1
|
Díaz A, Diab M, Mata-Espinosa D, Bini E, D'Attilio L, Bottasso O, Hernández-Pando R, Bay ML, Bongiovanni B. The relationship between host defense peptides and adrenal steroids. An account of reciprocal influences. Cytokine 2023; 168:156229. [PMID: 37244247 DOI: 10.1016/j.cyto.2023.156229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
AIM β-defensins 2 and -3 (HBD-2 and HBD-3) and cathelicidin LL-37 are host defense peptides (HDPs) that play a crucial role in the immune response against mycobacteria. Given our former studies in tuberculosis patients wherein their plasma levels of such peptides correlated with steroid hormone concentrations, we now studied the reciprocal influence of cortisol and/or dehydroepiandrosterone (DHEA) on HDPs biosynthesis and LL-37 on adrenal steroidogenesis. MAIN METHODS Cultures of macrophages derived from the THP-1 line were treated with cortisol (10-6M) and/or DHEA (10-6M and 10-7M) and stimulated with irradiated M. tuberculosis (Mi) or infected M. tuberculosis strain H37Rv to assess cytokine production, HDPs, reactive oxygen species (ROS) and colony forming units. Cultures of NCI-H295-R adrenal line were treated with LL37 (5, 10, and 15 µg/ml) for 24 h to further measure cortisol and DHEA levels together with steroidogenic enzyme transcripts. KEY FINDINGS In macrophages, M. tuberculosis produced an increase of IL-1β, TNFα, IL-6, IL-10, LL-37, HBD-2, and HBD-3 levels, irrespective of DHEA treatment. Adding cortisol to M. tuberculosis-stimulated cultures (with or without DHEA) decreased the amounts of these mediators, compared to only stimulated cultures. Although M. tuberculosis reduced ROS levels, DHEA increased these values in addition to diminishing intracellular mycobacterial growth (no matter cortisol treatment). In turn, studies on adrenal cells showed that LL-37 reduced the production of cortisol and DHEA besides modifying transcripts for some steroidogenic enzymes. SIGNIFICANCE while adrenal steroids seem to influence the production of HDPs, the former compounds are also likely to modulate adrenal biogenesis.
Collapse
Affiliation(s)
- Ariana Díaz
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Magdalena Diab
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina.
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - Estela Bini
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco De Quiroga 15, Tlalpan, México D.F (CP14080), México.
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 570 (S2002LRL), Rosario, Argentina.
| |
Collapse
|
2
|
Sharma JB, Sharma S, Sharma E, Dharmendra S, Singh S. Immune disturbances in female genital tuberculosis and latent genital tuberculosis. Am J Reprod Immunol 2023; 89:e13632. [PMID: 36494901 DOI: 10.1111/aji.13632] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/07/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Female genital tuberculosis (FGTB), an important clinical sub-type of extra-pulmonary tuberculosis (EPTB) is responsible for about 10% cases of infertility in India. Both FGTB and latent genital tuberculosis (LGTB) can cause infertility through blockage of fallopian tubes and through altered uterine endometrial receptivity. AIMS This review tries to elucidates the role of various immune factors in FGTB and LGTB. CONTENT Various immune disturbances are observed in FGTB and LGTB like growth factors and cytokines which inhibit implantation and several inflammatory signaling pathways like mitogen activated protein kinase (MAPK), natural killer (NK) cells, nuclear factor kappa-B (NF-KB), tumor necrosis factor (TNF), and toll like receptors (TLR) signaling are dysregulated. These altered immune factors and pathways may be detected in the endometrial biopsies at the early stages of disease before permanent damage. Prompt and adequate treatment with the four anti-tubercular drugs (rifampicin [R], isoniazid [H], pyrazinamide [Z], and ethambutol [E]) can increase pregnancy rates in some of these women. Assisted reproduction especially in-vitro fertilization and embryo transfer may be required for some women. IMPLICATIONS Inflammatory pathways identified from the gene profiling have enabled development of potential biomarkers for early diagnosis of FGTB. Immunomodulation and novel biotechniques like stem cell transplantation, nanoparticles and host directed therapies are being tried in selected patients of FGTB and LGTB with promising results.
Collapse
Affiliation(s)
- Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sangeeta Sharma
- Department of Paediatrics, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, India
| | - Eshani Sharma
- Department of Medicine, KU School of Medicine, Wichita, Kansas, USA
| | - Sona Dharmendra
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Sheena Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
3
|
Díaz A, D’Attilio L, Penas F, Bongiovanni B, Massa E, Cevey A, Santucci N, Bottasso O, Goren N, Bay ML. Studies on the contribution of PPAR Gamma to tuberculosis physiopathology. Front Cell Infect Microbiol 2023; 13:1067464. [PMID: 37187471 PMCID: PMC10178487 DOI: 10.3389/fcimb.2023.1067464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Tuberculosis (TB) is a major health problem characterized by an immuno-endocrine imbalance: elevated plasma levels of cortisol and pro- and anti-inflammatory mediators, as well as reduced levels of dehydroepiandrosterone. The etiological agent, Mycobacterium tuberculosis (Mtb), is captured by pulmonary macrophages (Mf), whose activation is necessary to cope with the control of Mtb, however, excessive activation of the inflammatory response also leads to tissue damage. Glucocorticoids (GC) are critical elements to counteract the immunoinflammatory reaction, and peroxisome proliferator-activated receptors (PPARs) are also involved in this regard. The primary forms of these receptors are PPARϒ, PPARα, and PPARβ/δ, the former being the most involved in anti-inflammatory responses. In this work, we seek to gain some insight into the contribution of PPARϒ in immuno-endocrine-metabolic interactions by focusing on clinical studies in pulmonary TB patients and in vitro experiments on a Mf cell line. Methods and results We found that TB patients, at the time of diagnosis, showed increased expression of the PPARϒ transcript in their peripheral blood mononuclear cells, positively associated with circulating cortisol and related to disease severity. Given this background, we investigated the expression of PPARϒ (RT-qPCR) in radiation-killed Mtb-stimulated human Mf. The Mtb stimulation of Mf derived from the human line THP1 significantly increased the expression of PPARϒ, while the activation of this receptor by a specific agonist decreased the expression of pro- and anti-inflammatory cytokines (IL-1β and IL-10). As expected, the addition of GC to stimulated cultures reduced IL-1β production, while cortisol treatment together with the PPARϒ agonist lowered the levels of this proinflammatory cytokine in stimulated cultures. The addition of RU486, a glucocorticoid receptor antagonist, only reversed the inhibition produced by the addition of GC. Conclusion The current results provide a stimulating background for further analysis of the interconnection between PPARs and steroid hormones in the context of Mtb infection.
Collapse
Affiliation(s)
- Ariana Díaz
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano D’Attilio
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Federico Penas
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bettina Bongiovanni
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Estefanía Massa
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Agata Cevey
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Santucci
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Oscar Bottasso
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
| | - Nora Goren
- Facultad de Medicina, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Luisa Bay
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET - Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: María Luisa Bay,
| |
Collapse
|
4
|
Charlier P, Bourdin V. Evidence of Cushing's syndrome in a pre-Columbian Mexican statue? ANNALES D'ENDOCRINOLOGIE 2022; 83:475-478. [PMID: 36183806 DOI: 10.1016/j.ando.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 01/03/2023]
Abstract
INTRODUCTION In the absence of skeletons or written narrations, information about diseases in past societies may be acquired from icono-diagnosis. From the observation of a masterpiece presenting pathological features, we tried to make retrospective diagnosis. MATERIAL AND METHOD A pre-Columbian Mexican statuette originating from the Chupicuaro culture and dated 600 BC to 200 AD - conserved in the Louvre Museum in Paris (Section of the quai Branly - Jacques Chirac museum) was examined; it was found to display a huge spinal curvature with excessive dorsal kyphosis and obesity. RESULTS The appearance of the figurine with large head, shortened stature and limbs, may suggest a form of dwarfism; however, many statuettes in the Chupicuaro culture were found displaying large head and relatively short limbs, suggesting that these pictorial features are more of an artistic style. On the contrary, uncommon kyphosis and obesity led us to diagnose a case of either Pott disease associated with neuro-endocrine complications, or of Cushing's disease. CONCLUSION Although icono-diagnosis could have allowed us to contribute to the health mapping of ancient Americas and propose the presence of complicated tuberculosis in central Mexico between 600 BC and 200 AD, we believe "Choupi" portrays here an individual having suffered from hypercortisolism (Cushing's disease). Even though considerations related to cultural and artistic context may constitute limitations to interpretation, iconotopsy/iconodiagnosis are important for a better description of the natural history of diseases, as a complement to morphological analyses of human remains (paleopathology) and laboratory exams (DNA or immunology testing).
Collapse
Affiliation(s)
- Philippe Charlier
- Laboratoire anthropologie, archéologie, biologie (LAAB), université Paris-Saclay (UVSQ), UFR des sciences de la santé, 2, avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France; Direction département de la recherche et de l'enseignement, musée du quai Branly - Jacques Chirac, 222, rue de l'Université, 75007 Paris, France; Fondation Anthropologie, Archéologie, Biologie (FAAB) - Institut de France, Palais de l'Institut, 23 quai de Conti, 75006 Paris, France.
| | - Virginie Bourdin
- Laboratoire anthropologie, archéologie, biologie (LAAB), université Paris-Saclay (UVSQ), UFR des sciences de la santé, 2, avenue de la source de la Bièvre, 78180 Montigny-le-Bretonneux, France; Direction département de la recherche et de l'enseignement, musée du quai Branly - Jacques Chirac, 222, rue de l'Université, 75007 Paris, France.
| |
Collapse
|
5
|
Gallucci G, Díaz A, Fernandez RDV, Bongiovanni B, Imhoff M, Massa E, Santucci N, Bértola D, Lioi S, Bay ML, Bottasso O, D'Attilio L. Differential expression of genes regulated by the glucocorticoid receptor pathway in patients with pulmonary tuberculosis. Life Sci 2022; 301:120614. [PMID: 35526591 DOI: 10.1016/j.lfs.2022.120614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 05/01/2022] [Indexed: 11/25/2022]
Abstract
AIMS Previous studies in TB patients showed an immuno-endocrine imbalance characterized by a disease-severity associated increase in plasma levels of proinflammatory cytokines and glucocorticoids (GCs). To analyze the potential immunomodulatory effect of circulating GCs over peripheral blood mononuclear cells (PBMC) from TB patients, we investigated the expression of positively (anti-inflammatory-related genes ANXA1; FKBP51; GILZ, NFKBIA, and NFKBIB) and negatively (inflammatory genes: IL-6, IL-1β, and IFN-γ) Glucocorticoids Receptors (GR)-regulated genes. Plasma concentrations of cytokines and hormones, together with specific lymphoproliferation were also assessed. MATERIALS AND METHODS Gene expression was quantified by RT-qPCR, specific lymphoproliferation by 3H-thymidine incorporation, whereas plasma cytokines and hormones levels by ELISA. KEY FINDINGS Transcripts of ANXA1, GILZ, NFKBIB, and NFKBIA appeared significantly increased in patients, whereas FKBP51, IL-6, IL-1β, and NF-κB remained unchanged. Upon analyzing according to disease severity, mRNA levels for ANXA1 and NFKBIB were even higher in moderate and severe patients. GILZ was increased in moderate cases, with NFKBIA and IL-1 β being higher in severe ones, who also displayed increased GRβ transcripts. TB patients had reduced plasma DHEA concentrations together with increased pro and anti-inflammatory cytokines (IFN-γ, IL-6, and IL-10) cortisol and cortisol/DHEA ratio, more evident in progressive cases, in whom their PBMC also showed a decreased mycobacterial-driven proliferation. The cortisol/DHEA ratio and GRα expression were positively correlated with GR-regulated genes mainly in moderate patients. SIGNIFICANCE The increased expression of cortisol-regulated anti-inflammatory genes in TB patients-PBMC, predominantly in progressive disease, seems compatible with a relatively insufficient attempt to downregulate the accompanying inflammation.
Collapse
Affiliation(s)
- Georgina Gallucci
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina
| | - Ariana Díaz
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Matilde Imhoff
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Estefanía Massa
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina
| | - Natalia Santucci
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego Bértola
- Servicio de Clínica Médica, Hospital Provincial del Centenario, Rosario, Santa Fe, Argentina
| | - Susana Lioi
- Laboratorio Central, Hospital Provincial del Centenario, Rosario, Argentina
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
6
|
Ponce-Regalado MD, Salazar-Juárez A, Oscar RE, Contis-Montes de Oca A, Hurtado-Alvarado G, Arce-Paredes P, Pérez-Sánchez G, Pavón L, Girón-Pérez MI, Hernández-Pando R, Alvarez-Sánchez ME, Enrique BV. Development of Anxiolytic and Depression-like Behavior in Mice Infected with Mycobacterium lepraemurium. Neuroscience 2022; 493:15-30. [PMID: 35447197 DOI: 10.1016/j.neuroscience.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022]
Abstract
Murine leprosy is a systemic infectious disease of mice caused by Mycobacterium lepraemurium (MLM) in which the central nervous system (CNS) is not infected; nevertheless, diseased animals show measurable cognitive alterations. For this reason, in this study, we explored the neurobehavioral changes in mice chronically infected with MLM. BALB/c mice were infected with MLM, and 120 days later, the alterations in mice were evaluated based on immunologic, histologic, endocrine, neurochemical, and behavioral traits. We found increases in the levels of IL-4 and IL-10 associated with high bacillary loads. We also found increase in the serum levels of corticosterone, epinephrine, and norepinephrine in the adrenal gland, suggesting neuroendocrine deregulation. Mice exhibited depression-like behavior in the tail suspension and forced swimming tests and anxiolytic behavior in the open field and elevated plus maze tests. The neurobehavioral alterations of mice were correlated with the histologic damage in the prefrontal cortex, ventral hippocampus, and amygdala, as well as with a blood-brain barrier disruption in the hippocampus. These results reveal an interrelated response of the neuroimmune-endocrinological axis in unresolved chronic infections that result in neurocognitive deterioration.
Collapse
Affiliation(s)
- M D Ponce-Regalado
- Departamento de Ciencias de la Salud, Centro Universitario de los Altos, Universidad de Guadalajara, Carretera a Yahualica, Km. 7.5 Tepatitlán de Morelos, Jalisco 47600, Mexico
| | - A Salazar-Juárez
- Branch Clinical Research. Laboratory of Molecular Neurobiology and Neurochemistry of Addiction, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - Rojas-Espinosa Oscar
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomás, 11340, Ciudad de México, Mexico.
| | - A Contis-Montes de Oca
- Sección de estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Diaz Miron y Plan de San Luis S/N, Miguel Hidalgo, 11340 Mexico City, Mexico
| | - G Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, Area of Neurosciences, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - P Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Colonia Santo Tomás, 11340, Ciudad de México, Mexico
| | - G Pérez-Sánchez
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - L Pavón
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico
| | - M I Girón-Pérez
- Laboratorio de Inmunotoxicología, Secretaría de Investigación y Posgrado Universidad Autónoma de Nayarit, Boulevard Tepic-Xalisco s/n. Cd, de la Cultura Amado Nervo, C.P. 63000 Tepic, Nayarit, México
| | - R Hernández-Pando
- Experimental Pathology Section, Pathology Department, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Vasco de Quiroga 15, Colonia Belisario Dominguez Seccion XVI, 14080, Deleg. Tlalpan, México City, Mexico
| | - M E Alvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo # 290, Col. Del Valle, CP 03100 México City, México
| | - Becerril-Villanueva Enrique
- Laboratory of Psychoimmunology, National Institute of Psychiatry "Ramón de la Fuente", Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, Mexico.
| |
Collapse
|
7
|
The Role of Thyroid Hormones in the Differential Diagnosis of Tuberculous and Parapneumonic Pleural Effusions. Am J Med Sci 2021; 363:495-501. [PMID: 34843677 DOI: 10.1016/j.amjms.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 06/07/2021] [Accepted: 10/14/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The differential diagnosis of tuberculous pleural effusion (TPE) and parapneumonic pleural effusion (PPE) is challenging due to similar clinical manifestations and body fluid biochemical profiles. Thyroid hormone levels change in response to lymphocyte proliferation in the peripheral blood of patients with mycobacterial infections such as tuberculosis; therefore, this study aimed to investigate the utility of assessing thyroid hormone levels to aid in the differential diagnosis of TPE and PPE. METHODS We measured free triiodothyronine (FT3), free thyroxine (FT4), and thyroid-stimulating hormone (TSH) levels in the pleural effusions of 59 newly admitted patients (32 and 27 with TPE and PPE, respectively). Hormone levels were assessed using an electrochemiluminescence technique, and the diagnostic parameters for tuberculosis were evaluated. Differences in hormone levels between patients with TPE and PPE were assessed by t-tests, and their diagnostic value for a differential diagnosis was evaluated by receiver operating characteristic curve analyses. RESULTS FT3 and FT4 levels in patients with TPE were significantly higher than those in patients with PPE (p < 0.01 and p < 0.05, respectively), whereas TSH expression did not significantly differ between the two groups (p > 0.05). FT3 and FT4 levels showed no correlation with sex or history of smoking, although FT3 levels decreased with age. The highest sensitivity was observed for the quantification of FT3 levels (84.38%). CONCLUSIONS Increased FT3 and FT4 levels could potentially be used for the differential diagnosis of TPE and PPE.
Collapse
|
8
|
Gallucci G, Santucci N, Díaz A, Bongiovanni B, Bértola D, Gardeñez W, Rassetto M, Bay ML, Bottasso O, D’Attilio L. Increased levels of circulating LPS during Tuberculosis prevails in patients with advanced pulmonary involvement. PLoS One 2021; 16:e0257214. [PMID: 34506568 PMCID: PMC8432878 DOI: 10.1371/journal.pone.0257214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/18/2022] Open
Abstract
Our earlier studies in tuberculosis (TB) patients indicate that in those where the process evolves to a larger pulmonary involvement, the immune endocrine response may promote an unfavorable environment. Chronic infectious diseases, and their persistent proinflammatory response, may affect mucosal barriers integrity favoring the translocation of gastrointestinal bacteria, leading to an increase of circulating lipopolysaccharides (LPS). Consequently, we quantified LPS levels in TB patients, with different degrees of pulmonary involvement, and controls (Co) and analyzed the possible relationship between LPS and inflammatory mediators i.e., C reactive protein (CRP), interleukin 6 (IL-6) and Interferon-gamma (IFN-γ), Erythrocyte Sedimentation Rate (ESR), steroid hormones (Cortisol and Dehydroepiandrosterone, DHEA), and inflammatory transcripts from peripheral blood mononuclear cells (IL-1β, IL-6, IFN-γ). LPS was assessed by the Limulus amoebocyte lysate assay and the ELISA technique was used to quantify hormones and cytokines in the plasma samples. Cytokine transcripts from PBMC were evaluated by qRT-PCR. Non-parametric tests were used. LPS levels were increased in TB patients, as did levels of CRP, IL-6, IFN-γ, cortisol and ESR. Severe patients had the highest amounts of circulating LPS; with moderate and severe cases showing much higher levels of CRP, ESR, IL-6, IFN-γ and cortisol/DHEA ratio, as an endocrine imbalance. Only in PBMC from severe cases was mRNA for IL-1β increased. Correlation analysis showed that levels of LPS from severe patients were positively associated with IL-6 and IFN-γ plasma concentrations and with IL-1β transcripts, while IL-6 had a positive correlation with the cortisol/DHEA ratio. The higher levels of circulating LPS during progressive TB may emerge as a contributing factor for the persistence of the greater immune endocrine imbalance distinctive of advanced disease, which might suggest a vicious cycle among LPS, inflammation and endocrine imbalance.
Collapse
Affiliation(s)
- Georgina Gallucci
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
| | - Natalia Santucci
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Ariana Díaz
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
| | - Diego Bértola
- Servicio de Clínica Médica, Hospital Provincial del Centenario, Rosario, Santa Fe, Argentina
| | - Walter Gardeñez
- Servicio de Neumología, Hospital Provincial del Centenario, Rosario, Santa Fe, Argentina
| | - Mauricio Rassetto
- Centro de investigación y biotecnología (CIBIO) Wiener Lab, Rosario, Argentina
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Luciano D’Attilio
- Instituto de Inmunología Clínica y Experimental Rosario (IDICER), CONICET-UNR, Rosario, Santa Fe, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
9
|
McLoughlin KE, Correia CN, Browne JA, Magee DA, Nalpas NC, Rue-Albrecht K, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, MacHugh DE. RNA-Seq Transcriptome Analysis of Peripheral Blood From Cattle Infected With Mycobacterium bovis Across an Experimental Time Course. Front Vet Sci 2021; 8:662002. [PMID: 34124223 PMCID: PMC8193354 DOI: 10.3389/fvets.2021.662002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at −1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the −1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection.
Collapse
Affiliation(s)
- Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Kevin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Adam O Whelan
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Bernardo Villarreal-Ramos
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - H Martin Vordermeier
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Granadier D, Iovino L, Kinsella S, Dudakov JA. Dynamics of thymus function and T cell receptor repertoire breadth in health and disease. Semin Immunopathol 2021; 43:119-134. [PMID: 33608819 PMCID: PMC7894242 DOI: 10.1007/s00281-021-00840-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/26/2022]
Abstract
T cell recognition of unknown antigens relies on the tremendous diversity of the T cell receptor (TCR) repertoire; generation of which can only occur in the thymus. TCR repertoire breadth is thus critical for not only coordinating the adaptive response against pathogens but also for mounting a response against malignancies. However, thymic function is exquisitely sensitive to negative stimuli, which can come in the form of acute insult, such as that caused by stress, infection, or common cancer therapies; or chronic damage such as the progressive decline in thymic function with age. Whether it be prolonged T cell deficiency after hematopoietic cell transplantation (HCT) or constriction in the breadth of the peripheral TCR repertoire with age; these insults result in poor adaptive immune responses. In this review, we will discuss the importance of thymic function for generation of the TCR repertoire and how acute and chronic thymic damage influences immune health. We will also discuss methods that are used to measure thymic function in patients and strategies that have been developed to boost thymic function.
Collapse
Affiliation(s)
- David Granadier
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Lorenzo Iovino
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jarrod A Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
11
|
Muthusami S, Vidya B, Shankar EM, Vadivelu J, Ramachandran I, Stanley JA, Selvamurugan N. The Functional Significance of Endocrine-immune Interactions in Health and Disease. Curr Protein Pept Sci 2021; 21:52-65. [PMID: 31702489 DOI: 10.2174/1389203720666191106113435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023]
Abstract
Hormones are known to influence various body systems that include skeletal, cardiac, digestive, excretory, and immune systems. Emerging investigations suggest the key role played by secretions of endocrine glands in immune cell differentiation, proliferation, activation, and memory attributes of the immune system. The link between steroid hormones such as glucocorticoids and inflammation is widely known. However, the role of peptide hormones and amino acid derivatives such as growth and thyroid hormones, prolactin, dopamine, and thymopoietin in regulating the functioning of the immune system remains unclear. Here, we reviewed the findings pertinent to the functional role of hormone-immune interactions in health and disease and proposed perspective directions for translational research in the field.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari, Coimbatore 641021, Tamil Nadu, India
| | - Balasubramanian Vidya
- Department of Biochemistry, Karpagam Academy of Higher Education, Eachanari, Coimbatore 641021, Tamil Nadu, India
| | - Esaki M Shankar
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, India
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Jone A Stanley
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
12
|
Lara-Espinosa JV, Santana-Martínez RA, Maldonado PD, Zetter M, Becerril-Villanueva E, Pérez-Sánchez G, Pavón L, Mata-Espinosa D, Barrios-Payán J, López-Torres MO, Marquina-Castillo B, Hernández-Pando R. Experimental Pulmonary Tuberculosis in the Absence of Detectable Brain Infection Induces Neuroinflammation and Behavioural Abnormalities in Male BALB/c Mice. Int J Mol Sci 2020; 21:ijms21249483. [PMID: 33322180 PMCID: PMC7763936 DOI: 10.3390/ijms21249483] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/01/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) is a chronic infectious disease in which prolonged, non-resolutive inflammation of the lung may lead to metabolic and neuroendocrine dysfunction. Previous studies have reported that individuals coursing pulmonary TB experience cognitive or behavioural changes; however, the pathogenic substrate of such manifestations have remained unknown. Here, using a mouse model of progressive pulmonary TB, we report that, even in the absence of brain infection, TB is associated with marked increased synthesis of both inflammatory and anti-inflammatory cytokines in discrete brain areas such as the hypothalamus, the hippocampal formation and cerebellum accompanied by substantial changes in the synthesis of neurotransmitters. Moreover, histopathological findings of neurodegeneration and neuronal death were found as infection progressed with activation of p38, JNK and reduction in the BDNF levels. Finally, we perform behavioural analysis in infected mice throughout the infection, and our data show that the cytokine and neurochemical changes were associated with a marked onset of cognitive impairment as well as depressive- and anxiety-like behaviour. Altogether, our results suggest that besides pulmonary damage, TB is accompanied by an extensive neuroinflammatory and neurodegenerative state which explains some of the behavioural abnormalities found in TB patients.
Collapse
Affiliation(s)
- Jacqueline V. Lara-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Ricardo A. Santana-Martínez
- Laboratorio de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, CDMX 04510, Mexico;
| | - Perla D. Maldonado
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, CDMX 14269, Mexico;
| | - Mario Zetter
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Enrique Becerril-Villanueva
- Departamento de Psicoinmunologia, Instituto Nacional de Psiquiatria Ramón de la Fuente, CDMX 14370, Mexico; (E.B.-V.); (G.P.-S.); (L.P.)
| | - Gilberto Pérez-Sánchez
- Departamento de Psicoinmunologia, Instituto Nacional de Psiquiatria Ramón de la Fuente, CDMX 14370, Mexico; (E.B.-V.); (G.P.-S.); (L.P.)
| | - Lenin Pavón
- Departamento de Psicoinmunologia, Instituto Nacional de Psiquiatria Ramón de la Fuente, CDMX 14370, Mexico; (E.B.-V.); (G.P.-S.); (L.P.)
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Manuel O. López-Torres
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
| | - Brenda Marquina-Castillo
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
- Correspondence: (B.M.-C.); (R.H.-P.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, CDMX 14080, Mexico; (J.V.L.-E.); (M.Z.); (D.M.-E.); (J.B.-P.); (M.O.L.-T.)
- Correspondence: (B.M.-C.); (R.H.-P.)
| |
Collapse
|
13
|
Kinsella S, Dudakov JA. When the Damage Is Done: Injury and Repair in Thymus Function. Front Immunol 2020; 11:1745. [PMID: 32903477 PMCID: PMC7435010 DOI: 10.3389/fimmu.2020.01745] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Even though the thymus is exquisitely sensitive to acute insults like infection, shock, or common cancer therapies such as cytoreductive chemo- or radiation-therapy, it also has a remarkable capacity for repair. This phenomenon of endogenous thymic regeneration has been known for longer even than its primary function to generate T cells, however, the underlying mechanisms controlling the process have been largely unstudied. Although there is likely continual thymic involution and regeneration in response to stress and infection in otherwise healthy people, acute and profound thymic damage such as that caused by common cancer cytoreductive therapies or the conditioning regimes as part of hematopoietic cell transplantation (HCT), leads to prolonged T cell deficiency; precipitating high morbidity and mortality from opportunistic infections and may even facilitate cancer relapse. Furthermore, this capacity for regeneration declines with age as a function of thymic involution; which even at steady state leads to reduced capacity to respond to new pathogens, vaccines, and immunotherapy. Consequently, there is a real clinical need for strategies that can boost thymic function and enhance T cell immunity. One approach to the development of such therapies is to exploit the processes of endogenous thymic regeneration into novel pharmacologic strategies to boost T cell reconstitution in clinical settings of immune depletion such as HCT. In this review, we will highlight recent work that has revealed the mechanisms by which the thymus is capable of repairing itself and how this knowledge is being used to develop novel therapies to boost immune function.
Collapse
Affiliation(s)
- Sinéad Kinsella
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Jarrod A. Dudakov
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
14
|
Bongiovanni B, Marín-Luevano S, D'Attilio L, Díaz A, Fernández RDV, Santucci N, Bértola D, Bay ML, Rivas-Santiago B, Bottasso O. Evidence that changes in antimicrobial peptides during tuberculosis are related to disease severity, clinical presentation, specific therapy and levels of immune-endocrine mediators. Cytokine 2019; 126:154913. [PMID: 31731048 DOI: 10.1016/j.cyto.2019.154913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/03/2019] [Accepted: 10/30/2019] [Indexed: 01/19/2023]
Abstract
Given the role of host defense peptides (HDPs) in the defensive response against mycobacteria, we analyzed the circulating levels of LL-37, β-defensin-2 and -3 in newly diagnosed patients with pulmonary (PTB) or pleural tuberculosis (PLTB) in whom measurements of pleural fluids were also performed. Severe PTB patients displayed higher circulating amounts of β-defensin-3, statistically different from controls, further decreasing upon antimycobacterial treatment. LL-37 concentrations appeared within the normal range at diagnosis, but tended to increase during treatment, becoming statistically upon its completion in moderate cases. PLTB patients revealed decreased levels of β-defensin-2 in presence of increased amounts of β-defensin-3 and LL-37; in their plasma or pleural fluids. Considering the immune-endocrine dysregulation of tuberculosis, we also performed correlation analysis detecting positive associations between levels of cortisol, IL-6 and β-defensin-3 in plasma from untreated severe patients as did their dehydroepiandrosterone and LL-37 values. Increased presence of β-defensins, may represent an attempt to improve defensive mechanisms; which also take part in the inflammatory reaction accompanying TB, reinforced by the association with immune-endocrine mediators. The divergent profile of PLTB patients, decreased β-defensin-2 but increased β-defensin-3 and LL-37 levels, suggests a differential role of these HDPs in a situation characterized for its better protective response.
Collapse
Affiliation(s)
- Bettina Bongiovanni
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 570 (S2002LRL), Rosario, Argentina.
| | - Sara Marín-Luevano
- Unidad Médica del Instituto Mexicano del Seguro Social (IMSS), Zacatecas Centro, 98053 Zacatecas, Mexico.
| | - Luciano D'Attilio
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Ariana Díaz
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Rocío Del Valle Fernández
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Natalia Santucci
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Diego Bértola
- Hospital Provincial del Centenario, Urquiza 3101 (S2002KDT), Rosario, Argentina.
| | - María Luisa Bay
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| | - Bruno Rivas-Santiago
- Unidad Médica del Instituto Mexicano del Seguro Social (IMSS), Zacatecas Centro, 98053 Zacatecas, Mexico.
| | - Oscar Bottasso
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER CONICET-UNR), Suipacha 590 (S2002LRL), Rosario, Argentina; Facultad de Cs. Médicas, UNR, Santa Fe 3100 (S2002KTR) Rosario, Argentina.
| |
Collapse
|