonic chicken neural tube. In addition, we found aberrant THBS1 protein expression in metastatic melanoma tumor biopsies. These results implicate a role for THBS1 in EMT, and hence THBS1 may serve as a novel target for strategies aimed at the treatment of melanoma invasion and drug resistance.
Collapse
Affiliation(s)
- Aparna Jayachandran
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Matthew Anaka
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Prashanth Prithviraj
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Christopher Hudson
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia
| | - Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria, 3010, Australia
| | - Pu-Han Lo
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia
| | - Laura J Vella
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jonathan Cebon
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| | - Andreas Behren
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Cancer Immunobiology Laboratory, Heidelberg, VIC 3084, Australia. Department of Medicine, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|
17
|
Shi X, Liu R, Qu S, Zhu G, Bishop J, Liu X, Sun H, Shan Z, Wang E, Luo Y, Yang X, Zhao J, Du J, El-Naggar AK, Teng W, Xing M. Association of TERT promoter mutation 1,295,228 C>T with BRAF V600E mutation, older patient age, and distant metastasis in anaplastic thyroid cancer. J Clin Endocrinol Metab 2015; 100:E632-7. [PMID: 25584719 PMCID: PMC4399285 DOI: 10.1210/jc.2014-3606] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The aggressive role of TERT promoter mutations has been well established in differentiated thyroid cancer but has not been established in anaplastic thyroid cancer (ATC). RESEARCH DESIGN We tested the mutation status by sequencing genomic tumor DNA and examined its relationship with clinicopathological characteristics of ATC. RESULTS Among 106 American and Chinese ATC samples, TERT 1,295,228 C>T (termed TERT C228T) mutation was found in 37 (34.9%) cases, TERT promoter mutation 1,295,250 C>T was found in four cases (3.8%), and the two mutations were mutually exclusive and collectively found in 41 cases (38.7%). TERT C228T occurred in 28 of 90 (31.1%) wild-type BRAF cases vs nine of 16 (56.3%) BRAF V600E cases, with an odds ratio of 2.85 (95% confidence interval, 0.96-8.42; P = .05). Patient age was 67.6 ± 13.6 vs 61.6 ± 11.4 years in the TERT C228T vs wild-type TERT patients (P = .02), demonstrating an association between TERT C228T and older patient age. This association was also seen within the American cohort. In this cohort, which had more available clinicopathological data, TERT C228T was associated with distant metastasis of the tumor; specifically, distant metastasis occurred in 15 of 18 (83.3%) TERT C228T patients vs eight of 26 (30.8%) wild-type TERT patients, with an odds ratio of 11.25 (95% confidence interval, 2.53-50.08; P = .001). No association was found with patient sex, tumor size, lymph node metastasis, and extrathyroidal invasion of ATC. CONCLUSIONS This is the largest study on the aggressive role of TERT promoter mutations in ATC, demonstrating an association of TERT C228T with BRAF V600E, older patient age, and tumor distant metastasis in ATC.
Collapse
Affiliation(s)
- Xiaoguang Shi
- Laboratory for Cellular and Molecular Thyroid Research (X.S., R.L., G.Z., X.L., M.X.), Division of Endocrinology, Diabetes & Metabolism, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Department of Endocrinology & Metabolism (S.Q.), Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China; Department of Pathology (J.B.), The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287; Jilin Provincial Key Laboratory of Surgical Translational Medicine (H.S.), Department of Thyroid and Parathyroid Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province 130033, China; Department of Pathology (E.W.), The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province 110001, China; Department of Medical Image (Y.L.), Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province 110001, China; Department of Pathology (X.Y.), Shengjing Hospital of China Medical University, Shenyang, Liaoning Province 110004, China; Department of Endocrinology (J.Z.), Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong Province 250021, China; Department of Endocrinology (J.D.), The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province 116011, China; Department of Pathology (A.K.E.-N.), University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; and The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases (X.S., Z.S., W.T.), Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Smith N, Nucera C. Personalized therapy in patients with anaplastic thyroid cancer: targeting genetic and epigenetic alterations. J Clin Endocrinol Metab 2015; 100:35-42. [PMID: 25347569 PMCID: PMC4283016 DOI: 10.1210/jc.2014-2803] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Anaplastic thyroid cancer (ATC) is the most lethal of all thyroid cancers and one of the most aggressive human carcinomas. In the search for effective treatment options, research toward targeted, personalized therapies is proving to be a path with great potential. As we gain a deeper understanding of the genetic (eg, BRAF(V600E), PIK3CA, TP53, hTERT mutations, etc) and epigenetic (eg, histone methylation, histone de-acetylation, microRNA regulatory circuits, etc) alterations driving ATC, we are able to find targets when developing novel therapies to improve the lives of patients. Beyond development, we can look into the effectiveness of already approved targeted therapies (eg, anti-BRAF(V600E) selective inhibitors, tyrosine kinase inhibitors, histone deacetylase inhibitors, inhibitors of DNA methylation, etc) to potentially test in ATC after learning the molecular mechanisms that aid in tumor progression. DESIGN We performed a literature analysis in Medline through the PubMed web site for studies published between 2003 and 2014 using the following main keywords: anaplastic thyroid cancer, genetic and epigenetic alterations. OBJECTIVE Here, we outlined the common pathways that are altered in ATC, including the BRAF(V600E)/ERK1/2-MEK1/2 and PI3K-AKT pathways. We then examined the current research looking into personalized, potential targeted therapies in ATC, mentioning those that have been tentatively advanced into clinical trials and those with the potential to reach that stage. We also reviewed side effects of the current and potential targeted therapies used in patients with advanced thyroid cancer. CONCLUSIONS DNA and RNA next-generation sequencing analysis will be fundamental to unraveling a precise medicine and therapy in patients with ATC. Indeed, given the deep biological heterogeneity/complexity and high histological grade of this malignancy and its tumor microenvironment, personalized therapeutic approaches possibly based on the use of combinatorial targeted therapy will provide a rational approach when finding the optimal way to improve treatments for patients with ATC.
Collapse
Affiliation(s)
- Neal Smith
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Cancer Biology and Angiogenesis, Department of Pathology, Center for Vascular Biology Research, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | | |
Collapse
|
19
|
Ndishabandi D, Duquette C, Billah GEM, Reyes M, Duquette M, Lawler J, Kazerounian S. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro. Discoveries (Craiova) 2014; 2:e31. [PMID: 26273699 PMCID: PMC4532438 DOI: 10.15190/d.2014.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/09/2014] [Accepted: 09/18/2014] [Indexed: 12/20/2022] Open
Abstract
It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression.
Collapse
Affiliation(s)
- Dorothy Ndishabandi
- Department of Pathology, Division of Experimental Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Cameron Duquette
- Department of Pathology, Division of Experimental Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Ghita El-Moatassim Billah
- Department of Pathology, Division of Experimental Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Millys Reyes
- Department of Pathology, Division of Experimental Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Mark Duquette
- Department of Pathology, Division of Experimental Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Jack Lawler
- Department of Pathology, Division of Experimental Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Shideh Kazerounian
- Department of Pediatrics, Division of Genetics, Boston Children’s Hospital and Harvard Medical School Boston, MA
| |
Collapse
|