1
|
Ali BM, El-Abhar HS, Mohamed G, Nassar HR, Aliedin N, Sharaky M, Shouman SA, Kamel M. A study of the role of androgen receptor and androgen receptor variant 7 in TNBC patients and the effect of their targeting by Enzalutamide and EPI-001 in MDA-MB-231. J Steroid Biochem Mol Biol 2025; 245:106636. [PMID: 39536950 DOI: 10.1016/j.jsbmb.2024.106636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The lack of targeted therapy for triple-negative breast cancer (TNBC) is among the mainsprings of its poor prognosis. This study aimed to elucidate the role of the androgen receptor (AR) and its splice variant 7 (ARv7) in TNBC patients. Further, the molecular impact of their blockers, Enzalutamide and EPI-001, on the TNBC cell line MDA-MB-231 was investigated. Thereby, immunohistochemical expression of AR/ARv7 was assessed for TNBC Egyptian patients. Moreover, bioinformatics analysis of AR/ARv7 RNA status was carried out on TNBC patients from The Cancer Genome Atlas Breast Carcinoma project (TCGA-BRCA). Data from both groups was correlated with patients' clinicopathological features. Besides, scratch wound healing assay and ELISA were employed to assess the effect of AR/ARv7 blockers on several metastasis markers in MDA-MB-231 cell line. In the Egyptian-TNBC patients, AR expression was associated with worse 7-year DFS (40.6 ± 18.6 %). In addition, ARv7 showed cytoplasmic and nuclear patterns, and both cytoplasmic and nuclear ARv7+ patients demonstrated a worse 7-year DFS (22.7 ± 17.7 % and 20 ± 17.9 %) and overall survival (63.6 ± 14.5 % and 40 ± 21.8 %). Importantly, 80 % of the nuclear ARv7+ patients developed distant metastasis. The data of the TCGA-TNBC patients showed a tendency for poor outcomes in the high ARv7-expressing patients. Molecularly, in MDA-MB-231, both inhibitors modulated metastasis and epithelial to mesenchymal transition (EMT) markers ROCK1, ROCK2, c-Myc, E-cadherin and N-cadherin, with EPI-001 downregulating NF-ĸB level as well. We concluded that ARv7 indicated poor prognosis in the studied cohorts and that blocking of AR/ARv7 abated metastasis and key regulators of EMT in MDA-MB-231, at least in part by targeting ROCK/NF-ĸB/c-Myc axis.
Collapse
Affiliation(s)
- Belal M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Ministry of Health and Population, Egypt.
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt.
| | - Ghada Mohamed
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Hanan R Nassar
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Nelly Aliedin
- Department of Medical Statistics Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Marwa Sharaky
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Samia A Shouman
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Marwa Kamel
- Department of Cancer Biology, Unit of Pharmacology and Experimental Therapeutics, National Cancer Institute, Cairo University, Cairo, Egypt.
| |
Collapse
|
2
|
Xu L, Xu P, Wang J, Ji H, Zhang L, Tang Z. Advancements in clinical research and emerging therapies for triple-negative breast cancer treatment. Eur J Pharmacol 2024; 988:177202. [PMID: 39675457 DOI: 10.1016/j.ejphar.2024.177202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/30/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
Triple-negative breast cancer (TNBC), defined by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 (HER2) expression, is acknowledged as the most aggressive form of breast cancer (BC), comprising 15%-20% of all primary cases. Despite the prevalence of TNBC, effective and well-tolerated targeted therapies remain limited, with chemotherapy continuing to be the mainstay of treatment. However, the horizon is brightened by recent advancements in immunotherapy and antibody-drug conjugates (ADCs), which have garnered the U.S. Food and Drug Administration (FDA) approval for various stages of TNBC. Poly (ADP-ribose) polymerase inhibitors (PARPi), particularly for TNBC with BRCA mutations, present a promising avenue, albeit with the challenge of resistance that must be addressed. The success of phosphoinositide-3 kinase (PI3K) pathway inhibitors in hormone receptor (HR)-positive BC suggests potential applicability in TNBC, spurring optimism within the research community. This review endeavors to offer a comprehensive synthesis of both established and cutting-edge targeted therapies for TNBC. We delve into the specifics of PARPi, androgen receptor (AR) inhibitors, Cancer stem cells (CSCs), PI3K/Protein Kinase B (AKT)/mammalian target of rapamycin (mTOR), the transforming growth factor-beta (TGF-β), Ntoch, Wnt/β-catenin, hedgehog (Hh) pathway inhibitors, Epigenetic target-mediated drug delivery, ADCs, immune checkpoint inhibitors (ICIs)and novel immunotherapeutic solutions, contextualizing TNBC within current treatment paradigms. By elucidating the mechanisms of these drugs and their prospective clinical applications, we aim to shed light on the challenges and underscore the beacon of hope that translational research and innovative therapies represent for the oncology field.
Collapse
Affiliation(s)
- Lili Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Pengtao Xu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Jingsong Wang
- Department of Pharmacy, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, China
| | - Hui Ji
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Lin Zhang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, China.
| |
Collapse
|
3
|
Eugene-Osoikhia TT, Odozi NW, Yeye EO, Isiaka M, Oladosu IA. In-silico study of novel dimeric flavonoid (OC251FR2) isolated from the seeds of Garcinia kola Heckel ( Clusiaceae) against alpha estrogen receptor (ER-α) of breast cancer. In Silico Pharmacol 2024; 12:108. [PMID: 39569035 PMCID: PMC11573959 DOI: 10.1007/s40203-024-00282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Estrogen hormone dependence accounts for a major cause in the incidence of women breast cancer. ER-α is the major ER subtype in the mammary epithelium and plays a critical role in breast cancer progression. Tamoxifen (1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2- diphenylbut-1(Z)-ene) is a nonsteroidal antiestrogen prodrug which formed pharmacologically active metabolite, 4-hydroxytamoxifen, largely used for endocrine therapy in pre and postmenopausal women with ER-positive breast cancer. However, long term treatment with tamoxifen results in acquires resistance and high probability of disease recurring, hence the need for an alternative breast cancer drug. In silico approach was used to investigate the inhibitory activities of a novel dimeric flavanonol OC251FR2 (3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)-3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) isolated from the chloroform fraction of Garcinia kola, against alpha Estrogen receptor (ER-α); a major contributor to the growth of breast cancer. The docking was conducted using Maestro module 13.5 to obtained the ER-α PDB (5W9C) from NCBI. The OC251FR2 was docked using ligprep module with 4-hydroxytamoxifen being the reference drug. The qikpro was used to investigate the drug-likeliness while ligand docking and induced fit docking were used to investigate the interaction and binding affinity of the ligands with the active sites of the PDB. The result shows that the isolated OC251FR2 with docking score value of -6.214 interact more with amino acids in the active sites via H-bond, pi-pi interaction than the reference drug 4-Hydroxytamoxifen with a docking score value of -5.289. The drug-likeliness determined by qikpro shows that OC251FR2 violated three of the Lipinski rules of 5, and also have percent oral absorption. The quantum mechanics values show that OC251FR2 have similar properties comparable to the reference drug 4-hydroxytamoxifen. Hence, can serve as potential lead against alpha Estrogen receptor (ER-α). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00282-5.
Collapse
Affiliation(s)
| | - Nnenna W Odozi
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Emmanuel O Yeye
- Department of Basic Sciences, Adeleke University, Ede, Osun State Nigeria
| | - Mohammed Isiaka
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Ibrahim A Oladosu
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
4
|
Fu H, Han X, Guo W, Zhao X, Yu C, Zhao W, Feng S, Wang J, Zhang Z, Lei K, Li M, Wang T. Cystathionine-γ-lyase contributes to tamoxifen resistance, and the compound I194496 alleviates this effect by inhibiting the PPARγ/ACSL1/STAT3 signalling pathway in oestrogen receptor-positive breast cancer. Sci Rep 2024; 14:22988. [PMID: 39362925 PMCID: PMC11449925 DOI: 10.1038/s41598-024-71962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Tamoxifen (TAM) resistance is a major challenge in treating oestrogen receptor-positive (ER+) breast cancers. It is possible that the H2S synthase cystathionine-γ-lyase (CSE), which has been previously shown to promote tumour growth and metastasis in other cancer cells, is involved in this resistance. Therefore, we investigated CSE's role and potential mechanisms in TAM-resistant breast cancer cells. First, we examined the effect of CSE expression on TAM sensitivity and resistance in MCF7 (breast cancer) cells. The findings revealed that CSE was directly associated with TAM sensitivity and involved in TAM resistance in ER+ breast cancer cells, indicating that it may be useful as a biomarker. Next, we wanted to determine the molecular mechanism of CSE's role in TAM resistance. Using cell migration, co-immunoprecipitation, western blotting, and cell viability assays, we determined that the CSE/H2S system can affect the expression of PPARγ by promoting the sulfhydrylation of PPARγ, which regulates the transcriptional activity of ACSL1. ACSL1, in turn, influences STAT3 activation by affecting the phosphorylation, palmitoylation and dimerization of STAT3, ultimately leading to the development of TAM resistance in breast cancer. Finally, we examined the effect of CSE inhibitors on reducing drug resistance to determine whether CSE may be used as a biomarker of TAM resistance. We observed that the novel CSE inhibitor I194496 can reverse TAM resistance in TAM-resistant breast cancer via targeting the PPARγ/ACSL1/STAT3 signalling pathway. Overall, our data indicate that CSE may serve as a biomarker of TAM resistance and that the CSE inhibitor I194496 is a promising candidate for combating TAM resistance.
Collapse
Affiliation(s)
- Han Fu
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Xue Han
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Wenqing Guo
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Xuening Zhao
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Chunxue Yu
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Wei Zhao
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Shasha Feng
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Jian Wang
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Zhenshuai Zhang
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China
| | - Kaijian Lei
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China.
| | - Ming Li
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China.
| | - Tianxiao Wang
- School of Pharmacy, Henan University, North Part of Jinming Road, Kaifeng, 475004, Henan, People's Republic of China.
| |
Collapse
|
5
|
Posani SH, Gillis NE, Lange CA. Glucocorticoid receptors orchestrate a convergence of host and cellular stress signals in triple negative breast cancer. J Steroid Biochem Mol Biol 2024; 243:106575. [PMID: 38950871 PMCID: PMC11344665 DOI: 10.1016/j.jsbmb.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the nuclear steroid receptors that bind estrogens (ER) and progestogens (PRs) and does not exhibit HER2 (Human epidermal growth factor 2) receptor overexpression. Even in the face of initially effective chemotherapies, TNBC patients often relapse. One primary cause for therapy-resistant tumor progression is the activation of cellular stress signaling pathways. The glucocorticoid receptor (GR), a corticosteroid-activated transcription factor most closely related to PR, is a mediator of both endocrine/host stress and local tumor microenvironment (TME)-derived and cellular stress responses. Interestingly, GR expression is associated with a good prognosis in ER+ breast cancer but predicts poor prognosis in TNBC. Classically, GR's transcriptional activity is regulated by circulating glucocorticoids. Additionally, GR is regulated by ligand-independent signaling events. Notably, the stress-activated protein kinase, p38 MAP kinase, phosphorylates GR at serine 134 (Ser134) in response to TME-derived growth factors and cytokines, including HGF and TGFβ1. Phospho-Ser134-GR (p-Ser134-GR) associates with cytoplasmic and nuclear signaling molecules, including 14-3-3ζ, aryl hydrocarbon receptors (AhR), and hypoxia-inducible factors (HIFs). Phospho-GR/HIF-containing transcriptional complexes upregulate gene sets whose protein products include the components of inducible oncogenic signaling pathways (PTK6) that further promote cancer cell survival, chemoresistance, altered metabolism, and migratory/invasive behavior in TNBC. Recent studies have implicated liganded p-Ser134-GR (p-GR) in dexamethasone-mediated upregulation of genes related to TNBC cell motility and dysregulated metabolism. Herein, we review the tumor-promoting roles of GR and discuss how both ligand-dependent and ligand-independent/stress signaling-driven inputs to p-GR converge to orchestrate metastatic TNBC progression.
Collapse
Affiliation(s)
- Sai Harshita Posani
- Molecular Pharmacology and Therapeutics Program, University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States
| | - Noelle E Gillis
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States; Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States.
| |
Collapse
|
6
|
Forbes AN, Xu D, Cohen S, Pancholi P, Khurana E. Discovery of therapeutic targets in cancer using chromatin accessibility and transcriptomic data. Cell Syst 2024; 15:824-837.e6. [PMID: 39236711 PMCID: PMC11415227 DOI: 10.1016/j.cels.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/22/2023] [Accepted: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Most cancer types lack targeted therapeutic options, and when first-line targeted therapies are available, treatment resistance is a huge challenge. Recent technological advances enable the use of assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA sequencing (RNA-seq) on patient tissue in a high-throughput manner. Here, we present a computational approach that leverages these datasets to identify drug targets based on tumor lineage. We constructed gene regulatory networks for 371 patients of 22 cancer types using machine learning approaches trained with three-dimensional genomic data for enhancer-to-promoter contacts. Next, we identified the key transcription factors (TFs) in these networks, which are used to find therapeutic vulnerabilities, by direct targeting of either TFs or the proteins that they interact with. We validated four candidates identified for neuroendocrine, liver, and renal cancers, which have a dismal prognosis with current therapeutic options.
Collapse
Affiliation(s)
- Andre Neil Forbes
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Priya Pancholi
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA; Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
7
|
Cucciniello L, Miglietta F, Guarneri V, Puglisi F. Managing sexual health challenges in breast cancer survivors: A comprehensive review. Breast 2024; 76:103754. [PMID: 38820922 PMCID: PMC11170478 DOI: 10.1016/j.breast.2024.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
The significant advancements in breast cancer management have led to an increase in the prevalence of breast cancer survivors. Despite their efficacy, these treatments can cause a variable range of side effects, significantly deteriorating the patients' quality of life. Sexual dysfunction, and in particular the genitourinary syndrome of menopause, represent one of the major causes of quality-of-life impairment among breast cancer patients, potentially affecting treatment adherence and compliance. If in the general population, hypoestrogenism-related symptoms are typically managed through systemic or topical estrogen administration, this approach is contraindicated in breast cancer patients for the potential increased risk of disease recurrence, urging the investigation of alternative measures. The aim of this review is to summarize the most up-to-date pharmacological and non-pharmacological interventions, as well as supportive measures, available for the management of sexual dysfunctions in breast cancer patients and survivors.
Collapse
Affiliation(s)
- Linda Cucciniello
- Department of Medicine, University of Udine, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Istituto Oncologico Veneto - IOV IRCCS, Padova, Italy.
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Istituto Oncologico Veneto - IOV IRCCS, Padova, Italy.
| | - Fabio Puglisi
- Department of Medicine, University of Udine, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy.
| |
Collapse
|
8
|
Shukla N, Shah K, Rathore D, Soni K, Shah J, Vora H, Dave H. Androgen receptor: Structure, signaling, function and potential drug discovery biomarker in different breast cancer subtypes. Life Sci 2024; 348:122697. [PMID: 38710280 DOI: 10.1016/j.lfs.2024.122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis of breast cancer (BC), which is the most common malignancy worldwide. >70 % of AR expression in primary and metastatic breast tumors has been observed which suggests that AR may be a new marker and a potential therapeutic target among AR-positive BC patients. Biological insight into AR-positive breast cancer reveals that AR may cross-talk with several vital signaling pathways, including key molecules and receptors. Downstream signaling of AR might also affect many clinically important pathways that are emerging as clinical targets in BC. AR exhibits different behaviors depending on the breast cancer molecular subtype. Preliminary clinical research using AR-targeted drugs, which have already been FDA-approved for prostate cancer (PC), has given promising results for AR-positive breast cancer patients. However, since AR positivity's prognostic and predictive value remains uncertain, it is difficult to identify and stratify patients who would benefit from AR-targeted therapies alone. Thus, the need of the hour is to target the androgen receptor as a monotherapy or in combination with other conventional therapies which has proven to be an effective clinical strategy for the treatment of prostate cancer patients, and these therapeutic strategies are increasingly being investigated in breast cancer. Therefore, in this manuscript, we review the role of AR in various cellular processes that promote tumorigenesis and aggressiveness, in different subtypes of breast cancer, as well as discuss ongoing efforts to target AR for the more effective treatment and prevention of breast cancer.
Collapse
Affiliation(s)
- Nirali Shukla
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kanisha Shah
- Division of Biological & Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Deepshikha Rathore
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Kinal Soni
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Jigna Shah
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Hemangini Vora
- The Gujarat Cancer & Research Institute, Ahmedabad, Gujarat 380016, India
| | - Heena Dave
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
9
|
Rouse WB, Tompkins VS, O’Leary CA, Moss WN. The RNA secondary structure of androgen receptor-FL and V7 transcripts reveals novel regulatory regions. Nucleic Acids Res 2024; 52:6596-6613. [PMID: 38554103 PMCID: PMC11194067 DOI: 10.1093/nar/gkae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
The androgen receptor (AR) is a ligand-dependent nuclear transcription factor belonging to the steroid hormone nuclear receptor family. Due to its roles in regulating cell proliferation and differentiation, AR is tightly regulated to maintain proper levels of itself and the many genes it controls. AR dysregulation is a driver of many human diseases including prostate cancer. Though this dysregulation often occurs at the RNA level, there are many unknowns surrounding post-transcriptional regulation of AR mRNA, particularly the role that RNA secondary structure plays. Thus, a comprehensive analysis of AR transcript secondary structure is needed. We address this through the computational and experimental analyses of two key isoforms, full length (AR-FL) and truncated (AR-V7). Here, a combination of in-cell RNA secondary structure probing experiments (targeted DMS-MaPseq) and computational predictions were used to characterize the static structural landscape and conformational dynamics of both isoforms. Additionally, in-cell assays were used to identify functionally relevant structures in the 5' and 3' UTRs of AR-FL. A notable example is a conserved stem loop structure in the 5'UTR of AR-FL that can bind to Poly(RC) Binding Protein 2 (PCBP2). Taken together, our results reveal novel features that regulate AR expression.
Collapse
Affiliation(s)
- Warren B Rouse
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Van S Tompkins
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | - Collin A O’Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Departments of Biology and Chemistry, Cornell College, Mount Vernon, IA 52314, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Giovannelli P, Di Donato M, Licitra F, Sabbatino E, Tutino V, Castoria G, Migliaccio A. Filamin A in triple negative breast cancer. Steroids 2024; 205:109380. [PMID: 38311094 DOI: 10.1016/j.steroids.2024.109380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.
Collapse
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy.
| | - Marzia Di Donato
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Fabrizio Licitra
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Emilia Sabbatino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Viviana Tutino
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| | - Antimo Migliaccio
- Department of Precision Medicine, University of Campania "L.Vanvitelli", Via L. De Crecchio, 7-80138 Naples, Italy
| |
Collapse
|
11
|
Krawczyk N, Jaeger B, Martina PJ, Cristina LCRN, Melissa N, Maggie BP, Franziska MS, Hans N, Dieter N, Eugen R, Svjetlana M, Jürgen H, Thomas K, Irene E, Tanja F. Determination of the androgen receptor status of disseminated tumor cells in primary breast cancer patients. Arch Gynecol Obstet 2024; 309:1525-1533. [PMID: 37902839 PMCID: PMC10894135 DOI: 10.1007/s00404-023-07225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/07/2023] [Indexed: 11/01/2023]
Abstract
PURPOSE Androgen receptor (AR) can serve as a new therapeutic target since it was shown to play a proliferative role in several breast cancer (BC) subtypes. Moreover, AR positivity has been suggested to reflect the metastatic potential of tumor cells in some BC subtypes. The aim of this study was to determine the AR expression on disseminated tumor cells (DTCs) as a surrogate marker of minimal residual disease (MRD) and potential precursor of metastasis in early BC. METHODS Bone marrow (BM) aspirates from 62 DTC-positive early BC patients were included into this study and analyzed by immunofluorescence staining for the presence of AR-positive DTCs. CK-positive, CD45-negative cells containing an intact nucleus (DAPI positive) were identified as DTCs. AR expression of the primary tumor (PT) was assessed by immunohistochemistry on formalin-fixed, paraffin-embedded (FFPE) tumor sections from core biopsies and surgical specimens. RESULTS AR status of DTCs could be determined in 21 patients. We detected AR-positive DTCs in nine samples (43%). AR expression of DTCs and corresponding PT showed a concordance rate of 33%. The DTC-AR status did not correlate with clinicopathological factors, nor did we observe a significant correlation between the AR status of the PT and other established prognostic factors for BC. CONCLUSION AR-positive DTCs can be detected in BM of early BC patients with a marked discordance of the AR status between DTCs and corresponding PTs. The clinical significance of these findings needs further investigation.
Collapse
Affiliation(s)
- Natalia Krawczyk
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Bernadette Jaeger
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.
| | - Piperek-Jäger Martina
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | | | - Neubacher Melissa
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Banys-Paluchowski Maggie
- Department of Obstetrics and Gynecology, University Hospital of Schleswig Holstein, Campus Lübeck, 23538, Lübeck, Germany
| | - Meier-Stiegen Franziska
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Neubauer Hans
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Niederacher Dieter
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Ruckhäberle Eugen
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Mohrmann Svjetlana
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Hoffmann Jürgen
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Kaleta Thomas
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Esposito Irene
- Department of Pathology, University of Mannheim, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Fehm Tanja
- Department of Obstetrics and Gynaecology, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| |
Collapse
|
12
|
Bakhshi P, Ho JQ, Zanganeh S. Sex-specific outcomes in cancer therapy: the central role of hormones. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1320690. [PMID: 38362126 PMCID: PMC10867131 DOI: 10.3389/fmedt.2024.1320690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Sex hormones play a pivotal role in modulating various physiological processes, with emerging evidence underscoring their influence on cancer progression and treatment outcomes. This review delves into the intricate relationship between sex hormones and cancer, elucidating the underlying biological mechanisms and their clinical implications. We explore the multifaceted roles of estrogen, androgens, and progesterone, highlighting their respective influence on specific cancers such as breast, ovarian, endometrial, and prostate. Special attention is given to estrogen receptor-positive (ER+) and estrogen receptor-negative (ER-) tumors, androgen receptor signaling, and the dual role of progesterone in both promoting and inhibiting cancer progression. Clinical observations reveal varied treatment responses contingent upon hormonal levels, with certain therapies like tamoxifen, aromatase inhibitors, and anti-androgens demonstrating notable success. However, disparities in treatment outcomes between males and females in hormone-sensitive cancers necessitate further exploration. Therapeutically, the utilization of hormone replacement therapy (HRT) during cancer treatments presents both potential risks and benefits. The promise of personalized therapies, tailored to an individual's hormonal profile, offers a novel approach to optimizing therapeutic outcomes. Concurrently, the burgeoning exploration of new drugs and interventions targeting hormonal pathways heralds a future of more effective and precise treatments for hormone-sensitive cancers. This review underscores the pressing need for a deeper understanding of sex hormones in cancer therapy and the ensuing implications for future therapeutic innovations.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| | - Jim Q. Ho
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Steven Zanganeh
- Research and Development, MetasFree Biopharmaceutical Company, Mansfield, MA, United States
| |
Collapse
|
13
|
Jamshidi M, Keshavarzi F, Amini S, Laher I, Gheysarzadeh A, Davari K. Targeting androgen receptor (AR) with a synthetic peptide increases apoptosis in triple negative breast cancer and AR-expressing prostate cancer cell lines. Cancer Rep (Hoboken) 2024; 7:e1922. [PMID: 37903548 PMCID: PMC10809188 DOI: 10.1002/cnr2.1922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The androgen receptor (AR) has been studied as an approach to cancer therapy. AIMS We used human breast cancer-derived cells with high, low, and very low expression levels of AR, in addition to prostate cancer-derived LNCaP and DU-145 cells as a positive and negative controls to examine apoptosis caused by a synthetic peptide that targets ARs. METHODS AND RESULTS The peptide was produced to inhibit AR transactivation in breast cancer cell lines. We then measured cell viability, caspase-3 activity, and the ratio of Bax/Bcl-2. The findings indicated that the peptide (100-500 nM) in the presence of dihydrotestosterone (DHT) reduced cell growth in cells with high and low expression level of AR (p < .001), but not in cells with very low levels of AR. Treatment with 100-500 nM of peptide activated caspase-3 and increased the ratio of Bax/Bcl-2 in cells with high and low expression levels of AR. Also, increasing concentrations of the peptide (100-500 nM) reduced BrdU incorporation in the presence of DHT and promoted apoptosis in cells with high and low expression levels of AR (p < .001). CONCLUSION The findings indicate the peptide significantly increased apoptosis in cancer cells.
Collapse
Affiliation(s)
- Mazdak Jamshidi
- Department of Biology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Fatemeh Keshavarzi
- Department of Biology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Sabrieh Amini
- Department of Biology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and TherapeuticsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Ali Gheysarzadeh
- Department of Clinical BiochemistryIlam University of Medical SciencesIlamIran
| | - Kambiz Davari
- Department of Biology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| |
Collapse
|
14
|
Sato S, Imada S, Hayami R, Arai K, Kosugi R, Tsuneizumi M, Matsunuma R. Complexities in Adjuvant Endocrine Therapy for Breast Cancer in Female-to-Male Transgender Patients. Case Rep Oncol 2024; 17:208-216. [PMID: 38327829 PMCID: PMC10849748 DOI: 10.1159/000536212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Managing breast cancer in female-to-male (FtM) transgender patients is complicated and challenging. Androgens play a crucial role in the development of secondary sexual identity in FtM transgender patients, but their effectiveness in breast cancer remains unclear. Furthermore, the considerations for adjuvant endocrine therapy in this population are highly intricate and warrant thorough discussion. Case Presentation We describe the case of a 44-year-old FtM transgender diagnosed with breast cancer 3 years after initiating androgen receptor agonist therapy as part of his gender identity transition. After mastectomy, adjuvant endocrine therapy was initiated, consisting of a combination of an aromatase inhibitor and a gonadotropin-releasing hormone agonist, along with a cross-sex hormone. Conclusion Estradiol levels were significantly reduced, and male-typical levels of sex hormones were attained.
Collapse
Affiliation(s)
- Shoko Sato
- Department of Breast Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Sae Imada
- Department of Breast Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Ryosuke Hayami
- Department of Breast Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Kazumori Arai
- Department of Pathology, Shizuoka General Hospital, Shizuoka, Japan
| | - Rieko Kosugi
- Center for Diabetes, Endocrinology and Metabolism, Shizuoka General Hospital, Shizuoka, Japan
| | - Michiko Tsuneizumi
- Department of Breast Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Ryoichi Matsunuma
- Department of Breast Surgery, Shizuoka General Hospital, Shizuoka, Japan
| |
Collapse
|
15
|
Gent R, Van Rooyen D, Atkin SL, Swart AC. C11-hydroxy and C11-oxo C 19 and C 21 Steroids: Pre-Receptor Regulation and Interaction with Androgen and Progesterone Steroid Receptors. Int J Mol Sci 2023; 25:101. [PMID: 38203272 PMCID: PMC10778819 DOI: 10.3390/ijms25010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
C11-oxy C19 and C11-oxy C21 steroids have been identified as novel steroids but their function remains unclear. This study aimed to investigate the pre-receptor regulation of C11-oxy steroids by 11β-hydroxysteroid dehydrogenase (11βHSD) interconversion and potential agonist and antagonist activity associated with the androgen (AR) and progesterone receptors (PRA and PRB). Steroid conversions were investigated in transiently transfected HEK293 cells expressing 11βHSD1 and 11βHSD2, while CV1 cells were utilised for agonist and antagonist assays. The conversion of C11-hydroxy steroids to C11-oxo steroids by 11βHSD2 occurred more readily than the reverse reaction catalysed by 11βHSD1, while the interconversion of C11-oxy C19 steroids was more efficient than C11-oxy C21 steroids. Furthermore, 11-ketodihydrotestosterone (11KDHT), 11-ketotestosterone (11KT) and 11β-hydroxydihydrotestosterone (11OHDHT) were AR agonists, while only progestogens, 11β-hydroxyprogesterone (11βOHP4), 11β-hydroxydihydroprogesterone (11βOHDHP4), 11α-hydroxyprogesterone (11αOHP4), 11α-hydroxydihydroprogesterone (11αOHDHP4), 11-ketoprogesterone (11KP4), 5α-pregnan-17α-diol-3,11,20-trione (11KPdione) and 21-deoxycortisone (21dE) exhibited antagonist activity. C11-hydroxy C21 steroids, 11βOHP4, 11βOHDHP4 and 11αOHP4 exhibited PRA and PRB agonistic activity, while only C11-oxo steroids, 11KP4 and 11-ketoandrostanediol (11K3αdiol) demonstrated PRB agonism. While no steroids antagonised the PRA, 11OHA4, 11β-hydroxytestosterone (11OHT), 11KT and 11KDHT exhibited PRB antagonism. The regulatory role of 11βHSD isozymes impacting receptor activation is clear-C11-oxo androgens exhibit AR agonist activity; only C11-hydroxy progestogens exhibit PRA and PRB agonist activity. Regulation by the downstream metabolites of active C11-oxy steroids at the receptor level is apparent-C11-hydroxy and C11-oxo metabolites antagonize the AR and PRB, progestogens the former, androgens the latter. The findings highlight the intricate interplay between receptors and active as well as "inactive" C11-oxy steroids, suggesting novel regulatory tiers.
Collapse
Affiliation(s)
- Rachelle Gent
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Desmaré Van Rooyen
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
| | - Stephen L. Atkin
- School of Postgraduate Studies and Research, Royal College of Surgeons in Ireland Bahrain, Adliya 15503, Bahrain;
| | - Amanda C. Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa; (R.G.)
- Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
16
|
Morshed AKMH, Al Azad S, Mia MAR, Uddin MF, Ema TI, Yeasin RB, Srishti SA, Sarker P, Aurthi RY, Jamil F, Samia NSN, Biswas P, Sharmeen IA, Ahmed R, Siddiquy M, Nurunnahar. Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Mol Divers 2023; 27:2651-2672. [PMID: 36445532 DOI: 10.1007/s11030-022-10573-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
The HER2-positive patients occupy ~ 30% of the total breast cancer patients globally where no prevalent drugs are available to mitigate the frequent metastasis clinically except lapatinib and neratinib. This scarcity reinforced researchers' quest for new medications where natural substances are significantly considered. Valuing the aforementioned issues, this research aimed to study the ERBB2-mediated string networks that work behind the HER2-positive breast cancer formation regarding co-expression, gene regulation, GAMA-receptor-signaling pathway, cellular polarization, and signal inhibition. Following the overexpression, promotor methylation, and survivability profiles of ERBB2, the super docking position of HER2 was identified using the quantum tunneling algorithm. Supramolecular docking was conducted to study the target specificity of EPA and DHA fatty acids followed by a comprehensive molecular dynamic simulation (100 ns) to reveal the RMSD, RMSF, Rg, SASA, H-bonds, and MM/GBSA values. Finally, potential drug targets for EPA and DHA in breast cancer were constructed to determine the drug-protein interactions (DPI) at metabolic stages. Considering the values resulting from the combinational models of the oncoinformatic, pharmacodynamic, and metabolic parameters, long-chain omega-3 fatty acids like EPA and DHA can be considered as potential-targeted therapeutics for HER2-positive breast cancer treatment.
Collapse
Affiliation(s)
- A K M Helal Morshed
- Pathology and Pathophysiology Major, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, Henan Province, People's Republic of China
| | - Salauddin Al Azad
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China.
| | - Md Abdur Rashid Mia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, International Islamic University Malaysia, 25200, Pahang, Kuantan, Malaysia
| | - Mohammad Fahim Uddin
- College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Rukaiya Binte Yeasin
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | | | - Pallab Sarker
- Department of Medicine, Sher-E-Bangla Medical College Hospital, South Alekanda, Barisal, 8200, Bangladesh
| | - Rubaita Younus Aurthi
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Palashi, Dhaka, 1205, Bangladesh
| | - Farhan Jamil
- Department of Pharmacy, University of Asia Pacific, Farmgate, Dhaka, 1205, Bangladesh
| | | | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Iffat Ara Sharmeen
- School of Data Sciences, Department of Mathematics & Natural Sciences, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Rasel Ahmed
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, Tees Valley, UK
| | - Mahbuba Siddiquy
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Nurunnahar
- Department of Mathematics, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
17
|
Chaum M, Grossi S, Chen J, Hu V, Ray E, Giuliano A, Bose S. Masculinizing hormone therapy effect on breast tissue: Changes in estrogen and androgen receptors in transgender female-to-male mastectomies. Breast 2023; 72:103596. [PMID: 37951051 PMCID: PMC10665694 DOI: 10.1016/j.breast.2023.103596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023] Open
Abstract
PURPOSE Almost two percent of individuals in the United States identify as gender non-conforming. In the female-to-male (FTM) transgender population, masculinizing hormone therapy with testosterone is commonly prescribed in gender transition. To date, the effects of exogenous androgens on breast tissue and its roles in altering breast cancer risk are poorly understood. This study examines the histopathologic findings in gender affirming mastectomy (GAM) in transgender FTM patients and the effects of exogenous androgens on estrogen receptors (ER) and androgen receptors (AR). METHODS A retrospective review of pathology specimens obtained between 2017 and 2020 was performed comparing androgen exposed breast tissue with breast tissue without androgen exposure. Breast specimens were obtained from patients who underwent FTM GAM with recorded exogenous androgen exposure. Control breast specimens were obtained from reduction mammoplasty (RM) procedures in cisgender women which were aged matched to the GAM cohort, as well as postmenopausal women with benign/prophylactic mastectomy procedures; all controls were without androgen exposure. The histopathologic findings were assessed. Immunohistochemistry for AR and ER was performed and the score interpreted by digital image analysis. RESULTS Androgen-exposed breast tissue revealed dense fibrotic stroma, lobular atrophy, thickened lobular basement membranes, and gynecomastoid changes. Longer duration of androgen exposure resulted in a more pronounced effect. The incidence of atypia or cancer was lower in GAM than RM cohort. ER and AR expression was highest in transgender male breast tissue with intermediate duration of exogenous androgen exposure. CONCLUSION Increased androgen exposure is associated with lobular atrophy and gynecomastoid changes in breast parenchyma. Overall, ER and AR are expressed strongly in lobular epithelium in patients with prolonged androgen exposure. Exogenous testosterone does not appear to increase risk for breast cancer. Additional studies are needed to investigate the mechanism responsible for these changes at a cellular level and its role in cancer development.
Collapse
Affiliation(s)
- Manita Chaum
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Sara Grossi
- Saul and Joyce Brandman Breast Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Department of Surgery, University of California San Diego, San Diego, CA, United States.
| | - Jiaxi Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Vivian Hu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States; Department of Surgery, University of California San Diego, San Diego, CA, United States
| | - Edward Ray
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Armando Giuliano
- Saul and Joyce Brandman Breast Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Shikha Bose
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
18
|
Singla RK, Wang X, Gundamaraju R, Joon S, Tsagkaris C, Behzad S, Khan J, Gautam R, Goyal R, Rakmai J, Dubey AK, Simal-Gandara J, Shen B. Natural products derived from medicinal plants and microbes might act as a game-changer in breast cancer: a comprehensive review of preclinical and clinical studies. Crit Rev Food Sci Nutr 2023; 63:11880-11924. [PMID: 35838143 DOI: 10.1080/10408398.2022.2097196] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the most prevalent neoplasm among women. Genetic and environmental factors lead to BC development and on this basis, several preventive - screening and therapeutic interventions have been developed. Hormones, both in the form of endogenous hormonal signaling or hormonal contraceptives, play an important role in BC pathogenesis and progression. On top of these, breast microbiota includes both species with an immunomodulatory activity enhancing the host's response against cancer cells and species producing proinflammatory cytokines associated with BC development. Identification of novel multitargeted therapeutic agents with poly-pharmacological potential is a dire need to combat advanced and metastatic BC. A growing body of research has emphasized the potential of natural compounds derived from medicinal plants and microbial species as complementary BC treatment regimens, including dietary supplements and probiotics. In particular, extracts from plants such as Artemisia monosperma Delile, Origanum dayi Post, Urtica membranacea Poir. ex Savigny, Krameria lappacea (Dombey) Burdet & B.B. Simpson and metabolites extracted from microbes such as Deinococcus radiodurans and Streptomycetes strains as well as probiotics like Bacillus coagulans and Lactobacillus brevis MK05 have exhibited antitumor effects in the form of antiproliferative and cytotoxic activity, increase in tumors' chemosensitivity, antioxidant activity and modulation of BC - associated molecular pathways. Further, bioactive compounds like 3,3'-diindolylmethane, epigallocatechin gallate, genistein, rutin, resveratrol, lycopene, sulforaphane, silibinin, rosmarinic acid, and shikonin are of special interest for the researchers and clinicians because these natural agents have multimodal action and act via multiple ways in managing the BC and most of these agents are regularly available in our food and fruit diets. Evidence from clinical trials suggests that such products had major potential in enhancing the effectiveness of conventional antitumor agents and decreasing their side effects. We here provide a comprehensive review of the therapeutic effects and mechanistic underpinnings of medicinal plants and microbial metabolites in BC management. The future perspectives on the translation of these findings to the personalized treatment of BC are provided and discussed.
Collapse
Affiliation(s)
- Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | - Xiaoyan Wang
- Department of Pathology, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania, Australia
| | - Shikha Joon
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- iGlobal Research and Publishing Foundation, New Delhi, India
| | | | - Sahar Behzad
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Majmaah, Saudi Arabia
| | - Rupesh Gautam
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Rajat Goyal
- Department of Pharmacology, MM School of Pharmacy, MM University, Sadopur, Haryana, India
| | - Jaruporn Rakmai
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute (KAPI), Kasetsart University, Bangkok, Thailand
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Jaeger BAS, Krawczyk N, Japp AS, Honisch E, Köhrer K, Scheuring S, Petzsch P, Neubauer H, Volkmer AK, Esposito I, Ruckhäberle E, Niederacher D, Fehm T. Whole Exome Analysis to Select Targeted Therapies for Patients with Metastatic Breast Cancer - A Feasibility Study. Geburtshilfe Frauenheilkd 2023; 83:1138-1147. [PMID: 37706056 PMCID: PMC10497348 DOI: 10.1055/a-2150-9440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction The purpose of this feasibility study was to select targeted therapies according to "ESMO Scale for Clinical Actionability of molecular Targets (ESCAT)". Data interpretation was further supported by a browser-based Treatment Decision Support platform (MH Guide, Molecular Health, Heidelberg, Germany). Patients We applied next generation sequencing based whole exome sequencing of tumor tissue and peripheral blood of patients with metastatic breast cancer (n = 44) to detect somatic as well as germline mutations. Results In 32 metastatic breast cancer patients, data interpretation was feasible. We identified 25 genomic alterations with ESCAT Level of Evidence I or II in 18/32 metastatic breast cancer patients, which were available for evaluation: three copy number gains in HER2 , two g BRCA1 , two g BRCA2 , six PIK3CA, one ESR1 , three PTEN , one AKT1 and two HER2 mutations. In addition, five samples displayed Microsatellite instability high-H. Conclusions Resulting treatment options were discussed in a tumor board and could be recommended in a small but relevant proportion of patients with metastatic breast cancer (7/18). Thus, this study is a valuable preliminary work for the establishment of a molecular tumor board within the German initiative "Center for Personalized Medicine" which aims to shorten time for analyses and optimize selection of targeted therapies.
Collapse
Affiliation(s)
- Bernadette Anna Sophia Jaeger
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Natalia Krawczyk
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Sophia Japp
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Ellen Honisch
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sibylle Scheuring
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Petzsch
- Biologisch-Medizinisches Forschungszentrum (BMFZ), Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Anne Kathrin Volkmer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Irene Esposito
- Institute of Pathology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
20
|
Santos MMD, Frasson AL, Silva VDD, Maciel ADCA, Watte G, Werutsky G, Reinert T, Fay AP. Core Needle Biopsy Accuracy for Androgen Receptor Expression in Invasive Breast Cancer. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2023; 45:e535-e541. [PMID: 37846186 PMCID: PMC10579921 DOI: 10.1055/s-0043-1772486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/04/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Breast cancer (BC) biomarkers, such as hormone receptors expression, are crucial to guide therapy in BC patients. Antiandrogens have been studied in BC; however, limited data are available on androgen receptor (AR) expression test methodology. We aim to report the core needle biopsy (CNB) accuracy for AR expression in BC. METHODS Patients diagnosed with stage I-III invasive BC from a single institution were included. Androgen receptor expression was evaluated by immunohistochemistry (IHC) using 1 and 10% cutoff and the AR expression in surgical specimens (SS) was the gold standard. Kappa coefficients were used to evaluate the intraprocedural agreement. RESULTS A total of 72 patients were included, with a mean age of 61 years old and 84% were Luminal A or B tumors. The prevalence of AR expression in all BC samples was 87.5% using a cutoff ≥ 10% in SS. With a cutoff value ≥ 1%, CNB had an accuracy of 95.8% (Kappa value = 0.645; 95% confidence interval [CI]: 0.272-1.000; p < 0.001) and 86.1% (Kappa value = 0.365; 95% CI: 0.052-0.679; p < 0.001) when ≥ 10% cutoff was used for AR positivity. Androgen receptor expression in CNB (cutoff ≥ 1%) had a sensitivity of 98.5%, specificity of 60%, positive predictive value of 97.0%, and a negative predictive value of 76.9% in the detection of AR expression in SS. CONCLUSION Core needle biopsy has good accuracy in evaluating AR expression in BC. The accuracy of CNB decreases with higher cutoff values for AR positivity.
Collapse
Affiliation(s)
- Marcelle Morais dos Santos
- Department of Breast Surgery, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antonio Luiz Frasson
- Department of Breast Surgery, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - Guilherme Watte
- Department of Medical Oncology, Hospital São Lucas, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gustavo Werutsky
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tomás Reinert
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Oncoclínicas, Porto Alegre, RS, Brazil
| | - André Poisl Fay
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Oncoclínicas, Porto Alegre, RS, Brazil
| |
Collapse
|
21
|
Huggins RJ, Hosfield D, Ishag-Osman A, Lee K, Ton-That E, Greene GL. Evaluating steroid hormone receptor interactions using the live-cell NanoBRET proximity assay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550078. [PMID: 37546915 PMCID: PMC10402027 DOI: 10.1101/2023.07.25.550078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Steroid hormone receptors play a crucial role in the development and characterization of the majority of breast cancers. These receptors canonically function through homodimerization, but physical interactions between different hormone receptors play a key role in cell functions as well. The estrogen receptor (ERα) and progesterone receptor (PR), for example, are involved in a complex set of interactions known as ERα/PR crosstalk. Here, we developed a valuable panel of nuclear receptor expression plasmids specifically for use in NanoBRET assays to assess nuclear receptor homo- and heterodimerization. We demonstrate the utility of this assay system by assessing ERα/PR physical interaction in the context of the endocrine therapy resistance-associated ERα Y537S mutation. We identify a role of the ERα Y537S mutation beyond that of constitutive activity of the receptor; it also increases ERα/PR crosstalk. In total, the NanoBRET assay provides a novel avenue for investigating hormone receptor crosstalk. Future research may use this system to assess the effects of other clinically significant hormone receptor mutations on hormone receptor crosstalk.
Collapse
Affiliation(s)
- Rosemary J Huggins
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - David Hosfield
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Amira Ishag-Osman
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Keemin Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Elia Ton-That
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| | - Geoffrey L. Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, United States
| |
Collapse
|
22
|
Bucciarelli V, Bianco F, Di Blasio A, Morano T, Tuosto D, Mucedola F, Di Santo S, Cimini A, Napolitano G, Bucci I, Di Baldassarre A, Cianchetti E, Gallina S. Cardiometabolic Profile, Physical Activity, and Quality of Life in Breast Cancer Survivors after Different Physical Exercise Protocols: A 34-Month Follow-Up Study. J Clin Med 2023; 12:4795. [PMID: 37510910 PMCID: PMC10381308 DOI: 10.3390/jcm12144795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Breast cancer (BC) and cardiovascular (CV) disease share many risk factors associated with worse outcomes, in terms of cancer relapse, CV events, and quality of life (QoL), that could be counteracted by physical exercise (PE). We aimed to assess the impact of a 12-week differential PE protocol on cardiometabolic profile, QoL, CV- and BC-related long-term outcomes, and physical activity (PA) in a cohort of BC survivors (BCS) not treated with chemotherapy. METHODS 57 BCS participated in a 12-week PE protocol [aerobic exercise training (AET) or resistance exercise training (RET)]. Anthropometric and CV evaluation, health-related (HR)-QoL, daily PA, cortisol, and dehydroepiandrosterone sulfate (DHEA-S) levels were assessed before (T0) and after (T1) PE. We assessed BC and CV outcomes, HR-QoL, CV-QoL, and PA at the follow-up. RESULTS RET improved waist circumference, DHEA-S, cortisol/DHEA-S, systolic and mean blood pressure, and ventricular/arterial coupling; AET ameliorated sagittal abdomen diameter and pulse wave velocity. Regarding HR-QoL, physical function improved only in AET group. At a mean 34 ± 3.6-month follow-up, we documented no significant differences in CV-QoL, HR-QoL, and PA or CV and BC outcomes. CONCLUSIONS AET and RET determine specific, positive adaptations on many parameters strongly related to CV risk, CV and BC outcomes, and QoL, and should be included in any cardio-oncology rehabilitation program.
Collapse
Affiliation(s)
- Valentina Bucciarelli
- Cardiovascular Sciences Department-Azienda Ospedaliero-Universitaria delle Marche, 60126 Ancona, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Francesco Bianco
- Cardiovascular Sciences Department-Azienda Ospedaliero-Universitaria delle Marche, 60126 Ancona, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Andrea Di Blasio
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Teresa Morano
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Desiree Tuosto
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Francesco Mucedola
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Serena Di Santo
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Alessandra Cimini
- Eusoma Breast Centre, "G. Bernabeo" Hospital, ASL02 Lanciano-Vasto-Chieti, 66026 Ortona, Italy
| | - Giorgio Napolitano
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| | - Ettore Cianchetti
- Eusoma Breast Centre, "G. Bernabeo" Hospital, ASL02 Lanciano-Vasto-Chieti, 66026 Ortona, Italy
| | - Sabina Gallina
- Department of Neurosciences, Imaging and Clinical Sciences, "G. d'Annunzio" University, 66100 Chieti, Italy
| |
Collapse
|
23
|
Cao HM, Yang YZ, Huang BY, Zhang Y, Wu Y, Wan Z, Ma L. A cross-sectional study of the association between heavy metals and pan-cancers associated with sex hormones in NHANES 1999-2018. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61005-61017. [PMID: 37046159 DOI: 10.1007/s11356-023-26828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Given the complexity of tumorigenesis, numerous studies have also shown that excessive exposure to heavy metals increases the risk of cancers and disrupts the secretion of sex hormones. However, the specific effects of heavy metals on cancers remain to be proven. To confirm the association between heavy metals and pan-cancer sex hormone levels among adults, 94,337 individuals from the National Health and Nutrition Examination Survey were assessed. We examined the associations between pan-cancers associated with sex hormones (ovarian, testicular, breast, and prostate cancers) and heavy metals in blood/urine. The methods (the WQS (weighted quantile sums) and SVYGLM (survey generalized linear model) regressions) were used to evaluate the association between sex hormone-related cancers and each metal category by incorporating covariates. To evaluate the overall effect of heavy metals and detect the dose-response relationship between the prevalence of pan-cancers associated with sex hormones and heavy metals, RCS (restricted cubic splines) were applied. Environmental exposure to heavy metals may be associated with pan-cancers associated with sex hormones in adults in the USA. Prostate cancer was inversely associated with blood cadmium while positively associated with blood lead, urinary tin, and thallium. Breast cancer was inversely associated with blood lead. Ovarian cancer was positively associated with blood cadmium. We also found a non-linear dose-response relationship between pan-cancers associated with sex hormones and heavy metals, which was non-parametric, using RCS models. The OR for breast cancer decreased along with the increase in lead concentration under approximately 20 µg/dl, while the OR for prostate cancer increased between urine thallium levels of approximately 0.17-1.1 ng/ml. Pan-cancers associated with sex hormones are associated with exposure to heavy metals. Considering the design of the NHANES study, further studies need to be conducted on other nationally representative surveys.
Collapse
Affiliation(s)
- Hai-Ming Cao
- The Reproductive Andrology, The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518000, People's Republic of China
| | - Ya-Zhu Yang
- The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518000, People's Republic of China
| | - Bao-Yi Huang
- The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518000, People's Republic of China
| | - Yunzhe Zhang
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yu Wu
- The Urology Department, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, People's Republic of China
| | - Zi Wan
- The Andrology Department, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Lin Ma
- The Reproductive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518000, People's Republic of China.
| |
Collapse
|
24
|
Clusan L, Ferrière F, Flouriot G, Pakdel F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076834. [PMID: 37047814 PMCID: PMC10095386 DOI: 10.3390/ijms24076834] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Breast cancer is the most common cancer and the deadliest among women worldwide. Estrogen signaling is closely associated with hormone-dependent breast cancer (estrogen and progesterone receptor positive), which accounts for two-thirds of tumors. Hormone therapy using antiestrogens is the gold standard, but resistance to these treatments invariably occurs through various biological mechanisms, such as changes in estrogen receptor activity, mutations in the ESR1 gene, aberrant activation of the PI3K pathway or cell cycle dysregulations. All these factors have led to the development of new therapies, such as selective estrogen receptor degraders (SERDs), or combination therapies with cyclin-dependent kinases (CDK) 4/6 or PI3K inhibitors. Therefore, understanding the estrogen pathway is essential for the treatment and new drug development of hormone-dependent cancers. This mini-review summarizes current literature on the signalization, mechanisms of action and clinical implications of estrogen receptors in breast cancer.
Collapse
Affiliation(s)
- Léa Clusan
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - François Ferrière
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
25
|
Schnöller LE, Piehlmaier D, Weber P, Brix N, Fleischmann DF, Nieto AE, Selmansberger M, Heider T, Hess J, Niyazi M, Belka C, Lauber K, Unger K, Orth M. Systematic in vitro analysis of therapy resistance in glioblastoma cell lines by integration of clonogenic survival data with multi-level molecular data. Radiat Oncol 2023; 18:51. [PMID: 36906590 PMCID: PMC10007763 DOI: 10.1186/s13014-023-02241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
Despite intensive basic scientific, translational, and clinical efforts in the last decades, glioblastoma remains a devastating disease with a highly dismal prognosis. Apart from the implementation of temozolomide into the clinical routine, novel treatment approaches have largely failed, emphasizing the need for systematic examination of glioblastoma therapy resistance in order to identify major drivers and thus, potential vulnerabilities for therapeutic intervention. Recently, we provided proof-of-concept for the systematic identification of combined modality radiochemotherapy treatment vulnerabilities via integration of clonogenic survival data upon radio(chemo)therapy with low-density transcriptomic profiling data in a panel of established human glioblastoma cell lines. Here, we expand this approach to multiple molecular levels, including genomic copy number, spectral karyotyping, DNA methylation, and transcriptome data. Correlation of transcriptome data with inherent therapy resistance on the single gene level yielded several candidates that were so far underappreciated in this context and for which clinically approved drugs are readily available, such as the androgen receptor (AR). Gene set enrichment analyses confirmed these results, and identified additional gene sets, including reactive oxygen species detoxification, mammalian target of rapamycin complex 1 (MTORC1) signaling, and ferroptosis/autophagy-related regulatory circuits to be associated with inherent therapy resistance in glioblastoma cells. To identify pharmacologically accessible genes within those gene sets, leading edge analyses were performed yielding candidates with functions in thioredoxin/peroxiredoxin metabolism, glutathione synthesis, chaperoning of proteins, prolyl hydroxylation, proteasome function, and DNA synthesis/repair. Our study thus confirms previously nominated targets for mechanism-based multi-modal glioblastoma therapy, provides proof-of-concept for this workflow of multi-level data integration, and identifies novel candidates for which pharmacological inhibitors are readily available and whose targeting in combination with radio(chemo)therapy deserves further examination. In addition, our study also reveals that the presented workflow requires mRNA expression data, rather than genomic copy number or DNA methylation data, since no stringent correlation between these data levels could be observed. Finally, the data sets generated in the present study, including functional and multi-level molecular data of commonly used glioblastoma cell lines, represent a valuable toolbox for other researchers in the field of glioblastoma therapy resistance.
Collapse
Affiliation(s)
- Leon Emanuel Schnöller
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Piehlmaier
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Peter Weber
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nikko Brix
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Daniel Felix Fleischmann
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Edward Nieto
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany
| | - Martin Selmansberger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Theresa Heider
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany.,Bavarian Cancer Research Center (BKFZ), Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics (ZYTO), Helmholtz Center Munich, German Research Center for Environmental Health GmbH, 85764, Neuherberg, Germany. .,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, LMU München, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
26
|
Amendoeira AF, Luz A, Valente R, Roma-Rodrigues C, Ali H, van Lier JE, Marques F, Baptista PV, Fernandes AR. Cell Uptake of Steroid-BODIPY Conjugates and Their Internalization Mechanisms: Cancer Theranostic Dyes. Int J Mol Sci 2023; 24:3600. [PMID: 36835012 PMCID: PMC9963437 DOI: 10.3390/ijms24043600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11β-OMe-estradiol-BODIPY 2 and 7α-Me-19-nortestosterone-BODIPY 4 towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates. The internalization of the conjugates was shown to be an energy-dependent process that is likely mediated by clathrin- and caveolae-endocytosis. Studies using 2D co-cultures of cancer cells and normal fibroblasts showed that the conjugates are more selective towards cancer cells. Cell viability assays showed that the conjugates are non-toxic for cancer and/or normal cells. Visible light irradiation of cells incubated with estradiol-BODIPYs 1 and 2 and 7α-Me-19-nortestosterone-BODIPY 4 induced cell death, suggesting their potential for use as PDT agents.
Collapse
Affiliation(s)
- Ana F. Amendoeira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - André Luz
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Ruben Valente
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Hasrat Ali
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Johan E. van Lier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, km 139.7, 2695-066 Bobadela, Portugal
| | - Pedro V. Baptista
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, 2819-516 Caparica, Portugal
| |
Collapse
|
27
|
Lee YT, Tan YJ, Oon CE. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm Sin B 2023; 13:478-497. [PMID: 36873180 PMCID: PMC9978992 DOI: 10.1016/j.apsb.2022.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is the second leading cause of mortality globally which remains a continuing threat to human health today. Drug insensitivity and resistance are critical hurdles in cancer treatment; therefore, the development of new entities targeting malignant cells is considered a high priority. Targeted therapy is the cornerstone of precision medicine. The synthesis of benzimidazole has garnered the attention of medicinal chemists and biologists due to its remarkable medicinal and pharmacological properties. Benzimidazole has a heterocyclic pharmacophore, which is an essential scaffold in drug and pharmaceutical development. Multiple studies have demonstrated the bioactivities of benzimidazole and its derivatives as potential anticancer therapeutics, either through targeting specific molecules or non-gene-specific strategies. This review provides an update on the mechanism of actions of various benzimidazole derivatives and the structure‒activity relationship from conventional anticancer to precision healthcare and from bench to clinics.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
28
|
Dubrava AL, Kyaw PSP, Newman J, Pringle J, Westhuyzen J, La Hera Fuentes G, Shakespeare TP, Sakalkale R, Aherne NJ. Androgen Receptor Status in Triple Negative Breast Cancer: Does It Correlate with Clinicopathological Characteristics? BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:359-371. [PMID: 37197610 PMCID: PMC10184857 DOI: 10.2147/bctt.s405719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 05/19/2023]
Abstract
Purpose Triple negative breast cancer (TNBC) is a breast carcinoma subtype that neither expresses estrogen (ER) and progesterone receptors (PR) nor the human epidermal growth factor receptor 2 (HER2). Patients with TNBC have been shown to have poorer outcomes mainly owing to the limited treatment options available. However, some studies have shown TNBC tumors expressing androgen receptors (AR), raising hopes of its prognostic role. Patients and Methods This retrospective study investigated the expression of AR in TNBC and its relationship with known patient demographics, tumor and survival characteristics. From the records of 205 TNBC patients, 36 had available archived tissue samples eligible for AR staining. For statistical purposes, tumors were classified as either "positive" or "negative" for AR expression. The nuclear expression of AR was scored by measuring the percentage of stained tumor cells and its staining intensity. Results AR was expressed by 50% of the tissue samples in our TNBC cohort. The relationship between AR status with age at the time of TNBC diagnosis was statistically significant, with all AR positive TNBC patients being greater than 50 years old (vs 72.2% in AR negative TNBC). Also, the relationship between AR status and type of surgery received was statistically significant. There were no statistically significant associations between AR status with other tumor characteristics including "TNM status", tumor grade or treatments received. There was no statistically significant difference in median survival between AR negative and AR positive TNBC patients (3.5 vs 3.1 years; p = 0.581). The relationship between OS time and AR status (p = 0.581), type of surgery (p = 0.061) and treatments (p = 0.917) were not statistically significant. Conclusion The androgen receptor may be an important prognostic marker in TNBC, with further research warranted. This research may benefit future studies investigating receptor-targeted therapies in TNBC.
Collapse
Affiliation(s)
- Alex L Dubrava
- Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour, New South Wales, Australia
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - Pan Su Pyae Kyaw
- Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour, New South Wales, Australia
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - Joseph Newman
- Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour, New South Wales, Australia
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - Jarrad Pringle
- Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour, New South Wales, Australia
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - Justin Westhuyzen
- School of Health and Human Sciences, Southern Cross University, Coffs Harbour, New South Wales, Australia
| | - Gina La Hera Fuentes
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - Thomas P Shakespeare
- Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour, New South Wales, Australia
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
| | - Renukadas Sakalkale
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
- Coffs Harbour Base Hospital Pathology, Coffs Harbour, New South Wales, Australia
| | - Noel J Aherne
- Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour, New South Wales, Australia
- Coffs Harbour Rural Clinical School, University of New South Wales, Coffs Harbour Health Campus, Coffs Harbour, New South Wales, Australia
- School of Health and Human Sciences, Southern Cross University, Coffs Harbour, New South Wales, Australia
- Correspondence: Noel J Aherne, Department of Radiation Oncology, Mid North Coast Cancer Centre, Coffs Harbour Hospital, Coffs Harbour, New South Wales, 2450, Australia, Tel + 61 2 6656 5125, Fax +61 2 6656 5855, Email
| |
Collapse
|
29
|
Stella S, Martorana F, Massimino M, Vitale SR, Manzella L, Vigneri P. Potential Therapeutic Targets for Luminal Androgen Receptor Breast Cancer: What We Know so Far. Onco Targets Ther 2023; 16:235-247. [PMID: 37056632 PMCID: PMC10089148 DOI: 10.2147/ott.s379867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/24/2023] [Indexed: 04/15/2023] Open
Abstract
Luminal Androgen Receptor Breast Cancers (LAR BCs) are characterized by a triple negative phenotype and by the expression of Androgen Receptor (AR), coupled with luminal-like genomic features. This unique BC subtype, accounting for about 10% of all triple negative BC, has raised considerable interest given its ill-defined clinical behavior and the chance to exploit AR as a therapeutic target. The complexity of AR activity in BC cells, as revealed by decades of mechanistic studies, holds promise to offer additional therapeutic options beyond mere AR inhibition. Indeed, preclinical and translational evidence showed that several pathways and mediators, including PI3K/mToR, HER2, BRCA1, cell cycle and immune modulation, can be tackled in LAR BCs. Moving from bench to bedside, several clinical trials tested anti-androgen therapies in LAR BCs, but their results are inconsistent and often disappointing. More recently, studies exploring combinations of anti-androgen agents with other targeted therapies have been designed and are currently ongoing. While the results from these trials are awaited, a concerted effort will be needed to find the biological vulnerabilities of LAR BCs which may disclose new and effective therapeutic targets, eventually improving patients' outcomes.
Collapse
Affiliation(s)
- Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
- Correspondence: Stefania Stella, University of Catania, Department of Clinical and Experimental Medicine, Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Via S. Sofia, 78, Edificio 8D/2, Catania, Italy, Tel +39 95 378 1946, Email ;
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico “G. Rodolico - San Marco”, Catania, Italy
| |
Collapse
|
30
|
Tahtamouni L, Alzghoul A, Alderfer S, Sun J, Ahram M, Prasad A, Bamburg J. The role of activated androgen receptor in cofilin phospho-regulation depends on the molecular subtype of TNBC cell line and actin assembly dynamics. PLoS One 2022; 17:e0279746. [PMID: 36584207 PMCID: PMC9803305 DOI: 10.1371/journal.pone.0279746] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is highly metastatic and of poor prognosis. Metastasis involves coordinated actin filament dynamics mediated by cofilin and associated proteins. Activated androgen receptor (AR) is believed to contribute to TNBC tumorigenesis. Our current work studied roles of activated AR and cofilin phospho-regulation during migration of three AR+ TNBC cell lines to determine if altered cofilin regulation can explain their migratory differences. Untreated or AR agonist-treated BT549, MDA-MB-453, and SUM159PT cells were compared to cells silenced for cofilin (KD) or AR expression/function (bicalutamide). Cofilin-1 was found to be the only ADF/cofilin isoform expressed in each TNBC line. Despite a significant increase in cofilin kinase caused by androgens, the ratio of cofilin:p-cofilin (1:1) did not change in SUM159PT cells. BT549 and MDA-MB-453 cells contain high p-cofilin levels which underwent androgen-induced dephosphorylation through increased cofilin phosphatase expression, but surprisingly maintain a leading-edge with high p-cofilin/total cofilin not found in SUM159PT cells. Androgens enhanced cell polarization in all lines, stimulated wound healing and transwell migration rates and increased N/E-cadherin mRNA ratios while reducing cell adhesion in BT549 and MDA-MB-453 cells. Cofilin KD negated androgen effects in MDA-MB-453 except for cell adhesion, while in BT549 cells it abrogated androgen-reduced cell adhesion. In SUM159PT cells, cofilin KD with and without androgens had similar effects in almost all processes studied. AR dependency of the processes were confirmed. In conclusion, cofilin regulation downstream of active AR is dependent on which actin-mediated process is being examined in addition to being cell line-specific. Although MDA-MB-453 cells demonstrated some control of cofilin through an AR-dependent mechanism, other AR-dependent pathways need to be further studied. Non-cofilin-dependent mechanisms that modulate migration of SUM159PT cells need to be investigated. Categorizing TNBC behavior as AR responsive and/or cofilin dependent can inform on decisions for therapeutic treatment.
Collapse
Affiliation(s)
- Lubna Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail: ,
| | - Ahmad Alzghoul
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Sydney Alderfer
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - Jiangyu Sun
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Mamoun Ahram
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman, Jordan
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States of America
| | - James Bamburg
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, United States of America
| |
Collapse
|
31
|
Agri-Food By-Products in Cancer: New Targets and Strategies. Cancers (Basel) 2022; 14:cancers14225517. [PMID: 36428610 PMCID: PMC9688227 DOI: 10.3390/cancers14225517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
The globalization and the changes in consumer lifestyles are forcing us to face a deep transformation in food demand and in the organization of the entire food production system. In this new era, the food-loss and food-waste security nexus is relevant in the global debate and avoiding unsustainable waste in agri-food systems as well as the supply chain is a big challenge. "Food waste" is useful for the recovery of its valuable components, thus it can assume the connotation of a "food by-product". Sustainable utilization of agri-food waste by-products provides a great opportunity. Increasing evidence shows that agri-food by-products are a source of different bioactive molecules that lower the inflammatory state and, hence, the aggressiveness of several proliferative diseases. This review aims to summarize the effects of agri-food by-products derivatives, already recognized as promising therapeutics in human diseases, including different cancer types, such as breast, prostate, and colorectal cancer. Here, we examine products modulating or interfering in the signaling mediated by the epidermal growth factor receptor.
Collapse
|
32
|
Wang R, Wang X, Yin L, Yin L, Chu GCY, Hu P, Ou Y, Zhang Y, Lewis MS, Pandol SJ. Breast Cancer MCF-7 Cells Acquire Heterogeneity during Successive Co-Culture with Hematopoietic and Bone Marrow-Derived Mesenchymal Stem/Stromal Cells. Cells 2022; 11:3553. [PMID: 36428982 PMCID: PMC9688235 DOI: 10.3390/cells11223553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
During disease progression and bone metastasis, breast tumor cells interact with various types of bystander cells residing in the tumor microenvironment. Such interactions prompt tumor cell heterogeneity. We used successive co-culture as an experimental model to examine cancer-bystander cell interaction. RMCF7-2, a clone of the human breast cancer MCF-7 cells tagged with a red fluorescent protein, was tracked for morphologic, behavioral, and gene expression changes. Co-cultured with various types of hematopoietic cells, RMCF7-2 adopted stable changes to a rounded shape in suspension growth of red fluorescent cells, from which derivative clones displayed marked expressional changes of marker proteins, including reduced E-cadherin and estrogen receptor α, and loss of progesterone receptor. In a successive co-culture with bone marrow-derived mesenchymal stem/stromal cells, the red fluorescent clones in suspension growth changed once more, adopting an attachment growth, but in diversified shapes. Red fluorescent clones recovered from the second-round co-culture were heterogeneous in morphology, but retained the altered marker protein expression while displaying increased proliferation, migration, and xenograft tumor formation. Interaction with bystander cells caused permanent morphologic, growth behavioral, and gene expressional changes under successive co-culture, which is a powerful model for studying cancer cell heterogeneity during breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xudong Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liyuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Lijuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Peizhen Hu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yan Ou
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Zhang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael S. Lewis
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Pathology, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
33
|
James JP, Devaraji V, Sasidharan P, T. S. P. Pharmacophore Modeling, 3D QSAR, Molecular Dynamics Studies and Virtual Screening on Pyrazolopyrimidines as anti-Breast Cancer Agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2135545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jainey P. James
- Department of Pharmaceutical Chemistry, Nitte (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Deralakatte, India
| | - Vinod Devaraji
- Computational Drug Design Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Pradija Sasidharan
- Department of Pharmaceutical Chemistry, Nitte (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Deralakatte, India
| | - Pavan T. S.
- Department of Pharmaceutical Chemistry, Nitte (Deemed to Be University), NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Deralakatte, India
| |
Collapse
|
34
|
Liu H, Li H, Zhang J, Meng Q, Ma L. Correlation of TBK1, AR, and other serum cancer-related biomarkers in breast cancer patients: An observational study. Medicine (Baltimore) 2022; 101:e29996. [PMID: 35984205 PMCID: PMC9387973 DOI: 10.1097/md.0000000000029996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Breast cancer (BC) ranks first for incidence and mortality in gynecological malignant tumors. This study aims to investigate the diagnostic value of Tank-binding kinase 1 (TBK1) and its correlation with androgen receptor (AR) and other serum cancer-related biomarkers in BC patient. The present observational study included 451 female BC patients and 451 healthy controls. Serum levels of TBK1, AR and other cancer-related biomarkers were detected in all the patients and healthy controls. Patients' demographic data and clinical data including age, body mass index (BMI), tumor node Metastasis (TNM), pathological type, tumor size and lymph node metastasis were collected. The follow-up lasted for 5 years. The deceased group had higher rate of patients with TNM III~IV, lymph node metastasis or tumor diameter >2. Deceased group had much higher rate of patients with negative ER and positive Ki67. Besides, increased TBK1 was found in BC patients with positive correlation with AR, CA15-3, CA125, CEA, and CA19-9. Serum TBK1 was associated with the clinic outcomes of BC patients and those with high TBK1 had lower 5-year survival rate. Moreover, cutoff value of 13.95 ng/mL TBK1 showed AUC of 0.981 (93.6% for sensitivity and 86.3% for specificity) for diagnosing BC, and cutoff value of 22.65 ng/mL TBK1 had AUC of 0.996 (97.7% for sensitivity and 96.3% for specificity) for diagnosing the death of BC patients. Serum TBK1 was positively correlated with AR and other serum cancer-related biomarkers. In addition, high TBK1 predicted the poor prognosis and might be used for the diagnosis of BC.
Collapse
Affiliation(s)
- HanCheng Liu
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - HuiMing Li
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - Jie Zhang
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - QingLai Meng
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - LiHui Ma
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
- * Correspondence: LiHui Ma, Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Feng Yingzi town, Shuangqiao, Chengde City, Hebei, 067000, China (e-mail: )
| |
Collapse
|
35
|
Nishi K, Fu W, Kiyama R. Novel estrogen-responsive genes (ERGs) for the evaluation of estrogenic activity. PLoS One 2022; 17:e0273164. [PMID: 35976950 PMCID: PMC9385026 DOI: 10.1371/journal.pone.0273164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Estrogen action is mediated by various genes, including estrogen-responsive genes (ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene expression profiling using a set of ERGs has been used to examine statistically reliable transcriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). However, the quality of ERGs has not been extensively examined. Here, we obtained a set of 300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which was based on the coefficient of variation (CV) analysis, correlation analysis, and examination of the functional association with estrogen action using database searches. A set of the top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and qualitatively by a functional analysis using the GO and KEGG databases and by a mechanistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regulation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the association with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs identified here represent various cell functions and cell signaling pathways, including estrogen signaling, and thus, may be useful to evaluate estrogenic activity.
Collapse
Affiliation(s)
- Kentaro Nishi
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Wenqiang Fu
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| | - Ryoiti Kiyama
- Department of Life Science, Faculty of Life Science, Kyushu Sangyo University Matsukadai, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
36
|
Di Donato M, Giovannelli P, Migliaccio A, Bilancio A. Inhibition of Vps34 and p110δ PI3K Impairs Migration, Invasion and Three-Dimensional Spheroid Growth in Breast Cancer Cells. Int J Mol Sci 2022; 23:9008. [PMID: 36012280 PMCID: PMC9409264 DOI: 10.3390/ijms23169008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is a heterogeneous disease that represents the most common cancer around the world; it comprises 12% of new cases according to the World Health Organization. Despite new approaches in early diagnosis and current treatment, breast cancer is still the leading cause of death for cancer mortality. New targeted therapies against key signalling transduction molecules are required. Phosphoinositide 3-kinase (PI3K) regulates multiple biological functions such as proliferation, survival, migration, and growth. It is well established that PI3K isoform-selective inhibitors show fewer toxic side effects compared to broad spectrum inhibition of PI3K (pan-PI3K inhibitors). Therefore, we tested the PI3K p110δ-selective inhibitor, IC87114, and Vps34-selective inhibitor, Vps34-IN1, on the breast cancer cell lines MCF-7 and MDA-MB-231, representing hormone-responsive and triple-negative breast cancer cells, respectively. Our data show that both inhibitors decreased migration of MCF-7 and MDA-MB-231 cells, and Vps34 also significantly impacted MCF-7 cell proliferation. Three-dimensional (3D) in vitro culture models show that IC87114 and Vps34-IN1 treatment reduced the growth of MCF-7 and MDA-MB-231 cells in 3D tumour spheroid cultures. This study identifies IC87114 and Vps34-IN1 as potential therapeutic approaches in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Antonio Bilancio
- Department of Medicine Precision, “Luigi Vanvitelli”, Affiliation University of Campania, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
37
|
Cellular Senescence in Normal Mammary Gland and Breast Cancer. Implications for Cancer Therapy. Genes (Basel) 2022; 13:genes13060994. [PMID: 35741756 PMCID: PMC9223240 DOI: 10.3390/genes13060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence (CS) is a major homeostatic biological process, which plays a key role in normal tissue development and provides protection from stressful cell insults. The role of CS in mammary-gland development and breast cancer is not well understood. While there is a lack of experimental data on the role of CS in the development of the pre-pubertal mammary gland, there is evidence for a biphasic senescence response in adult normal-mammary-epithelial cells, where the bypass of the first senescence barrier (M0) seems to be a key step in the development of premalignant lesions, with genetic abnormalities that resemble in situ breast carcinoma. Further, there is accumulating evidence for the role of cellular senescence in breast-cancer response, regarding treatment and patient outcome. Here, we review the current literature on cellular senescence, in epithelial-mammary cells, breast-cancer cells, and breast-tumor-microenvironment-resident cells. Furthermore, we discuss its putative role in breast-cancer response, regarding treatment and disease progression. In addition, we provide preliminary evidence of CS in breast-cancer-microenvironment cells, such as tumor-associated fibroblasts and tumor-infiltrating lymphocytes, by employing the novel GL13 lipofuscin stain, as a marker of cellular senescence.
Collapse
|
38
|
Hong R, Sun H, Li D, Yang W, Fan K, Liu C, Dong L, Wang G. A Review of Biosensors for Detecting Tumor Markers in Breast Cancer. Life (Basel) 2022; 12:342. [PMID: 35330093 PMCID: PMC8955405 DOI: 10.3390/life12030342] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has the highest cancer incidence rate in women. Early screening of breast cancer can effectively improve the treatment effect of patients. However, the main diagnostic techniques available for the detection of breast cancer require the corresponding equipment, professional practitioners, and expert analysis, and the detection cost is high. Tumor markers are a kind of active substance that can indicate the existence and growth of the tumor. The detection of tumor markers can effectively assist the diagnosis and treatment of breast cancer. The conventional detection methods of tumor markers have some shortcomings, such as insufficient sensitivity, expensive equipment, and complicated operations. Compared with these methods, biosensors have the advantages of high sensitivity, simple operation, low equipment cost, and can quantitatively detect all kinds of tumor markers. This review summarizes the biosensors (2013-2021) for the detection of breast cancer biomarkers. Firstly, the various reported tumor markers of breast cancer are introduced. Then, the development of biosensors designed for the sensitive, stable, and selective recognition of breast cancer biomarkers was systematically discussed, with special attention to the main clinical biomarkers, such as human epidermal growth factor receptor-2 (HER2) and estrogen receptor (ER). Finally, the opportunities and challenges of developing efficient biosensors in breast cancer diagnosis and treatment are discussed.
Collapse
Affiliation(s)
- Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kai Fan
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, Hangzhou Dianzi University, Hangzhou 310018, China; (R.H.); (H.S.); (W.Y.); (K.F.); (C.L.); (L.D.); (G.W.)
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
39
|
Al-Otaibi JS, Sheena Mary Y. Computational Studies, GERS, Photovoltaic Modelling and Molecular Docking Studies of Diethylstilbestrol and Its Methyl Ether. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2038219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
40
|
The Relationship between Androgen Receptor Gene Polymorphism, Aggression and Social Status in Young Men and Women. Behav Sci (Basel) 2022; 12:bs12020042. [PMID: 35200293 PMCID: PMC8869512 DOI: 10.3390/bs12020042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
In both sexes, aggression has been described as a critical trait to acquire social status. Still, almost uniquely in men, the link between aggressiveness and the genetic background of testosterone sensitivity measured from the polymorphism in the androgen receptor (AR) gene has been previously investigated. We assessed the relevance of the AR gene to understand aggression and how aggressiveness affects social status in a cross-sectional study of 195 participants, for the first time in both young men and women. We estimated polymorphism sequences from saliva and measured aggression and self-perceived social status. Unfortunately, the results did not support our prediction because we did not find any of the expected relationships. Therefore, the results suggest that the genetic association between aggressive mechanisms and polymorphism of the AR gene is less straightforward than expected, at least in men, and seems to indicate that aggression is not usually used to gain social status in our population.
Collapse
|
41
|
Hager E, Chen J, Zhao L. Minireview: Parabens Exposure and Breast Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1873. [PMID: 35162895 PMCID: PMC8834979 DOI: 10.3390/ijerph19031873] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/21/2022]
Abstract
There is increasing recognition that environmental exposure to chemicals, such as endocrine-disruptive chemicals (EDCs), contributes to the development of breast cancer. Parabens are a group of EDCs commonly found in personal care products, foods, and pharmaceuticals. Systemic exposure to parabens has been confirmed by the ubiquitous detection of parabens in human blood and urine samples. Although evidence from in vivo and epidemiological studies linking parabens exposure to breast cancer is limited, the current evidence suggests that parabens may negatively interfere with some endocrine and intracrine targets relevant to breast carcinogenesis. So far, most studies have focused on a single paraben's effects and the direct modulating effects on estrogen receptors or the androgen receptor in vitro. Recent studies have revealed that parabens can modulate local estrogen-converting enzymes, 17β-hydroxysteroid dehydrogenase 1 and 2 and increase local estrogen levels. Also, parabens can crosstalk with the human epidermal growth factor receptor 2 (HER2) pathway and work with ER signaling to increase pro-oncogenic c-Myc expression in ER+/HER2+ breast cancer cells. Future studies investigating paraben mixtures and their crosstalk with other EDCs or signaling pathways both in vitro and in vivo in the context of breast cancer development are warranted.
Collapse
Affiliation(s)
- Emily Hager
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA;
| | - Jiangang Chen
- Department of Public Health, University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, University of Tennessee, Knoxville, TN 37996, USA;
| |
Collapse
|
42
|
Qiu D, Zhang G, Yan X, Xiao X, Ma X, Lin S, Wu J, Li X, Wang W, Liu J, Ma Y, Ma M. Prospects of Immunotherapy for Triple-Negative Breast Cancer. Front Oncol 2022; 11:797092. [PMID: 35111680 PMCID: PMC8801574 DOI: 10.3389/fonc.2021.797092] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
In the classification and typing of breast cancer, triple-negative breast cancer (TNBC) is one type of refractory breast cancer, while chemotherapy stays in the traditional treatment methods. However, the impact of chemotherapy is short-lived and may lead to recurrence due to incomplete killing of tumor cells. The occurrence, development, and relapse of breast cancer are relevant to T cell dysfunction, multiplied expression of related immune checkpoint molecules (ICIs) such as programmed death receptor 1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) produce immunosuppressive effect. Immunotherapy (namely, immune checkpoint inhibitors, adoptive cellular immunotherapy, CAR-T immunotherapy and some potential treatments) provides new hope in TNBC. This review focuses on the new immune strategies of TNBC patients.
Collapse
Affiliation(s)
- Dan Qiu
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Guijuan Zhang
- School of Nursing of Jinan University, Jinan University, Guangzhou, China
| | - Xianxin Yan
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinqin Xiao
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinyi Ma
- School Public Health, Southern Medical University (No: 3210090112), Guangzhou, China
| | - Shujun Lin
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Jieyan Wu
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China
| | - Xinyuan Li
- School of Medicine, Jinan University, Guangzhou, China
| | - Wandi Wang
- School of Medicine, Jinan University, Guangzhou, China
| | - Junchen Liu
- School of Medicine, Jinan University, Guangzhou, China
| | - Yi Ma
- Department of Cellular Biology, Institute of Biomedicine, National Engineering, Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, The National Demonstration Center for Experimental Education of Life Science and Technology, Jinan University, Guangzhou, China
| | - Min Ma
- School of Traditional Chinese Medicine of Jinan University, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
The Role of Androgen Receptor and microRNA Interactions in Androgen-Dependent Diseases. Int J Mol Sci 2022; 23:ijms23031553. [PMID: 35163477 PMCID: PMC8835816 DOI: 10.3390/ijms23031553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) is a member of the steroid hormone receptor family of nuclear transcription factors. It is present in the primary/secondary sexual organs, kidneys, skeletal muscles, adrenal glands, skin, nervous system, and breast. Abnormal AR functioning has been identified in numerous diseases, specifically in prostate cancer (PCa). Interestingly, recent studies have indicated a relationship between the AR and microRNA (miRNA) crosstalk and cancer progression. MiRNAs are small, endogenous, non-coding molecules that are involved in crucial cellular processes, such as proliferation, apoptosis, or differentiation. On the one hand, AR may be responsible for the downregulation or upregulation of specific miRNA, while on the other hand, AR is often a target of miRNAs due to their regulatory function on AR gene expression. A deeper understanding of the AR–miRNA interactions may contribute to the development of better diagnostic tools as well as to providing new therapeutic approaches. While most studies usually focus on the role of miRNAs and AR in PCa, in this review, we go beyond PCa and provide insight into the most recent discoveries about the interplay between AR and miRNAs, as well as about other AR-associated and AR-independent diseases.
Collapse
|
44
|
Shen E, Van Swearingen AED, Price MJ, Bulsara K, Verhaak RGW, Baëta C, Painter BD, Reitman ZJ, Salama AKS, Clarke JM, Anders CK, Fecci PE, Goodwin CR, Walsh KM. A Need for More Molecular Profiling in Brain Metastases. Front Oncol 2022; 11:785064. [PMID: 35145903 PMCID: PMC8821807 DOI: 10.3389/fonc.2021.785064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
As local disease control improves, the public health impact of brain metastases (BrM) continues to grow. Molecular features are frequently different between primary and metastatic tumors as a result of clonal evolution during neoplasm migration, selective pressures imposed by systemic treatments, and differences in the local microenvironment. However, biomarker information in BrM is not routinely obtained despite emerging evidence of its clinical value. We review evidence of discordance in clinically actionable biomarkers between primary tumors, extracranial metastases, and BrM. Although BrM biopsy/resection imposes clinical risks, these risks must be weighed against the potential benefits of assessing biomarkers in BrM. First, new treatment targets unique to a patient's BrM may be identified. Second, as BrM may occur late in a patient's disease course, resistance to initial targeted therapies and/or loss of previously identified biomarkers can occur by the time of occult BrM, rendering initial and other targeted therapies ineffective. Thus, current biomarker data can inform real-time treatment options. Third, biomarker information in BrM may provide useful prognostic information for patients. Appreciating the importance of biomarker analyses in BrM tissue, including how it may identify specific drivers of BrM, is critical for the development of more effective treatment strategies to improve outcomes for this growing patient population.
Collapse
Affiliation(s)
- Erica Shen
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Farmington, CT, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Amanda E. D. Van Swearingen
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Meghan J. Price
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Ketan Bulsara
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Farmington, CT, United States
| | - Roeland G. W. Verhaak
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Farmington, CT, United States
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam Universitair Medische Centra (UMC), Vrije Universiteit Amsterdam (VU) University Medical Center (VUmc), Amsterdam, Netherlands
| | - César Baëta
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Brice D. Painter
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Zachary J. Reitman
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States
| | - April K. S. Salama
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Jeffrey M. Clarke
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Carey K. Anders
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Peter E. Fecci
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - C. Rory Goodwin
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Kyle M. Walsh
- Duke Center for Brain and Spine Metastasis, Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
45
|
Liman AA, Kabir B, Abubakar M, Abdullahi S, Ahmed SA, Shehu SM. Triple-negative Breast Cancer (TNBC) and Its Luminal Androgen Receptor (LAR) Subtype: A Clinicopathologic Review of Cases in a University Hospital in Northwestern Nigeria. Niger J Clin Pract 2022; 25:97-104. [PMID: 35046202 DOI: 10.4103/njcp.njcp_437_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Breast cancer (BC) is a common malignancy; the most frequent in Nigeria. BC characteristically exhibits great biologic diversity. Amongst its variants, the triple-negative subtype is also characterized by heterogeneity (thus making it a study in diversity within diversity) and also by some unique clinicopathologic features including clinical aggressiveness, lack of response to current targeted therapies, and tendency to cluster amongst young premenopausal women especially in populations of women of African ancestry. Aims The objective of this study was to conduct a retrospective clinicopathologic survey of all breast carcinomas to profile the triple-negative breast cancers (TNBCs) amongst them and illustrate their immunohistochemical pattern of luminal androgen receptors (LARs) expression. Patients and Methods All the cases entered into the departmental records as breast carcinomas over the study period were extracted including patients' request cards, hematoxylin and eosin-stained slides, and paraffin-embedded tissue blocks of those diagnosed as triple-negative cancers. These were immunohistochemically stained using a monoclonal antibody for androgen receptor (AR). The whole data were analyzed and presented in tabular formats. Results A total of 660 breast carcinomas of which 89 (13.48%) cases were identified as TNBCs with a mean age of occurrence of 42.89 ± 11.88 years. Most TNBCs (95.5%) were carcinoma no special type and 61.8% had low or intermediate histologic grading. LAR expression was noted in 11.24% of the TNBCs. Conclusion Triple-negative cancer in this study shares some of the known characteristics but also portrays some divergence from the commonly described features.
Collapse
Affiliation(s)
- A A Liman
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - B Kabir
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - M Abubakar
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - S Abdullahi
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - S A Ahmed
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - S M Shehu
- Department of Pathology, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| |
Collapse
|
46
|
Brandão DC, Lima PMAP, Martins IC, Cordeiro CS, Cordeiro AO, Vecchi L, Guerra JFC, Orsolin PC, Gazolla MC, Costa DS, da Silva Filho AA, Araújo TG. Arrabidaea chica chloroform extract modulates estrogen and androgen receptors on luminal breast cancer cells. BMC Complement Med Ther 2022; 22:18. [PMID: 35057779 PMCID: PMC8773405 DOI: 10.1186/s12906-022-03506-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast Cancer (BC) is the most common cancer in women worldwide and, although 70% of patients are responsive to selective Estrogen Receptor (ER) modulators such as Tamoxifen (Tam), patients' survival is comprised by resistance to endocrine therapy. Brazilian flora, especially the Amazon biome, is one of the richest global sources of native species with potentially bioactive compounds. Arrabidaea chica is a plant native to the Amazon that has been used in the treatment of different diseases. However, its action on BC remains unclear. METHODS Herein the biological effects of the chloroform extract of A. chica (CEAC) were evaluated on BC cells and in in vivo model. After confirmation of CEAC antioxidant capacity, cells were treated with CEAC and Tam, alone and with CEAC+Tam. The cell viability was evaluated by MTT and hormone receptor transcripts levels were assessed (ESR1, ESR2 and AR). Finally, anticarcinogenicity of CEAC was recorded in Drosophila melanogaster through Epithelial Tumor Test (ETT). RESULTS The study confirmed the antioxidant activity of CEAC. CEAC was selective for MCF-7, downregulating ESR2 and AR transcripts and upregulating ESR2 expression. The modulatory effects of CEAC on ERs did not differ between cells treated with Tam and with CEAC+Tam. Interestingly, previous treatment with CEAC, followed by treatment with Tam promoted a significant decrease in cell viability. The extract also presented anticarcinogenic effect in in vivo assay. CONCLUSION The bioassays on breast tumor cells demonstrated the antiproliferative activity of the extract, which modulated the expression of hormone receptors and sensitized luminal tumor cells to Tam. These results suggest that CEAC could be a complementary treatment for BC.
Collapse
Affiliation(s)
- Douglas C. Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
| | - Paula M. A. P. Lima
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas, MG Brazil
| | - Isabella C. Martins
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
| | - Carina S. Cordeiro
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
| | - Antonielle O. Cordeiro
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG Brazil
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG Brazil
| | - Joyce F. C. Guerra
- Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas, MG Brazil
| | - Priscila C. Orsolin
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas, MG Brazil
| | - Matheus C. Gazolla
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG Brazil
| | - Danilo S. Costa
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG Brazil
| | - Ademar A. da Silva Filho
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG Brazil
| | - Thaise G. Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Rua Major Jerônimo, 566, Sala 601, Patos de Minas, MG 38700-002 Brazil
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG Brazil
| |
Collapse
|
47
|
Malbeteau L, Pham HT, Eve L, Stallcup MR, Poulard C, Le Romancer M. How Protein Methylation Regulates Steroid Receptor Function. Endocr Rev 2022; 43:160-197. [PMID: 33955470 PMCID: PMC8755998 DOI: 10.1210/endrev/bnab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 02/06/2023]
Abstract
Steroid receptors (SRs) are members of the nuclear hormonal receptor family, many of which are transcription factors regulated by ligand binding. SRs regulate various human physiological functions essential for maintenance of vital biological pathways, including development, reproduction, and metabolic homeostasis. In addition, aberrant expression of SRs or dysregulation of their signaling has been observed in a wide variety of pathologies. SR activity is tightly and finely controlled by post-translational modifications (PTMs) targeting the receptors and/or their coregulators. Whereas major attention has been focused on phosphorylation, growing evidence shows that methylation is also an important regulator of SRs. Interestingly, the protein methyltransferases depositing methyl marks are involved in many functions, from development to adult life. They have also been associated with pathologies such as inflammation, as well as cardiovascular and neuronal disorders, and cancer. This article provides an overview of SR methylation/demethylation events, along with their functional effects and biological consequences. An in-depth understanding of the landscape of these methylation events could provide new information on SR regulation in physiology, as well as promising perspectives for the development of new therapeutic strategies, illustrated by the specific inhibitors of protein methyltransferases that are currently available.
Collapse
Affiliation(s)
- Lucie Malbeteau
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Ha Thuy Pham
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Louisane Eve
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Medicine, Norris Comprehensive Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Coralie Poulard
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France.,Inserm U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France.,CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| |
Collapse
|
48
|
Androgen Receptor as an Emerging Feasible Biomarker for Breast Cancer. Biomolecules 2022; 12:biom12010072. [PMID: 35053220 PMCID: PMC8774219 DOI: 10.3390/biom12010072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 01/01/2022] [Indexed: 02/08/2023] Open
Abstract
Biomarkers can be used for diagnosis, prognosis, and prediction in targeted therapy. The estrogen receptor α (ERα) and human epidermal growth factor receptor 2 (HER2) are standard biomarkers used in breast cancer for guiding disease treatment. The androgen receptor (AR), a nuclear hormone receptor, contributes to the development and progression of prostate tumors and other cancers. With increasing evidence to support that AR plays an essential role in breast cancer, AR has been considered a useful biomarker in breast cancer, depending on the context of breast cancer sub-types. The existing survival analyses suggest that AR acts as a tumor suppressor in ER + ve breast cancers, serving as a favorable prognostic marker. However, AR functions as a tumor promoter in ER-ve breast cancers, including HER2 + ve and triple-negative (TNBC) breast cancers, serving as a poor prognostic factor. AR has also been shown to be predictive of the potential of response to adjuvant hormonal therapy in ER + ve breast cancers and to neoadjuvant chemotherapy in TNBC. However, conflicting results do exist due to intrinsic molecular differences between tumors and the scoring method for AR positivity. Applying AR expression status to guide treatment in different breast cancer sub-types has been suggested. In the future, AR will be a feasible biomarker for breast cancer. Clinical trials using AR antagonists in breast cancer are active. Targeting AR alone or other therapeutic agents provides alternatives to existing therapy for breast cancer. Therefore, AR expression will be necessary if AR-targeted treatment is to be used.
Collapse
|
49
|
Giovannelli P, Ramaraj P, Williams C. Editorial: Role of Sex Steroids and Their Receptor in Cancers. Front Endocrinol (Lausanne) 2022; 13:883229. [PMID: 35464052 PMCID: PMC9018976 DOI: 10.3389/fendo.2022.883229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pia Giovannelli
- Department of Precision Medicine, University of Campania “L.Vanvitelli”, Naples, Italy
- *Correspondence: Pia Giovannelli,
| | - Pandurangan Ramaraj
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO, United States
| | - Cecilia Williams
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
50
|
Dogra AK, Prakash A, Gupta S, Gupta M, Bhat SA. Genetic variations of vitamin D receptor gene and steroid receptors status in breast cancer risk: An updated review. ADVANCES IN BIOMARKER SCIENCES AND TECHNOLOGY 2022. [DOI: 10.1016/j.abst.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|