1
|
Erlandson SC, Rawson S, Osei-Owusu J, Brock KP, Liu X, Paulo JA, Mintseris J, Gygi SP, Marks DS, Cong X, Kruse AC. The relaxin receptor RXFP1 signals through a mechanism of autoinhibition. Nat Chem Biol 2023; 19:1013-1021. [PMID: 37081311 PMCID: PMC10530065 DOI: 10.1038/s41589-023-01321-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023]
Abstract
The relaxin family peptide receptor 1 (RXFP1) is the receptor for relaxin-2, an important regulator of reproductive and cardiovascular physiology. RXFP1 is a multi-domain G protein-coupled receptor (GPCR) with an ectodomain consisting of a low-density lipoprotein receptor class A (LDLa) module and leucine-rich repeats. The mechanism of RXFP1 signal transduction is clearly distinct from that of other GPCRs, but remains very poorly understood. In the present study, we determine the cryo-electron microscopy structure of active-state human RXFP1, bound to a single-chain version of the endogenous agonist relaxin-2 and the heterotrimeric Gs protein. Evolutionary coupling analysis and structure-guided functional experiments reveal that RXFP1 signals through a mechanism of autoinhibition. Our results explain how an unusual GPCR family functions, providing a path to rational drug development targeting the relaxin receptors.
Collapse
Affiliation(s)
- Sarah C Erlandson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Shaun Rawson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - James Osei-Owusu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Kelly P Brock
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xinyue Liu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Julian Mintseris
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Debora S Marks
- Department of Systems Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xiaojing Cong
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Andrew C Kruse
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Klepper A, Kung A, Vazquez SE, Mitchell A, Mann S, Zorn K, Avila-Vargas I, Kari S, Tekeste M, Castro J, Lee B, Duarte M, Khalili M, Yang M, Wolters P, Price J, Perito E, Feng S, Maher JJ, Lai J, Weiler-Normann C, Lohse AW, DeRisi J, Tana M. Novel autoantibody targets identified in patients with autoimmune hepatitis (AIH) by PhIP-Seq reveals pathogenic insights. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291297. [PMID: 37398174 PMCID: PMC10312872 DOI: 10.1101/2023.06.12.23291297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Autoimmune hepatitis (AIH) is a severe autoimmune disease, characterized by the presence of autoantibodies. However, the role of autoantibodies in the pathophysiology of AIH remains uncertain. Here, we employed Phage Immunoprecipitation-Sequencing (PhIP-Seq) to identify novel autoantibodies in AIH. Using these results, a logistic regression classifier was able to predict which patients had AIH, indicating the presence of a distinct humoral immune signature. To further investigate the autoantibodies most specific to AIH, significant peptides were identified relative to a broad array of controls (298 patients with non-alcoholic fatty liver disease (NAFLD), primary biliary cholangitis (PBC), or healthy controls). Top ranked autoreactive targets included SLA, the target of a well-recognized autoantibody in AIH, and disco interacting protein 2 homolog A (DIP2A). The autoreactive fragment of DIP2A shares a 9-amino acid stretch nearly identical to the U27 protein of HHV-6B, a virus found in the liver. In addition, antibodies against peptides derived from the leucine rich repeat N-terminal (LRRNT) domain of the relaxin family peptide receptor 1 (RXFP1) were highly enriched and specific to AIH. The enriched peptides map to a motif adjacent to the receptor binding domain, which is required for RXFP1 signaling. RXFP1 is a G protein-coupled receptor that binds relaxin-2, an anti-fibrogenic molecule shown to reduce the myofibroblastic phenotype of hepatic stellate cells. Eight of nine patients with antibodies to RXFP1 had evidence of advanced fibrosis (F3 or greater). Furthermore, serum from AIH patients positive for anti-RFXP1 antibody was able to significantly inhibit relaxin-2 signaling in the human monocytic cell line, THP1. Depletion of IgG from anti-RXFP1 positive serum abrogated this effect. These data provide supporting evidence that HHV6 plays a role in the development of AIH and point to a potential pathogenic role for anti-RXFP1 IgG in some patients. Identification of anti-RXFP1 in patient serum may enable risk stratification of AIH patients for fibrosis progression and lead to the development of novel strategies for disease intervention.
Collapse
Affiliation(s)
| | - Andrew Kung
- University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Sara E Vazquez
- University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Anthea Mitchell
- University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Sabrina Mann
- University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Kelsey Zorn
- University of California, San Francisco, USA
| | | | - Swathi Kari
- University of California, San Francisco, USA
| | | | | | - Briton Lee
- University of California, San Francisco, USA
| | | | - Mandana Khalili
- University of California, San Francisco, USA
- UCSF Liver Center
| | - Monica Yang
- University of California, San Francisco, USA
| | | | - Jennifer Price
- University of California, San Francisco, USA
- UCSF Liver Center
| | - Emily Perito
- University of California, San Francisco, USA
- UCSF Liver Center
| | - Sandy Feng
- University of California, San Francisco, USA
- UCSF Liver Center
| | | | - Jennifer Lai
- University of California, San Francisco, USA
- UCSF Liver Center
| | | | - Ansgar W Lohse
- Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, DE
| | - Joseph DeRisi
- University of California, San Francisco, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Michele Tana
- University of California, San Francisco, USA
- UCSF Liver Center
| |
Collapse
|
3
|
Duan S, Jiang X, Li J, Fu M, Li Z, Cheng Y, Zhuang Y, Yang M, Xiao W, Ping H, Xie Y, Xie X, Zhang X. The RXFP2-PLC/PKC signaling pathway mediates INSL3-induced regulation of the proliferation, migration and apoptosis of mouse gubernacular cells. Cell Mol Biol Lett 2023; 28:16. [PMID: 36849880 PMCID: PMC9972740 DOI: 10.1186/s11658-023-00433-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Testicular hypoplasia can affect the sexual and reproductive ability in adulthood, and even increase the risk of cancer. Abnormal development of the gubernaculum is one of the important factors of testicular hypoplasia. Therefore, a study of the structure and function of the gubernaculum is an important but neglected new breakthrough point for investigating the normal/abnormal development of the testis. Previous findings showed that Insulin like factor 3 (INSL3) is a key factor regulating the growth of gubernaculum, however, the mechanism by which INSL3 acts on the gubernaculum remains unknown. Therefore, we probed the mechanism associated with INSL3-induced the proliferation, migration, and apoptosis of gubernacular cells in mice. METHODS A culture cell model of neonatal mice gubernaculum is established by INSL3 intervention. We blocked PLC/PKC signaling pathway with U73122 pretreat to investigate the role of the PLC/PKC signaling pathway. The changes of cell proliferation, migration, and apoptosis were detected by molecular biological methods. In addition, the levels of PCNA and F-action were detected by immunofluorescence and western blotting. RESULTS We found that INSL3 can promote the proliferation and migration of gubernacular cells and inhibit their apoptosis, meanwhile, INSL3 significantly up-regulated PLC/PKC protein phosphorylation. However, treatment with the PLC/PKC signaling pathway inhibitor U73122 significantly inhibited these effects of INSL3. Besides, we found that INSL3 could up-regulate the protein expression level of PCNA and F-actin, while the PCNA and F-actin expression was significantly weakened after U73122 pretreatment. CONCLUSIONS This research revealed that INSL3 binding to RXFP2 may up-regulate the expression levels of PCNA and F-actin by activating the PLC/PKC signaling pathway to promote the proliferation and migration of gubernacular cells. It suggests that the RXFP2-PLC/PKC axis may serve as a novel molecular mechanism by which INSL3 regulates growth of the gubernaculum.
Collapse
Affiliation(s)
- Shouxing Duan
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xuewu Jiang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Jianhong Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Maxian Fu
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Zhuo Li
- Department of Pediatric Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), No. 89 Taoyuan Road, Shenzhen, 518052, Guangdong, China
| | - Yiyi Cheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Yangmu Zhuang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Ming Yang
- Department of Pediatric Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Wenfeng Xiao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Shantou University Medical College, No. 69 Dongxiabei Road, Shantou, 515041, Guangdong, China
| | - Hongyan Ping
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China
| | - Yao Xie
- Department of Radiology, Cancer Hospital of Shantou University Medical College, No. 7 Raoping Road, Shantou, 515041, Guangdong, China.
| | - Xiaojun Xie
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Shantou, 515041, Guangdong, China.
| | - Xuan Zhang
- Department of Pediatric Surgery, Pingshan District Maternal and Child Healthcare Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, No. 6 Longxingnan Road, Shenzhen, 518118, Guangdong, China.
| |
Collapse
|
4
|
Lucas C, Sauter KS, Steigert M, Mallet D, Wilmouth J, Olabe J, Plotton I, Morel Y, Aeberli D, Wagner F, Clevers H, Pandey AV, Val P, Roucher-Boulez F, Flück CE. Loss of LGR4/GPR48 causes severe neonatal salt wasting due to disrupted WNT signaling altering adrenal zonation. J Clin Invest 2023; 133:164915. [PMID: 36538378 PMCID: PMC9927937 DOI: 10.1172/jci164915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Disorders of isolated mineralocorticoid deficiency, which cause potentially life-threatening salt-wasting crisis early in life, have been associated with gene variants of aldosterone biosynthesis or resistance; however, in some patients no such variants are found. WNT/β-catenin signaling is crucial for differentiation and maintenance of the aldosterone-producing adrenal zona glomerulosa (zG). Herein, we describe a highly consanguineous family with multiple perinatal deaths and infants presenting at birth with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Whole exome sequencing revealed a homozygous splice variant in the R-SPONDIN receptor LGR4 gene (c.618-1G>C) regulating WNT signaling. The resulting transcripts affected protein function and stability and resulted in loss of Wnt/β-catenin signaling in vitro. The impact of LGR4 inactivation was analyzed by adrenal cortex-specific ablation of Lgr4, using Lgr4fl/fl mice mated with Sf1:Cre mice. Inactivation of Lgr4 within the adrenal cortex in the mouse model caused decreased WNT signaling, aberrant zonation with deficient zG, and reduced aldosterone production. Thus, human LGR4 mutations establish a direct link between LGR4 inactivation and decreased canonical WNT signaling, which results in abnormal zG differentiation and endocrine function. Therefore, variants in WNT signaling and its regulators should systematically be considered in familial hyperreninemic hypoaldosteronism.
Collapse
Affiliation(s)
- Cécily Lucas
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Kay-Sara Sauter
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Michael Steigert
- Department of Pediatrics, Cantonal Hospital Graubuenden, Chur, Switzerland
| | - Delphine Mallet
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - James Wilmouth
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Julie Olabe
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Ingrid Plotton
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Yves Morel
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Centre de Référence Maladies Rares du Développement Génital: du Fœtus à l'Adulte, Filière Maladies Rares Endocriniennes, Bron, France
| | - Daniel Aeberli
- Department of Rheumatology and Clinical Immunology/Allergology and
| | - Franca Wagner
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, Netherlands
| | - Amit V Pandey
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Pierre Val
- Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Florence Roucher-Boulez
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France.,University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Université Clermont Auvergne, CNRS, Inserm, Génétique, Reproduction et Développement, Clermont-Ferrand, France
| | - Christa E Flück
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Speck D, Kleinau G, Meininghaus M, Erbe A, Einfeldt A, Szczepek M, Scheerer P, Pütter V. Expression and Characterization of Relaxin Family Peptide Receptor 1 Variants. Front Pharmacol 2022; 12:826112. [PMID: 35153771 PMCID: PMC8832513 DOI: 10.3389/fphar.2021.826112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
G-protein coupled receptors (GPCR) transduce extracellular stimuli into the cell interior and are thus centrally involved in almost all physiological-neuronal processes. This essential function and association with many diseases or pathological conditions explain why GPCRs are one of the priority targets in medical and pharmacological research, including structure determination. Despite enormous experimental efforts over the last decade, both the expression and purification of these membrane proteins remain elusive. This is attributable to specificities of each GPCR subtype and the finding of necessary experimental in vitro conditions, such as expression in heterologous cell systems or with accessory proteins. One of these specific GPCRs is the leucine-rich repeat domain (LRRD) containing GPCR 7 (LGR7), also termed relaxin family peptide receptor 1 (RXFP1). This receptor is characterized by a large extracellular region of around 400 amino acids constituted by several domains, a rare feature among rhodopsin-like (class A) GPCRs. In the present study, we describe the expression and purification of RXFP1, including the design of various constructs suitable for functional/biophysical studies and structure determination. Based on available sequence information, homology models, and modern biochemical and genetic tools, several receptor variations with different purification tags and fusion proteins were prepared and expressed in Sf9 cells (small-scale), followed by an analytic fluorescence-detection size-exclusion chromatography (F-SEC) to evaluate the constructs. The most promising candidates were expressed and purified on a large-scale, accompanied by ligand binding studies using surface plasmon resonance spectroscopy (SPR) and by determination of signaling capacities. The results may support extended studies on RXFP1 receptor constructs serving as targets for small molecule ligand screening or structural elucidation by protein X-ray crystallography or cryo-electron microscopy.
Collapse
Affiliation(s)
- David Speck
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
| | - Gunnar Kleinau
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
| | - Mark Meininghaus
- Bayer AG, Research and Development, Pharmaceuticals, Wuppertal, Germany
| | - Antje Erbe
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
- NUVISAN ICB GmbH, Berlin, Germany
| | - Alexandra Einfeldt
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
- NUVISAN ICB GmbH, Berlin, Germany
| | - Michal Szczepek
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
| | - Patrick Scheerer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Protein X-ray Crystallography & Signal Transduction, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Patrick Scheerer, ; Vera Pütter,
| | - Vera Pütter
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
- NUVISAN ICB GmbH, Berlin, Germany
- *Correspondence: Patrick Scheerer, ; Vera Pütter,
| |
Collapse
|
6
|
Structural Insights into the Unique Modes of Relaxin-Binding and Tethered-Agonist Mediated Activation of RXFP1 and RXFP2. J Mol Biol 2021; 433:167217. [PMID: 34454945 DOI: 10.1016/j.jmb.2021.167217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/01/2023]
Abstract
Our poor understanding of the mechanism by which the peptide-hormone H2 relaxin activates its G protein coupled receptor, RXFP1 and the related receptor RXFP2, has hindered progress in its therapeutic development. Both receptors possess large ectodomains, which bind H2 relaxin, and contain an N-terminal LDLa module that is essential for receptor signaling and postulated to be a tethered agonist. Here, we show that a conserved motif (GDxxGWxxxF), C-terminal to the LDLa module, is critical for receptor activity. Importantly, this motif adopts different structures in RXFP1 and RXFP2, suggesting distinct activation mechanisms. For RXFP1, the motif is flexible, weakly associates with the LDLa module, and requires H2 relaxin binding to stabilize an active conformation. Conversely, the GDxxGWxxxF motif in RXFP2 is more closely associated with the LDLa module, forming an essential binding interface for H2 relaxin. These differences in the activation mechanism will aid drug development targeting these receptors.
Collapse
|
7
|
The Role of LGR4 (GPR48) in Normal and Cancer Processes. Int J Mol Sci 2021; 22:ijms22094690. [PMID: 33946652 PMCID: PMC8125670 DOI: 10.3390/ijms22094690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeats containing G protein-coupled receptor 4 (LGR4) is a receptor that belongs to the superfamily of G protein-coupled receptors that can be activated by R-spondins (RSPOs), Norrin, circLGR4, and the ligand of the receptor activator of nuclear factor kappa-B (RANKL) ligands to regulate signaling pathways in normal and pathological processes. LGR4 is widely expressed in different tissues where it has multiple functions such as tissue development and maintenance. LGR4 mainly acts through the Wnt/β-catenin pathway to regulate proliferation, survival, and differentiation. In cancer, LGR4 participates in tumor progression, invasion, and metastasis. Furthermore, recent evidence reveals that LGR4 is essential for the regulation of the cancer stem cell population by controlling self-renewal and regulating stem cell properties. This review summarizes the function of LGR4 and its ligands in normal and malignant processes.
Collapse
|
8
|
Ko YJ, Sohn HM, Jang Y, Park M, Kim B, Kim B, Park J, Hyun H, Jeong B, Hong C, Lim W. A novel modified RANKL variant can prevent osteoporosis by acting as a vaccine and an inhibitor. Clin Transl Med 2021; 11:e368. [PMID: 33784004 PMCID: PMC7967917 DOI: 10.1002/ctm2.368] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The discovery of receptor activator of nuclear factor-ĸB ligand (RANKL) as the final effector in the pathogenesis of osteoporosis has led to a better understanding of bone remodeling. When RANKL binds to its receptor (RANK), osteoclastic differentiation and activation are initiated. Herein, we propose a strategy using a novel RANKL variant as a competitive inhibitor for RANKL. The RANKL variant activates LGR4 signaling, which competitively regulates RANK and acts as an immunogen that induces anti-RANKL antibody production. METHODS We modified the RANK-binding site on RANKL using minimal amino acid changes in the RANKL complex and its counterpart receptor RANK and tried to evaluate the inhibitory effects on osteoclastogenesis. RESULTS The novel RANKL variant did not bind RANK in osteoclast progenitor cells, but activated LGR4 through the GSK3-β signaling pathway, thereby suppressing activated T cell cytoplasmic nuclear factor calcineurin-dependent 1 (NFATc1) expression and activity during osteoclastogenesis. Our RANKL variant generated high levels of RANKL-specific antibodies, blocked osteoclastogenesis, and inhibited osteoporosis in ovariectomized mouse models. Generated anti-RANKL antibodies showed a high inhibitory effect on osteoclastogenesis in vivo and in vitro. CONCLUSIONS We observed that the novel RANKL indeed blocks RANKL via LGR4 signaling and generates anti-RANKL antibodies, demonstrating an innovative strategy in the development of general immunotherapy.
Collapse
Affiliation(s)
- Young Jong Ko
- Laboratory of Orthopaedic ResearchChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Orthopaedic SurgeryChosun University HospitalDong‐GuGwangjuRepublic of Korea
| | - Hong Moon Sohn
- Laboratory of Orthopaedic ResearchChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Orthopaedic SurgeryChosun University HospitalDong‐GuGwangjuRepublic of Korea
| | - Yuria Jang
- Laboratory of Orthopaedic ResearchChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Orthopaedic SurgeryChosun University HospitalDong‐GuGwangjuRepublic of Korea
| | - Mineon Park
- Laboratory of Orthopaedic ResearchChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Orthopaedic SurgeryChosun University HospitalDong‐GuGwangjuRepublic of Korea
| | - Bora Kim
- Laboratory of Orthopaedic ResearchChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Orthopaedic SurgeryChosun University HospitalDong‐GuGwangjuRepublic of Korea
| | - Beomchang Kim
- Laboratory of Orthopaedic ResearchChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Orthopaedic SurgeryChosun University HospitalDong‐GuGwangjuRepublic of Korea
| | - Jae‐Il Park
- Korea Basic Science InstituteGwangju Center at Chonnam National UniversityGwangjuRepublic of Korea
| | - Hoon Hyun
- Department of Biomedical Sciences Chonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Byeongseok Jeong
- Department of PhysiologySchool of MedicineChosun UniversityGwangjuRepublic of Korea
| | - Chansik Hong
- Department of PhysiologySchool of MedicineChosun UniversityGwangjuRepublic of Korea
| | - Wonbong Lim
- Laboratory of Orthopaedic ResearchChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Orthopaedic SurgeryChosun University HospitalDong‐GuGwangjuRepublic of Korea
- Department of Premedical ScienceCollege of MedicineChosun UniversityDong‐GuGwangjuRepublic of Korea
| |
Collapse
|
9
|
Chen TY, Li X, Hung CH, Bahudhanapati H, Tan J, Kass DJ, Zhang Y. The relaxin family peptide receptor 1 (RXFP1): An emerging player in human health and disease. Mol Genet Genomic Med 2020; 8:e1194. [PMID: 32100955 PMCID: PMC7196478 DOI: 10.1002/mgg3.1194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Relaxin/relaxin family peptide receptor 1 (RXFP1) signaling is important for both normal physiology and disease. Strong preclinical evidence supports relaxin as a potent antifibrotic molecule. However, relaxin‐based therapy failed in clinical trial in patients with systemic sclerosis. We and others have discovered that aberrant expression of RXFP1 may contribute to the abnormal relaxin/RXFP1 signaling in different diseases. Reduced RXFP1 expression and alternative splicing transcripts with potential functional consequences have been observed in fibrotic tissues. A relative decrease in RXFP1 expression in fibrotic tissues—specifically lung and skin—may explain a potential insensitivity to relaxin. In addition, receptor dimerization also plays important roles in relaxin/RXFP1 signaling. Methods This review describes the tissue specific expression, characteristics of the splicing variants, and homo/heterodimerization of RXFP1 in both normal physiological function and human diseases. We discuss the potential implications of these molecular features for developing therapeutics to restore relaxin/RXFP1 signaling and to harness relaxin's potential antifibrotic effects. Results Relaxin/RXFP1 signaling is important in both normal physiology and in human diseases. Reduced expression of RXFP1 in fibrotic lung and skin tissues surrenders both relaxin/RXFP1 signaling and their responsiveness to exogenous relaxin treatments. Alternative splicing and receptor dimerization are also important in regulating relaxin/RXFP1 signaling. Conclusions Understanding the molecular mechanisms that drive aberrant expression of RXFP1 in disease and the functional roles of alternative splicing and receptor dimerization will provide insight into therapeutic targets that may restore the relaxin responsiveness of fibrotic tissues.
Collapse
Affiliation(s)
- Ting-Yun Chen
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Xiaoyun Li
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ching-Hsia Hung
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Harinath Bahudhanapati
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiangning Tan
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Kass
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine and the Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Lei N, Mellem JE, Brockie PJ, Madsen DM, Maricq AV. NRAP-1 Is a Presynaptically Released NMDA Receptor Auxiliary Protein that Modifies Synaptic Strength. Neuron 2017; 96:1303-1316.e6. [DOI: 10.1016/j.neuron.2017.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/20/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
|
11
|
Sethi A, Bruell S, Patil N, Hossain MA, Scott DJ, Petrie EJ, Bathgate RAD, Gooley PR. The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1. Nat Commun 2016; 7:11344. [PMID: 27088579 PMCID: PMC4837482 DOI: 10.1038/ncomms11344] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/16/2016] [Indexed: 11/20/2022] Open
Abstract
H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1. The mechanism by which relaxin activates the relaxin family peptide receptor-1 is poorly understood. Here, Sethi et al. identify a relaxin binding site in an extracellular linker between the LDLa and LRR domains and propose that relaxin binding stabilizes a helical conformation that leads to receptor activation.
Collapse
Affiliation(s)
- Ashish Sethi
- Department of Biochemistry &Molecular Biology, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Shoni Bruell
- Department of Biochemistry &Molecular Biology, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Nitin Patil
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia.,School of Chemistry, The University of Melbourne, Victoria 3010, Australia
| | - Mohammed Akhter Hossain
- School of Chemistry, The University of Melbourne, Victoria 3010, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Daniel J Scott
- Department of Biochemistry &Molecular Biology, The University of Melbourne, Victoria 3010, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Emma J Petrie
- Department of Biochemistry &Molecular Biology, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | - Ross A D Bathgate
- Department of Biochemistry &Molecular Biology, The University of Melbourne, Victoria 3010, Australia.,Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry &Molecular Biology, The University of Melbourne, Victoria 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|