1
|
Shepherd AI, James TJ, Gould AAM, Mayes H, Neal R, Shute J, Tipton MJ, Massey H, Saynor ZL, Perissiou M, Montgomery H, Sturgess C, Makaronidis J, Murray AJ, Grocott MPW, Cummings M, Young-Min S, Rennell-Smyth J, McNarry MA, Mackintosh KA, Dent H, Robson SC, Corbett J. Impact of nocturnal hypoxia on glycaemic control, appetite, gut microbiota and inflammation in adults with type 2 diabetes mellitus: A single-blind cross-over trial. J Physiol 2024; 602:5835-5854. [PMID: 38769692 DOI: 10.1113/jp285322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Abstract
High altitude residents have a lower incidence of type 2 diabetes mellitus (T2DM). Therefore, we examined the effect of repeated overnight normobaric hypoxic exposure on glycaemic control, appetite, gut microbiota and inflammation in adults with T2DM. Thirteen adults with T2DM [glycated haemoglobin (HbA1c): 61.1 ± 14.1 mmol mol-1; aged 64.2 ± 9.4 years; four female] completed a single-blind, randomised, sham-controlled, cross-over study for 10 nights, sleeping when exposed to hypoxia (fractional inspired O2 [F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ] = 0.155; ∼2500 m simulated altitude) or normoxic conditions (F I O 2 ${{F}_{{\mathrm{I}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ = 0.209) in a randomised order. Outcome measures included: fasted plasma [glucose]; [hypoxia inducible factor-1α]; [interleukin-6]; [tumour necrosis factor-α]; [interleukin-10]; [heat shock protein 70]; [butyric acid]; peak plasma [glucose] and insulin sensitivity following a 2 h oral glucose tolerance test; body composition; appetite indices ([leptin], [acyl ghrelin], [peptide YY], [glucagon-like peptide-1]); and gut microbiota diversity and abundance [16S rRNA amplicon sequencing]. During intervention periods, accelerometers measured physical activity, sleep duration and efficiency, whereas continuous glucose monitors were used to assess estimated HbA1c and glucose management indicator and time in target range. Overnight hypoxia was not associated with changes in any outcome measure (P > 0.05 with small effect sizes) except fasting insulin sensitivity and gut microbiota alpha diversity, which exhibited trends (P = 0.10; P = 0.08 respectively) for a medium beneficial effect (d = 0.49; d = 0.59 respectively). Ten nights of overnight moderate hypoxic exposure did not significantly affect glycaemic control, gut microbiome, appetite, or inflammation in adults with T2DM. However, the intervention was well tolerated and a medium effect-size for improved insulin sensitivity and reduced alpha diversity warrants further investigation. KEY POINTS: Living at altitude lowers the incidence of type 2 diabetes mellitus (T2DM). Animal studies suggest that exposure to hypoxia may lead to weight loss and suppressed appetite. In a single-blind, randomised sham-controlled, cross-over trial, we assessed the effects of 10 nights of hypoxia (fractional inspired O2 ∼0.155) on glucose homeostasis, appetite, gut microbiota, inflammatory stress ([interleukin-6]; [tumour necrosis factor-α]; [interleukin-10]) and hypoxic stress ([hypoxia inducible factor 1α]; heat shock protein 70]) in 13 adults with T2DM. Appetite and inflammatory markers were unchanged following hypoxic exposure, but an increased insulin sensitivity and reduced gut microbiota alpha diversity were associated with a medium effect-size and statistical trends, which warrant further investigation using a definitive large randomised controlled trial. Hypoxic exposure may represent a viable therapeutic intervention in people with T2DM and particularly those unable or unwilling to exercise because barriers to uptake and adherence may be lower than for other lifestyle interventions (e.g. diet and exercise).
Collapse
Affiliation(s)
- Anthony I Shepherd
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Thomas J James
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Alex A M Gould
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Harry Mayes
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Rebecca Neal
- Department of Rehabilitation and Sport Sciences, Bournemouth University, Poole, UK
| | - Janis Shute
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Michael J Tipton
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Heather Massey
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Zoe L Saynor
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Maria Perissiou
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Hugh Montgomery
- Centre for Human Health and Performance, Dept Medicine, University College London, London, UK
| | - Connie Sturgess
- Centre for Human Health and Performance, Dept Medicine, University College London, London, UK
| | - Janine Makaronidis
- Centre for Obesity Research, University College London, London, UK
- National Institute for Health and Care Research, University College London Hospitals Biomedical Research Centre, London, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael P W Grocott
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton & University of Southampton, Southampton, UK
| | - Michael Cummings
- Diabetes and Endocrinology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Steven Young-Min
- Rheumatology Department, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Janet Rennell-Smyth
- Clinical Health and Rehabilitation Team, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Patient and public involvement member
| | - Melitta A McNarry
- School of Biological Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Kelly A Mackintosh
- School of Biological Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Hannah Dent
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Institute of Life Sciences and Healthcare, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Samuel C Robson
- School of Pharmacy and Biomedical Sciences, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
- Applied Sports, Technology, Exercise and Medicine (A-STEM) Research Centre, School of Sport and Exercise Sciences, Swansea University, Swansea, UK
- Institute of Life Sciences and Healthcare, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Jo Corbett
- Extreme Environments Laboratory, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| |
Collapse
|
2
|
Xiong J, Xu Y, Wang N, Wang S, Zhang Y, Lu S, Zhang X, Liang X, Liu C, Jiang Q, Xu J, Qian Q, Zhou P, Yin L, Liu F, Chen S, Yin S, Liu J. Obstructive Sleep Apnea Syndrome Exacerbates NASH Progression via Selective Autophagy-Mediated Eepd1 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405955. [PMID: 38924647 PMCID: PMC11425227 DOI: 10.1002/advs.202405955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS), characterized by chronic intermittent hypoxia (CIH), is an independent risk factor for aggravating non-alcoholic steatohepatitis (NASH). The prevailing mouse model employed in CIH research is inadequate for the comprehensive exploration of the impact of CIH on NASH development due to reduced food intake observed in CIH-exposed mice, which deviates from human responses. To address this issue, a pair-feeding investigation with CIH-exposed and normoxia-exposed mice is conducted. It is revealed that CIH exposure aggravates DNA damage, leading to hepatic fibrosis and inflammation. The analysis of genome-wide association study (GWAS) data also discloses the association between Eepd1, a DNA repair enzyme, and OSAS. Furthermore, it is revealed that CIH triggered selective autophagy, leading to the autophagic degradation of Eepd1, thereby exacerbating DNA damage in hepatocytes. Notably, Eepd1 liver-specific knockout mice exhibit aggravated hepatic DNA damage and further progression of NASH. To identify a therapeutic approach for CIH-induced NASH, a drug screening is conducted and it is found that Retigabine dihydrochloride suppresses CIH-mediated Eepd1 degradation, leading to alleviated DNA damage in hepatocytes. These findings imply that targeting CIH-mediated Eepd1 degradation can be an adjunctive approach in the treatment of NASH exacerbated by OSAS.
Collapse
Affiliation(s)
- Jie Xiong
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Ying Xu
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Ning Wang
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Shengming Wang
- Department of Otolaryngology Head and Neck Surgery & ShanghaiKey Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Yao Zhang
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Sijia Lu
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery & ShanghaiKey Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | | | - Chuchu Liu
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Quanxin Jiang
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Junting Xu
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Qiqi Qian
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Peihui Zhou
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Limin Yin
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery & ShanghaiKey Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Suzhen Chen
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & ShanghaiKey Laboratory of Sleep Disordered Breathing & Otolaryngology Institute of Shanghai Jiao Tong UniversityShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| | - Junli Liu
- Shanghai Diabetes InstituteDepartment of Endocrinology and MetabolismShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233China
| |
Collapse
|
3
|
Midha AD, Zhou Y, Queliconi BB, Barrios AM, Haribowo AG, Chew BTL, Fong COY, Blecha JE, VanBrocklin H, Seo Y, Jain IH. Organ-specific fuel rewiring in acute and chronic hypoxia redistributes glucose and fatty acid metabolism. Cell Metab 2023; 35:504-516.e5. [PMID: 36889284 PMCID: PMC10077660 DOI: 10.1016/j.cmet.2023.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/20/2022] [Accepted: 02/08/2023] [Indexed: 03/09/2023]
Abstract
Oxygen deprivation can be detrimental. However, chronic hypoxia is also associated with decreased incidence of metabolic syndrome and cardiovascular disease in high-altitude populations. Previously, hypoxic fuel rewiring has primarily been studied in immortalized cells. Here, we describe how systemic hypoxia rewires fuel metabolism to optimize whole-body adaptation. Acclimatization to hypoxia coincided with dramatically lower blood glucose and adiposity. Using in vivo fuel uptake and flux measurements, we found that organs partitioned fuels differently during hypoxia adaption. Acutely, most organs increased glucose uptake and suppressed aerobic glucose oxidation, consistent with previous in vitro investigations. In contrast, brown adipose tissue and skeletal muscle became "glucose savers," suppressing glucose uptake by 3-5-fold. Interestingly, chronic hypoxia produced distinct patterns: the heart relied increasingly on glucose oxidation, and unexpectedly, the brain, kidney, and liver increased fatty acid uptake and oxidation. Hypoxia-induced metabolic plasticity carries therapeutic implications for chronic metabolic diseases and acute hypoxic injuries.
Collapse
Affiliation(s)
- Ayush D Midha
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA; Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuyin Zhou
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bruno B Queliconi
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alec M Barrios
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Augustinus G Haribowo
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brandon T L Chew
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cyril O Y Fong
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Joseph E Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Henry VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Isha H Jain
- Gladstone Institutes, San Francisco, CA 94158, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
4
|
Leutner M, Butylina M, Matzhold C, Klimek P, Cuhaj C, Bellach L, Baumgartner-Parzer S, Reiter B, Preindl K, Kautzky A, Stimpfl T, Thurner S, Pietschmann P, Fürnsinn C, Kautzky-Willer A. Simvastatin therapy in higher dosages deteriorates bone quality: Consistent evidence from population-wide patient data and interventional mouse studies. Biomed Pharmacother 2023; 158:114089. [PMID: 36538862 DOI: 10.1016/j.biopha.2022.114089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Combining mouse experiments with big data analysis of the Austrian population, we investigated the association between high-dose statin treatment and bone quality. METHODS The bone microarchitecture of the femur and vertebral body L4 was measured in male and ovariectomized female mice on a high-fat diet containing simvastatin (1.2 g/kg). A sex-specific matched big data analysis of Austrian health insurance claims using multiple logistic regression models was conducted (simvastatin 60-80 mg/day vs. controls; males: n = 138,666; females: n = 155,055). RESULTS High-dose simvastatin impaired bone quality in male and ovariectomized mice. In the trabecular femur, simvastatin reduced bone volume (µm3: ♂, 213 ± 15 vs. 131 ± 7, p < 0.0001; ♀, 66 ± 7 vs. 44 ± 5, p = 0.02) and trabecular number (1/mm: ♂, 1.88 ± 0.09 vs. 1.27 ± 0.06, p < 0.0001; ♀, 0.60 ± 0.05 vs. 0.43 ± 0.04, p = 0.01). In the cortical femur, bone volume (mm3: ♂, 1.44 ± 0.03 vs. 1.34 ± 0.03, p = 0.009; ♀, 1.33 ± 0.03 vs. 1.12 ± 0.03, p = 0.0002) and cortical thickness were impaired (µm: ♂, 211 ± 4 vs. 189 ± 4, p = 0.0004; ♀, 193 ± 3 vs. 169 ± 3, p < 0.0001). Similar impairments were found in vertebral body L4. Simvastatin-induced changes in weight or glucose metabolism were excluded as mediators of deteriorations in bone quality. Results from mice were supported by a matched cohort analysis showing an association between high-dose simvastatin and increased risk of osteoporosis in patients (♂, OR: 5.91, CI: 3.17-10.99, p < 0.001; ♀, OR: 4.16, CI: 2.92-5.92, p < 0.001). CONCLUSION High-dose simvastatin dramatically reduces bone quality in obese male and ovariectomized female mice, suggesting that direct drug action accounts for the association between high dosage and increased risk of osteoporosis as observed in comparable human cohorts. The underlying pathophysiological mechanisms behind this relationship are presently unknown and require further investigation.
Collapse
Affiliation(s)
- Michael Leutner
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Maria Butylina
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Caspar Matzhold
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria
| | - Peter Klimek
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria
| | - Carina Cuhaj
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Luise Bellach
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Birgit Reiter
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Karin Preindl
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria
| | - Alexander Kautzky
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Thomas Stimpfl
- Joint Metabolome Facility, University and Medical University of Vienna, Vienna, Austria; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Thurner
- Section for Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Austria; Complexity Science Hub Vienna, Josefstaedter Straße 39, 1080 Vienna, Austria; Santa Fe Institute, Santa Fe, NM 85701, USA
| | - Peter Pietschmann
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Clemens Fürnsinn
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | - Alexandra Kautzky-Willer
- Department of Internal Medicine III, Clinical Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; Gender Institute, A-3571 Gars am Kamp, Austria.
| |
Collapse
|
5
|
Kaplanian M, Philippe C, Eid SA, Hackl MT, Metz M, Beghini M, Luca AC, Kautzky-Willer A, Scherer T, Fürnsinn C. Deciphering metformin action in obese mice: A critical re-evaluation of established protocols. Metabolism 2022; 128:154956. [PMID: 34953917 DOI: 10.1016/j.metabol.2021.154956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/25/2021] [Accepted: 12/11/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND AND PURPOSE Despite extensive efforts and a plethora of suggested targets and pathways, the mechanism via which metformin lowers blood glucose remains obscure. Obstacles that hamper progress in understanding metformin action include unexplained discrepancies between preclinical models and patients. PROCEDURES We treated obese male C57BL/6J mice fed high fat diet with metformin provided in the form of a single dose, daily intraperitoneal injections, admixture to drinking water, or continuous infusion via intraperitoneal minipumps. RESULTS The results suggest several superimposed components, via which metformin acts on blood glucose. These include (i) marked glucose lowering shortly after dosing, which fades rapidly with the decrease in metformin concentrations in plasma and liver, but could, at least to a major extent, rely on the mechanism also accounting for metformin's therapeutic action in humans; (ii) indirect action via reduced weight gain, which might be responsible for glucose lowering observed in many previous rodent studies; and (iii) deterioration of glucose homeostasis by prolonged treatment that can be unmasked by avoidance of dosing shortly before measuring blood glucose in combination with exclusion of weight-related actions via restricted feeding of the control mice. CONCLUSIONS Our work raises the question whether elucidation of metformin's anti-diabetic mechanism(s) in rodent experiments may in the past have been hampered by failure to mimic clinical circumstances, as caused by insufficient consideration of pharmacokinetics and multiplicity of involved actions.
Collapse
Affiliation(s)
- Mairam Kaplanian
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Sameer Abu Eid
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Martina T Hackl
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Matthäus Metz
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Marianna Beghini
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Andreea C Luca
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology & Metabolism, Department of Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Chen CY, Chou CC, Lin KX, Mündel T, Chen MT, Liao YH, Tsai SC. A Sports Nutrition Perspective on the Impacts of Hypoxic High-Intensity Interval Training (HIIT) on Appetite Regulatory Mechanisms: A Narrative Review of the Current Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031736. [PMID: 35162760 PMCID: PMC8835478 DOI: 10.3390/ijerph19031736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 01/11/2023]
Abstract
High-intensity interval training (HIIT) and low-oxygen exposure may inhibit the secretion of appetite-stimulating hormones, suppress appetite, and inhibit dietary intake. Physiological changes affecting appetite are frequent and include appetite hormone (ghrelin, leptin, PYY, and GLP-1) effects and the subjective loss of appetite, resulting in nutritional deficiencies. This paper is a narrative review of the literature to verify the HIIT effect on appetite regulation mechanisms and discusses the possible relationship between appetite effects and the need for high-intensity exercise training in a hypoxic environment. We searched MEDLINE/PubMed and the Web of Science databases, as well as English articles (gray literature by Google Scholar for English articles) through Google Scholar, and the searched studies primarily focused on the acute effects of exercise and hypoxic environmental factors on appetite, related hormones, and energy intake. In a general normoxic environment, regular exercise habits may have accustomed the athlete to intense training and, therefore, no changes occurred in their subjective appetite, but there is a significant effect on the appetite hormones. The higher the exercise intensity and the longer the duration, the more likely exercise is to cause exercise-induced appetite loss and changes in appetite hormones. It has not been clear whether performing HIIT in a hypoxic environment may interfere with the exerciser’s diet or the nutritional supplement intake as it suppresses appetite, which, in turn, affects and interferes with the recovery efficiency after exercise. Although appetite-regulatory hormones, the subjective appetite, and energy intake may be affected by exercise, such as hypoxia or hypoxic exercise, we believe that energy intake should be the main observable indicator in future studies on environmental and exercise interventions.
Collapse
Affiliation(s)
- Chung-Yu Chen
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 111, Taiwan;
| | - Chun-Chung Chou
- Physical Education Office, National Taipei University of Technology, Taipei City 106, Taiwan;
| | - Ke-Xun Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan;
| | - Toby Mündel
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North 4442, New Zealand;
| | - Mu-Tsung Chen
- Department of Food and Beverage Management, Shih Chien University, Taipei City 104, Taiwan;
| | - Yi-Hung Liao
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei City 112, Taiwan;
- Correspondence: (Y.-H.L.); (S.-C.T.)
| | - Shiow-Chwen Tsai
- Institute of Sports Sciences, University of Taipei, Taipei City 111, Taiwan
- Correspondence: (Y.-H.L.); (S.-C.T.)
| |
Collapse
|
7
|
Metabolomic Analysis of Carbohydrate and Amino Acid Changes Induced by Hypoxia in Naked Mole-Rat Brain and Liver. Metabolites 2022; 12:metabo12010056. [PMID: 35050178 PMCID: PMC8779284 DOI: 10.3390/metabo12010056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
Hypoxia poses a major physiological challenge for mammals and has significant impacts on cellular and systemic metabolism. As with many other small rodents, naked mole-rats (NMRs; Heterocephalus glaber), who are among the most hypoxia-tolerant mammals, respond to hypoxia by supressing energy demand (i.e., through a reduction in metabolic rate mediated by a variety of cell- and tissue-level strategies), and altering metabolic fuel use to rely primarily on carbohydrates. However, little is known regarding specific metabolite changes that underlie these responses. We hypothesized that NMR tissues utilize multiple strategies in responding to acute hypoxia, including the modulation of signalling pathways to reduce anabolism and reprogram carbohydrate metabolism. To address this question, we evaluated changes of 64 metabolites in NMR brain and liver following in vivo hypoxia exposure (7% O2, 4 h). We also examined changes in matched tissues from similarly treated hypoxia-intolerant mice. We report that, following exposure to in vivo hypoxia: (1) phenylalanine, tyrosine and tryptophan anabolism are supressed both in NMR brain and liver; (2) carbohydrate metabolism is reprogramed in NMR brain and liver, but in a divergent manner; (3) redox state is significantly altered in NMR brain; and (4) the AMP/ATP ratio is elevated in liver. Overall, our results suggest that hypoxia induces significant metabolic remodelling in NMR brain and liver via alterations of multiple metabolic pathways.
Collapse
|
8
|
Vincent SG, Fisher JT. In vivo cardiopulmonary impact of skeletal M 3Dq DREADD expression: a pilot study. J Comp Physiol B 2021; 191:1059-1070. [PMID: 34272586 PMCID: PMC8572194 DOI: 10.1007/s00360-021-01387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/23/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
The muscarinic M3 receptor (M3R) is implicated in cardiopulmonary control and many other peripheral physiologic functions. Previous observations report mortality in mice expressing a Gq-linked designer G-protein coupled receptor (Dq) selectively in striated muscle, while M3Dq DREADD (Designer Receptor Exclusively Activated by Designer Drug), selectively expressed in skeletal muscle (SKM) impacts glucose metabolism. We investigated whether activation of SKM M3Dq impacts cardiopulmonary function. Heart rate (HR), body temperature (Tb) and locomotor activity (ACT) were measured in 4 conscious, chronically instrumented M3Dq DREADD mice and 4 wildtype controls. Circadian values of HR, BT and ACT were not different between genotypes (p > 0.05). Activation of the M3Dq DREADD by clozapine N-oxide (CNO; 0.1 mg/kg) resulted in: a significant drop in heart rate, 2 h after injection, compared with a time-matched baseline control period from the same animals (460 ± 28 vs. 532 ± 6, p < 0.05), significantly lower ACT compared to the baseline control (p < 0.05) and reduced pulmonary minute ventilation compared to pre-CNO control (p < 0.05). M3Dq DREADD activation did not cause bronchoconstriction (separate protocol), however, there was a concomitant reduction in HR, Tb and ventilation, accompanied by cardiac arrhythmias. We speculate that reductions in Tb, HR and ventilation reflect a mechanistic link between SKM Gq signaling and the metabolic responses associated with the initiation of torpor. Supported by the Canadian Institutes of Health Research (CIHR MOP-81211).
Collapse
Affiliation(s)
- Sandra G. Vincent
- Department of Biomedical and Molecular Sciences and Division of Respirology, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6 Canada
| | - John T. Fisher
- Department of Biomedical and Molecular Sciences and Division of Respirology, Department of Medicine, Queen’s University, Kingston, ON K7L 3N6 Canada
| |
Collapse
|