1
|
Kuckuck S, van der Valk ES, Scheurink AJW, van der Voorn B, Iyer AM, Visser JA, Delhanty PJD, van den Berg SAA, van Rossum EFC. Glucocorticoids, stress and eating: The mediating role of appetite-regulating hormones. Obes Rev 2023; 24:e13539. [PMID: 36480471 PMCID: PMC10077914 DOI: 10.1111/obr.13539] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Disrupted hormonal appetite signaling plays a crucial role in obesity as it may lead to uncontrolled reward-related eating. Such disturbances can be induced not only by weight gain itself but also by glucocorticoid overexposure, for example, due to chronic stress, disease, or medication use. However, the exact pathways are just starting to be understood. Here, we present a conceptual framework of how glucocorticoid excess may impair hormonal appetite signaling and, consequently, eating control in the context of obesity. The evidence we present suggests that counteracting glucocorticoid excess can lead to improvements in appetite signaling and may therefore pose a crucial target for obesity prevention and treatment. In turn, targeting hormonal appetite signals may not only improve weight management and eating behavior but may also decrease detrimental effects of glucocorticoid excess on cardio-metabolic outcomes and mood. We conclude that gaining a better understanding of the relationship between glucocorticoid excess and circulating appetite signals will contribute greatly to improvements in personalized obesity prevention and treatment.
Collapse
Affiliation(s)
- Susanne Kuckuck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Eline S van der Valk
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anton J W Scheurink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Bibian van der Voorn
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Patric J D Delhanty
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| | - Sjoerd A A van den Berg
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Department of Clinical Chemistry, Erasmus MC, Rotterdam, Netherlands
| | - Elisabeth F C van Rossum
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands.,Obesity Center CGG, Erasmus MC, Room Rg528, P.O. Box 2040, Rotterdam, 3000 CA, Netherlands
| |
Collapse
|
2
|
Vyunova TV, Andreeva LA, Shevchenko KV, Glazova NY, Sebentsova EA, Levitskaya NG, Myasoedov NF. Synthetic corticotropins and the GABA-receptor system: Direct and delayed effects. Chem Biol Drug Des 2023; 101:1393-1405. [PMID: 36828803 DOI: 10.1111/cbdd.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/16/2023] [Accepted: 02/13/2023] [Indexed: 02/26/2023]
Abstract
The central effectors of the stress system are greatly interconnected and include, among others, a large group of peptides derived from proopiomelanocortin. In addition to natural corticotropins, a number of artificial molecules that contain some ACTH fragments in their structure are also referred to members of this family. Some of them possess a wide range of biological activity. The molecular mechanism underlying the biological activity of such peptides is partly based on allosteric modulation of various receptors. We analyzed the ability of some biologically active synthetic corticotropins (ACTH(4-7)PGP, ACTH(6-9)PGP, ACTH(7-10)PGP), and glyproline PGPL to affect the GABA-receptor system of rat brain. The effects of the peptides were studied in the isolated plasma membranes of brain cells, as well as after systemic peptide administration in the rat model of acute restraint stress. The delayed effect of stress or preadministration of each of the studied peptides on [3 H]GABA binding was different for its high- and low-affinity-specific sites. The studied peptides individually affected the binding of [3 H]GABA in their own way. Acute restraint stress caused a decrease in [3 H]GABA binding at its low-affine site and did not affected the high-affine site. Preliminary peptide administration did not influence this effect of stress.
Collapse
Affiliation(s)
- Tatiana V Vyunova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia
| | - Ludmila A Andreeva
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia
| | - Konstantin V Shevchenko
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia
| | - Nataliya Yu Glazova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,Faculty of Biology, Moscow State University, Moscow, Russia
| | - Elena A Sebentsova
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,Faculty of Biology, Moscow State University, Moscow, Russia
| | - Natalia G Levitskaya
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,Faculty of Biology, Moscow State University, Moscow, Russia
| | - Nikolay F Myasoedov
- Institute of Molecular Genetics of National Research Centre «Kurchatov Institute», Moscow, Russia.,The Mental Health Research Center of the Russian Academy of Medical Sciences, Moscow, Russia
| |
Collapse
|
3
|
Nutrition and Gut–Brain Pathways Impacting the Onset of Parkinson’s Disease. Nutrients 2022; 14:nu14142781. [PMID: 35889738 PMCID: PMC9323908 DOI: 10.3390/nu14142781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
An emerging body of literature suggests that long-term gut inflammation may be a silent driver of Parkinson’s disease (PD) pathogenesis. Importantly, specific nutritive patterns might improve gut health for PD risk reduction. Here, we review the current literature on the nutritive patterns and inflammatory markers as a predictor for early detection of PD. This knowledge might be used to foster the detection of early nutritive patterns and preclinical biomarkers to potentially alter PD development and progression.
Collapse
|
4
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
5
|
Pagella S, Deussing JM, Kopp-Scheinpflug C. Expression Patterns of the Neuropeptide Urocortin 3 and Its Receptor CRFR2 in the Mouse Central Auditory System. Front Neural Circuits 2021; 15:747472. [PMID: 34867212 PMCID: PMC8633543 DOI: 10.3389/fncir.2021.747472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory systems have to be malleable to context-dependent modulations occurring over different time scales, in order to serve their evolutionary function of informing about the external world while also eliciting survival-promoting behaviors. Stress is a major context-dependent signal that can have fast and delayed effects on sensory systems, especially on the auditory system. Urocortin 3 (UCN3) is a member of the corticotropin-releasing factor family. As a neuropeptide, UCN3 regulates synaptic activity much faster than the classic steroid hormones of the hypothalamic-pituitary-adrenal axis. Moreover, due to the lack of synaptic re-uptake mechanisms, UCN3 can have more long-lasting and far-reaching effects. To date, a modest number of studies have reported the presence of UCN3 or its receptor CRFR2 in the auditory system, particularly in the cochlea and the superior olivary complex, and have highlighted the importance of this stress neuropeptide for protecting auditory function. However, a comprehensive map of all neurons synthesizing UCN3 or CRFR2 within the auditory pathway is lacking. Here, we utilize two reporter mouse lines to elucidate the expression patterns of UCN3 and CRFR2 in the auditory system. Additional immunolabelling enables further characterization of the neurons that synthesize UCN3 or CRFR2. Surprisingly, our results indicate that within the auditory system, UCN3 is expressed predominantly in principal cells, whereas CRFR2 expression is strongest in non-principal, presumably multisensory, cell types. Based on the presence or absence of overlap between UCN3 and CRFR2 labeling, our data suggest unusual modes of neuromodulation by UCN3, involving volume transmission and autocrine signaling.
Collapse
Affiliation(s)
- Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Mazurak N, Stengel A. Psychogastroenterologie. PSYCHOTHERAPEUT 2021. [DOI: 10.1007/s00278-021-00509-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Blanco AM, Calo J, Soengas JL. The gut–brain axis in vertebrates: implications for food intake regulation. J Exp Biol 2021; 224:224/1/jeb231571. [DOI: 10.1242/jeb.231571] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ABSTRACT
The gut and brain are constantly communicating and influencing each other through neural, endocrine and immune signals in an interaction referred to as the gut–brain axis. Within this communication system, the gastrointestinal tract, including the gut microbiota, sends information on energy status to the brain, which, after integrating these and other inputs, transmits feedback to the gastrointestinal tract. This allows the regulation of food intake and other physiological processes occurring in the gastrointestinal tract, including motility, secretion, digestion and absorption. Although extensive literature is available on the mechanisms governing the communication between the gut and the brain in mammals, studies on this axis in other vertebrates are scarce and often limited to a single species, which may not be representative for obtaining conclusions for an entire group. This Review aims to compile the available information on the gut–brain axis in birds, reptiles, amphibians and fish, with a special focus on its involvement in food intake regulation and, to a lesser extent, in digestive processes. Additionally, we will identify gaps of knowledge that need to be filled in order to better understand the functioning and physiological significance of such an axis in non-mammalian vertebrates.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| | - Jessica Calo
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| | - José Luis Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, 36310 Vigo, Pontevedra, Spain
| |
Collapse
|
8
|
Kumar U, Singh S. Role of Somatostatin in the Regulation of Central and Peripheral Factors of Satiety and Obesity. Int J Mol Sci 2020; 21:ijms21072568. [PMID: 32272767 PMCID: PMC7177963 DOI: 10.3390/ijms21072568] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity is one of the major social and health problems globally and often associated with various other pathological conditions. In addition to unregulated eating behaviour, circulating peptide-mediated hormonal secretion and signaling pathways play a critical role in food intake induced obesity. Amongst the many peptides involved in the regulation of food-seeking behaviour, somatostatin (SST) is the one which plays a determinant role in the complex process of appetite. SST is involved in the regulation of release and secretion of other peptides, neuronal integrity, and hormonal regulation. Based on past and recent studies, SST might serve as a bridge between central and peripheral tissues with a significant impact on obesity-associated with food intake behaviour and energy expenditure. Here, we present a comprehensive review describing the role of SST in the modulation of multiple central and peripheral signaling molecules. In addition, we highlight recent progress and contribution of SST and its receptors in food-seeking behaviour, obesity (orexigenic), and satiety (anorexigenic) associated pathways and mechanism.
Collapse
|
9
|
Hagi T, Nakagawa H, Ohmori H, Sasaki K, Kobayashi M, Narita T, Nomura M. Characterization of unique metabolites in γ-aminobutyric acid-rich cheese by metabolome analysis using liquid chromatography-mass spectrometry. J Food Biochem 2019; 43:e13039. [PMID: 31489647 DOI: 10.1111/jfbc.13039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Fermented dairy products comprise many functional components. Our previous study using fermented milk showed that the γ-aminobutyric acid (GABA)-producing Lactococcus lactis 01-7 strain can produce unique metabolites such as antihypertensive peptides, whereas this study was designed to find the unique metabolites in GABA-rich cheese using the 01-7 strain. Metabolites between cheese ripening with the non-GABA-producing L. lactis 01-1 strain (control) and GABA-rich cheese ripening with a mixture of 01-1 and 01-7 strains were compared. GABA and ornithine were detected in GABA-rich cheese using an amino acid analyzer and citrate was detected in the control cheese using HPLC. Metabolome analysis using LC-MS showed that peptides with unknown function and those with antihypertensive activity were higher in the GABA-rich cheese than in the control cheese. Further analysis of the amount of the YLGY derivatives showed that the amount of YL in the GABA-rich cheese was lower than that in the control. PRACTICAL APPLICATIONS: Clarification of metabolites in cheese contributes to the improvement of cheese ripening, thereby providing consumers with unique cheese with good nutritional and functional characteristics. The use of the 01-7 strain as a cheese starter might provide a functional cheese with antihypertensive-, antioxidative-, and anxiolytic-like activities.
Collapse
Affiliation(s)
- Tatsuro Hagi
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Hiroyuki Nakagawa
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Hideyuki Ohmori
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Keisuke Sasaki
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Miho Kobayashi
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Takumi Narita
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Masaru Nomura
- Animal Products Research Division, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| |
Collapse
|