1
|
Espinosa EP, Farhat S, Allam B. In silico identification of neuropeptide genes encoded by the genome of Crassostrea virginica with a special emphasis on feeding-related genes. Comp Biochem Physiol A Mol Integr Physiol 2024:111792. [PMID: 39694410 DOI: 10.1016/j.cbpa.2024.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Suspension-feeding bivalves, including the oyster Crassostrea virginica, use mucosal lectins to capture food particles. For instance, oysters can increase the transcription of these molecules to enhance food uptake. However, the regulatory processes influencing food uptake remain unclear although likely involve neuropeptides. Information on the neuropeptidome of C. virginica is limited, hindering the comprehension of its physiology, including energy homeostasis. This study explored the genome of C. virginica to identify neuropeptide precursors in silico and compared these with orthologs from other mollusks. A special focus was given to genes with potential implication in feeding processes. qPCR was used to determine the main organs of transcription of feeding-related genes. To further probe the function of target neuropeptides, visceral ganglia extracts and synthetic NPF were injected into oysters to evaluate their impact on genes associated with feeding and energy homeostasis. A total of eighty-five neuropeptides genes were identified in C. virginica genome. About 50 % of these are suggested to play a role in feeding processes. qPCR analyses showed that visceral ganglia and digestive system are the main organs for the synthesis of feeding-related neuropeptides. Further, results showed that the transcription of several neuropeptide genes in the visceral ganglia, including NPF and insulin-like peptide, increased after starvation. Finally, the injection of visceral ganglia extracts and synthetic NPF increased the transcription of a mucosal lectin and a glycogen synthase, known to be involved in food capture and glucose storage. Overall, this study identifies key genes regulating oyster physiology, enhancing the understanding of the control of basic physiological mechanisms in C. virginica.
Collapse
Affiliation(s)
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA; Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, 75005 Paris, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
2
|
Campli G, Volovych O, Kim K, Veldsman WP, Drage HB, Sheizaf I, Lynch S, Chipman AD, Daley AC, Robinson-Rechavi M, Waterhouse RM. The moulting arthropod: a complete genetic toolkit review. Biol Rev Camb Philos Soc 2024; 99:2338-2375. [PMID: 39039636 DOI: 10.1111/brv.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Exoskeletons are a defining character of all arthropods that provide physical support for their segmented bodies and appendages as well as protection from the environment and predation. This ubiquitous yet evolutionarily variable feature has been instrumental in facilitating the adoption of a variety of lifestyles and the exploitation of ecological niches across all environments. Throughout the radiation that produced the more than one million described modern species, adaptability afforded by segmentation and exoskeletons has led to a diversity that is unrivalled amongst animals. However, because of the limited extensibility of exoskeleton chitin and cuticle components, they must be periodically shed and replaced with new larger ones, notably to accommodate the growing individuals encased within. Therefore, arthropods grow discontinuously by undergoing periodic moulting events, which follow a series of steps from the preparatory pre-moult phase to ecdysis itself and post-moult maturation of new exoskeletons. Each event represents a particularly vulnerable period in an arthropod's life cycle, so processes must be tightly regulated and meticulously executed to ensure successful transitions for normal growth and development. Decades of research in representative arthropods provide a foundation of understanding of the mechanisms involved. Building on this, studies continue to develop and test hypotheses on the presence and function of molecular components, including neuropeptides, hormones, and receptors, as well as the so-called early, late, and fate genes, across arthropod diversity. Here, we review the literature to develop a comprehensive overview of the status of accumulated knowledge of the genetic toolkit governing arthropod moulting. From biosynthesis and regulation of ecdysteroid and sesquiterpenoid hormones, to factors involved in hormonal stimulation responses and exoskeleton remodelling, we identify commonalities and differences, as well as highlighting major knowledge gaps, across arthropod groups. We examine the available evidence supporting current models of how components operate together to prepare for, execute, and recover from ecdysis, comparing reports from Chelicerata, Myriapoda, Crustacea, and Hexapoda. Evidence is generally highly taxonomically imbalanced, with most reports based on insect study systems. Biases are also evident in research on different moulting phases and processes, with the early triggers and late effectors generally being the least well explored. Our synthesis contrasts knowledge based on reported observations with reasonably plausible assumptions given current taxonomic sampling, and exposes weak assumptions or major gaps that need addressing. Encouragingly, advances in genomics are driving a diversification of tractable study systems by facilitating the cataloguing of putative genetic toolkits in previously under-explored taxa. Analysis of genome and transcriptome data supported by experimental investigations have validated the presence of an "ultra-conserved" core of arthropod genes involved in moulting processes. The molecular machinery has likely evolved with elaborations on this conserved pathway backbone, but more taxonomic exploration is needed to characterise lineage-specific changes and novelties. Furthermore, linking these to transformative innovations in moulting processes across Arthropoda remains hampered by knowledge gaps and hypotheses based on untested assumptions. Promisingly however, emerging from the synthesis is a framework that highlights research avenues from the underlying genetics to the dynamic molecular biology through to the complex physiology of moulting.
Collapse
Affiliation(s)
- Giulia Campli
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Olga Volovych
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Kenneth Kim
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Werner P Veldsman
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Harriet B Drage
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Idan Sheizaf
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sinéad Lynch
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ariel D Chipman
- The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Allison C Daley
- Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, Lausanne, 1015, Switzerland
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Quartier UNIL-Sorge, Bâtiment Biophore, University of Lausanne, Lausanne, 1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge, Bâtiment Amphipôle, Lausanne, 1015, Switzerland
| |
Collapse
|
3
|
Watteyne J, Chudinova A, Ripoll-Sánchez L, Schafer WR, Beets I. Neuropeptide signaling network of Caenorhabditis elegans: from structure to behavior. Genetics 2024; 228:iyae141. [PMID: 39344922 PMCID: PMC11538413 DOI: 10.1093/genetics/iyae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
Neuropeptides are abundant signaling molecules that control neuronal activity and behavior in all animals. Owing in part to its well-defined and compact nervous system, Caenorhabditis elegans has been one of the primary model organisms used to investigate how neuropeptide signaling networks are organized and how these neurochemicals regulate behavior. We here review recent work that has expanded our understanding of the neuropeptidergic signaling network in C. elegans by mapping the evolutionary conservation, the molecular expression, the receptor-ligand interactions, and the system-wide organization of neuropeptide pathways in the C. elegans nervous system. We also describe general insights into neuropeptidergic circuit motifs and the spatiotemporal range of peptidergic transmission that have emerged from in vivo studies on neuropeptide signaling. With efforts ongoing to chart peptide signaling networks in other organisms, the C. elegans neuropeptidergic connectome can serve as a prototype to further understand the organization and the signaling dynamics of these networks at organismal level.
Collapse
Affiliation(s)
- Jan Watteyne
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| | | | - Lidia Ripoll-Sánchez
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Psychiatry, Cambridge University, Cambridge CB2 0SZ, UK
| | - William R Schafer
- Department of Biology, University of Leuven, Leuven 3000, Belgium
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Isabel Beets
- Department of Biology, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
4
|
Agricola H, Bräunig P. The complex neurochemistry of the cockroach antennal heart. Cell Tissue Res 2024; 398:139-160. [PMID: 39240336 PMCID: PMC11525290 DOI: 10.1007/s00441-024-03915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
The innervation of the antennal heart of the cockroach Periplaneta americana was studied with immunocytochemical techniques on both the light and electron microscopic levels. The antennal heart is innervated by two efferent systems, both using one biogenic amine in combination with neuropeptides. In one, we found co-localization of serotonin with proctolin and allatostatin. These fibers most likely originate from paired neurons located in the suboesophageal ganglion. In the second system, we found octopamine co-localized with the short neuropeptide F. The source of this second system is dorsal unpaired median (DUM) neurons, also located in the suboesophageal ganglion. The possible effects of these neuromediators on different targets are discussed.
Collapse
Affiliation(s)
- Hans Agricola
- Department of Cell Biology, Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich-Schiller University Jena, Hans-Knoell-Strasse 2, 07745, Jena, Germany.
| | - Peter Bräunig
- Department of Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
5
|
Giri G, Nagloo N, Enjin A. A dynamic humidity arena to explore humidity-related behaviours in insects. J Exp Biol 2024; 227:jeb247195. [PMID: 39319429 PMCID: PMC11529877 DOI: 10.1242/jeb.247195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Humidity is a critical environmental factor influencing the behaviour of terrestrial organisms. Despite its significance, the neural mechanisms and behavioural algorithms governing humidity sensation remain poorly understood. Here, we introduce a dynamic humidity arena that measures the displacement and walking speed of insects responding to real-time changes in relative humidity (RH). This arena operates in a closed-loop mode, adjusting humidity based on the insect's position with 0.2% RH resolution, allowing the insect to choose its optimal humidity. It can also be set to maintain a specific RH, simulating an open-loop condition to observe insect behaviour at constant humidity levels. Using the dynamic humidity arena, we found that desiccated and starved Drosophila melanogaster search for a RH of around 65-70% at 23°C, whereas sated flies show no unique preference for any RH. If the desiccated and starved flies are rehydrated, their searching behaviour is abolished, suggesting that desiccation has a great impact on the measured response. In contrast, mutant flies with impaired humidity sensing, due to a non-functional ionotropic receptor (Ir)93a, show no preference for any RH level irrespective of being desiccated and starved or sated. These results demonstrate that the dynamic humidity arena is highly sensitive and precise in capturing the nuanced behaviours associated with hydration status and RH preference in D. melanogaster. The dynamic humidity arena is easily adaptable to insects of other sizes and offers a foundation for further research on the mechanisms of hygrosensation, opening new possibilities for understanding how organisms perceive and respond to humidity in their environment.
Collapse
Affiliation(s)
- Ganesh Giri
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| | - Nicolas Nagloo
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Anders Enjin
- Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
6
|
Hou L, Guo S, Wang Y, Liu S, Wang X. Neuropeptide ACP is required for fat body lipid metabolism homeostasis in locusts. INSECT SCIENCE 2024; 31:1453-1465. [PMID: 38227554 DOI: 10.1111/1744-7917.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/21/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Fat body metabolism plays crucial roles in each aspect of insect life traits. Although neuropeptides have been documented to be one of the major neuroendocrinal regulators involved in fat body metabolism, the detailed regulatory mechanism is poorly explored. Here, we conducted comparative metabolome and transcriptome analyses of fat body between wide type (WT) and adipokinetic hormone/corazonin-related peptide (ACP) loss of function mutants of the migratory locust, Locusta migratoria. We found that knockout of ACP resulted in significantly reduced fat body triacylglycerol content but enhanced abundance of phospholipids, particularly phosphatidylcholine and phosphatidylethanolamine. Additionally, the expression levels of genes involved in triacylglycerol and phospholipid synthesis and degradation were significantly altered in the fat body of ACP mutants. Moreover, female ACP mutants displayed much higher fecundity compared to WT females. These findings highlight the important role of neuropeptide ACP in fat body lipid metabolism homeostasis in locusts.
Collapse
Affiliation(s)
- Li Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Siyuan Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shaoye Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Hehmeyer J, Plessier F, Marlow H. Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification. Annu Rev Cell Dev Biol 2024; 40:407-425. [PMID: 39052757 DOI: 10.1146/annurev-cellbio-111822-124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In animals, the nervous system evolved as the primary interface between multicellular organisms and the environment. As organisms became larger and more complex, the primary functions of the nervous system expanded to include the modulation and coordination of individual responsive cells via paracrine and synaptic functions as well as to monitor and maintain the organism's own internal environment. This was initially accomplished via paracrine signaling and eventually through the assembly of multicell circuits in some lineages. Cells with similar functions and centralized nervous systems have independently arisen in several lineages. We highlight the molecular mechanisms that underlie parallel diversifications of the nervous system.
Collapse
Affiliation(s)
- Jenks Hehmeyer
- Integrative Biology Program, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Flora Plessier
- Committee on Development, Regeneration, and Stem Cell Biology, The University of Chicago, Chicago, Illinois, USA
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| | - Heather Marlow
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, USA;
| |
Collapse
|
8
|
Vetkama W, Tinikul R, Sobhon P, Tinikul Y. Differential expression of neuropeptide F in the digestive organs of female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle. Cell Tissue Res 2024; 397:13-36. [PMID: 38592496 PMCID: PMC11231001 DOI: 10.1007/s00441-024-03893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Neuropeptide F is a key hormone that controls feeding in invertebrates, including decapod crustaceans. We investigated the differential expression of Macrobrachium rosenbergii neuropeptide F (MrNPF) in the digestive organs of female prawns, M. rosenbergii, during the ovarian cycle. By using RT-qPCR, the expression of MrNPF mRNA in the esophagus (ESO), cardia (CD), and pylorus (PY) of the foregut (FG) gradually increased from stage II and peaked at stage III. In the midgut (MG), hindgut (HG), and hepatopancreas (HP), MrNPF mRNA increased from stage I, reaching a maximal level at stage II, and declined by about half at stages III and IV (P < 0.05). In the ESO, CD, and PY, strong MrNPF-immunoreactivities were seen in the epithelium, muscle, and lamina propria. Intense MrNPF-ir was found in the MG cells and the muscular layer. In the HG, MrNPF-ir was detected in the epithelium of the villi and gland regions, while MrNPF-ir was also more intense in the F-, R-, and B-cells in the HP. However, we found little colocalization between the MrNPF and PGP9.5/ChAT in digestive tissues, implying that most of the positive cells might not be neurons but could be digestive tract-associated endocrine cells that produce and secrete MrNPF to control digestive organ functions in feeding and utilizing feed. Taken together, our first findings indicated that MrNPF was differentially expressed in digestive organs in correlation with the ovarian cycle, suggesting an important link between MrNPF, the physiology of various digestive organs in feeding, and possibly ovarian maturation in female M. rosenbergii.
Collapse
Affiliation(s)
- Warinthip Vetkama
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand.
| |
Collapse
|
9
|
Cholewiński M, Chowański S, Lubawy J, Urbański A, Walkowiak-Nowicka K, Marciniak P. Short neuropeptide F in integrated insect physiology. J Zhejiang Univ Sci B 2024; 25:389-409. [PMID: 38725339 PMCID: PMC11087187 DOI: 10.1631/jzus.b2300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 05/13/2024]
Abstract
The short neuropeptide F (sNPF) family of peptides is a multifunctional group of neurohormones involved in the regulation of various physiological processes in insects. They have been found in a broad spectrum of species, but the number of isoforms in the precursor molecule varies from one to four. The receptor for sNPF (sNPFR), which belongs to the G protein-coupled receptor family, has been characterized in various insect orders and was shown to be an ortholog of the mammalian prolactin-releasing peptide receptor (PrPR). The sNPF signaling pathway interacts with other neurohormones such as insulin-like peptides, SIFamide, and pigment-dispersing factors (PDFs) to regulate various processes. The main physiological function of sNPF seems to be involved in the regulation of feeding, but the observed effects are species-specific. sNPF is also connected with the regulation of foraging behavior and the olfactory system. The influence of sNPF on feeding and thus energy metabolism may also indirectly affect other vital processes, such as reproduction and development. In addition, these neurohormones are involved in the regulation of locomotor activity and circadian rhythm in insects. This review summarizes the current state of knowledge about the sNPF system in insects.
Collapse
Affiliation(s)
| | | | | | | | | | - Paweł Marciniak
- Department of Animal Physiology and Developmental Biology, Adam Mickiewicz University, Poznań 61-614, Poland.
| |
Collapse
|
10
|
Yang Z, Wang W, Deng M, Xiao T, Ma W, Huang X, Lu K. Characterization of Neuropeptides from Spodoptera litura and Functional Analysis of NPF in Diet Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10304-10313. [PMID: 38657164 DOI: 10.1021/acs.jafc.4c01465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.
Collapse
Affiliation(s)
- Zhiming Yang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenxiu Wang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Mengqing Deng
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Tianxiang Xiao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Wenling Ma
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiaodan Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Kai Lu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
11
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
12
|
Li MM, Yang Q, Chen LH, Li YY, Wu JX, Xu XL. Effect of short neuropeptide F signaling on larval feeding in Mythimna separata. INSECT SCIENCE 2024; 31:417-434. [PMID: 37464946 DOI: 10.1111/1744-7917.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 07/20/2023]
Abstract
Mythimna separata is a notorious phytophagous pest which poses serious threats to cereal crops owing to the gluttony of the larvae. Because short neuropeptide F (sNPF) and its receptor sNPFR are involved in a diversity of physiological functions, especially in functions related to feeding in insects, it is a molecular target for pest control. Herein, an sNPF and 2 sNPFRs were identified and cloned from M. separata. Bioinformatics analysis revealed that the sNPF and its receptors had a highly conserved RLRFamide C-terminus and 7 transmembrane domains, respectively. The sNPF and its receptor genes were distributed across larval periods and tissues, but 2 receptors had distinct expression patterns. The starvation-induced assay elucidated that sNPF and sNPFR expression levels were downregulated under food deprivation and recovered with subsequent re-feeding. RNA interference knockdown of sNPF, sNPFR1, and sNPFR2 by injection of double-stranded RNA into larvae not only suppressed food consumption and increased body size and weight, but also led to decrease of glycogen and total lipid contents, and increase of trehalose compared with double-stranded green fluorescent protein injection. Furthermore, molecular docking was performed on the interaction mode between sNPFR protein and its ligand sNPF based on the 3-dimensional models constructed by AlphaFold; the results indicated that both receptors were presumably activated by the mature peptide sNPF-2. These results revealed that sNPF signaling played a considerably vital role in the feeding regulation of M. separata and represents a potential control target for this pest.
Collapse
Affiliation(s)
- Mei-Mei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Qi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Li-Hui Chen
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Yan-Ying Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Jun-Xiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Xiang-Li Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A & F University, Yangling, Shaanxi Province, China
| |
Collapse
|
13
|
Zhou B, Ran H, Zhang Q, Chen H, Han F, Xu C, Zhao Q. Unveiling the Impact of Rapeseed Meal on Feeding Behavior and Anorexigenic Endocrine in Litopenaeus vannamei. Animals (Basel) 2024; 14:540. [PMID: 38396508 PMCID: PMC10886117 DOI: 10.3390/ani14040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Litopenaeus vannamei, with high plant protein acceptance and high global aquaculture production, is a potential species for rapeseed meal application. However, rapeseed meal has been associated with anorexia in fish, and whether the same occurs in L. vannamei remains unknown. This study demonstrated the effects of rapeseed meal on the feeding and anorexigenic endocrine of L. vannamei based on feeding behavior and transcriptomics. Soybean meal was replaced with fermented rapeseed meal (50%), and a significant increase in remaining diet and dietary discard was observed with a significant reduction in dietary visits. Transcriptome analysis revealed that the pathways involved in rapeseed meal-induced anorexia mainly included signal transduction, the digestive system, the sensory system, the endocrine system, phototransduction-fly, the thyroid hormone signaling pathway and pancreatic secretion. Moreover, this study further analyzed and identified seven neuropeptides involved in rapeseed meal-induced anorexia, and it explored the complex expression regulation strategies of these neuropeptides. In summary, this study confirmed through feeding behavior that rapeseed meal causes anorexia in L. vannamei, and it identified seven neuropeptides that were closely related to the anorexia process.
Collapse
Affiliation(s)
- Bo Zhou
- Fisheries Research Institute of Sichuan Academy of Agricultural Sciences, Yibin 644000, China;
| | - Hongmei Ran
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China (F.H.); (C.X.); (Q.Z.)
| | - Qijun Zhang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China (F.H.); (C.X.); (Q.Z.)
| | - Hu Chen
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China (F.H.); (C.X.); (Q.Z.)
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China (F.H.); (C.X.); (Q.Z.)
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China (F.H.); (C.X.); (Q.Z.)
| | - Qun Zhao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, School of Marine Biology and Fisheries, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Haikou 570228, China (F.H.); (C.X.); (Q.Z.)
| |
Collapse
|
14
|
Van Bael S, Ludwig C, Baggerman G, Temmerman L. Identification and Targeted Quantification of Endogenous Neuropeptides in the Nematode Caenorhabditis elegans Using Mass Spectrometry. Methods Mol Biol 2024; 2758:341-373. [PMID: 38549024 DOI: 10.1007/978-1-0716-3646-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The nematode Caenorhabditis elegans lends itself as an excellent model organism for peptidomics studies. Its ease of cultivation and quick generation time make it suitable for high-throughput studies. The nervous system, with its 302 neurons, is probably the best-known and studied endocrine tissue. Moreover, its neuropeptidergic signaling pathways display numerous similarities with those observed in other metazoans. Here, we describe two label-free approaches for neuropeptidomics in C. elegans: one for discovery purposes, and another for targeted quantification and comparisons of neuropeptide levels between different samples. Starting from a detailed peptide extraction procedure, we here outline the liquid chromatography tandem mass spectrometry (LC-MS/MS) setup and describe subsequent data analysis approaches.
Collapse
Affiliation(s)
- Sven Van Bael
- Department of Biology, Animal Physiology & Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Geert Baggerman
- Center for Proteomics, University of Antwerp, Antwerp, Belgium
| | - Liesbet Temmerman
- Department of Biology, Animal Physiology & Neurobiology, University of Leuven (KU Leuven), Leuven, Belgium.
| |
Collapse
|
15
|
Beets I, Zels S, Vandewyer E, Demeulemeester J, Caers J, Baytemur E, Courtney A, Golinelli L, Hasakioğulları İ, Schafer WR, Vértes PE, Mirabeau O, Schoofs L. System-wide mapping of peptide-GPCR interactions in C. elegans. Cell Rep 2023; 42:113058. [PMID: 37656621 PMCID: PMC7615250 DOI: 10.1016/j.celrep.2023.113058] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/19/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023] Open
Abstract
Neuropeptides and peptide hormones are ancient, widespread signaling molecules that underpin almost all brain functions. They constitute a broad ligand-receptor network, mainly by binding to G protein-coupled receptors (GPCRs). However, the organization of the peptidergic network and roles of many peptides remain elusive, as our insight into peptide-receptor interactions is limited and many peptide GPCRs are still orphan receptors. Here we report a genome-wide peptide-GPCR interaction map in Caenorhabditis elegans. By reverse pharmacology screening of over 55,384 possible interactions, we identify 461 cognate peptide-GPCR couples that uncover a broad signaling network with specific and complex combinatorial interactions encoded across and within single peptidergic genes. These interactions provide insights into peptide functions and evolution. Combining our dataset with phylogenetic analysis supports peptide-receptor co-evolution and conservation of at least 14 bilaterian peptidergic systems in C. elegans. This resource lays a foundation for system-wide analysis of the peptidergic network.
Collapse
Affiliation(s)
- Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium.
| | - Sven Zels
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | | | - Jonas Demeulemeester
- The Francis Crick Institute, London NW1 1AT, UK; VIB - KU Leuven Center for Cancer Biology, 3000 Leuven, Belgium; Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| | - Jelle Caers
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Esra Baytemur
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Amy Courtney
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Petra E Vértes
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK
| | - Olivier Mirabeau
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Inserm U1224, Brain-Immune Communication Lab, 75015 Paris, France
| | | |
Collapse
|
16
|
Zhao J, Song Y, Jiang X, He L, Wei L, Zhao Z. Synergism of Feeding and Digestion Regulated by the Neuropeptide F System in Ostrinia furnacalis Larvae. Cells 2023; 12:cells12010194. [PMID: 36611986 PMCID: PMC9818795 DOI: 10.3390/cells12010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Feeding is crucial for the growth and survival of animals, including humans, but relatively little is known about how it is regulated. Here, we show that larval feeding in Ostrinia furnacalis is regulated by neuropeptide F (NPF, the homologous peptide of mammalian NPY) via the insulin signalling pathway in the midgut. Furthermore, the genes pi3k and mtor in the insulin pathway positively regulate α-amylase and lipase of the midgut by recruiting the transcription factors c-Myc and PPARγ for binding to the promotors of these two enzymes. Importantly, we find that the feeding behaviour and the digestive system of midgut in O. furnacalis larvae are closely related and interactive in that knocking down α-amylase or lipase induces a reduction in larval feeding, while food-deprived larvae lead to fewer expressions of α-amylase and lipase. Importantly, it is the gut NPF that regulates the α-amylase and lipase, while variations of α-amylase and lipase may feed back to the brain NPF. This current study reveals a molecular feedback mechanism between feeding behaviour and the digestive system that is regulated by the conserved NPF via insulin signalling systems in the midgut of O. furnacalis larvae.
Collapse
Affiliation(s)
- Jiajia Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu Song
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuemin Jiang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Lei He
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liya Wei
- College of Life Sciences, Hebei University, Baoding 071002, China
- Correspondence: (L.W.); (Z.Z.)
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (L.W.); (Z.Z.)
| |
Collapse
|
17
|
Malita A, Kubrak O, Koyama T, Ahrentløv N, Texada MJ, Nagy S, Halberg KV, Rewitz K. A gut-derived hormone suppresses sugar appetite and regulates food choice in Drosophila. Nat Metab 2022; 4:1532-1550. [PMID: 36344765 PMCID: PMC9684077 DOI: 10.1038/s42255-022-00672-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Animals must adapt their dietary choices to meet their nutritional needs. How these needs are detected and translated into nutrient-specific appetites that drive food-choice behaviours is poorly understood. Here we show that enteroendocrine cells of the adult female Drosophila midgut sense nutrients and in response release neuropeptide F (NPF), which is an ortholog of mammalian neuropeptide Y-family gut-brain hormones. Gut-derived NPF acts on glucagon-like adipokinetic hormone (AKH) signalling to induce sugar satiety and increase consumption of protein-rich food, and on adipose tissue to promote storage of ingested nutrients. Suppression of NPF-mediated gut signalling leads to overconsumption of dietary sugar while simultaneously decreasing intake of protein-rich yeast. Furthermore, gut-derived NPF has a female-specific function in promoting consumption of protein-containing food in mated females. Together, our findings suggest that gut NPF-to-AKH signalling modulates specific appetites and regulates food choice to ensure homeostatic consumption of nutrients, providing insight into the hormonal mechanisms that underlie nutrient-specific hungers.
Collapse
Affiliation(s)
- Alina Malita
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olga Kubrak
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadja Ahrentløv
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
18
|
Chen Q, Liang Z, Yue Q, Wang X, Siu SWI, Pui-Man Hoi M, Lee SMY. A Neuropeptide Y/F-like Polypeptide Derived from the Transcriptome of Turbinaria peltata Suppresses LPS-Induced Astrocytic Inflammation. JOURNAL OF NATURAL PRODUCTS 2022; 85:1569-1580. [PMID: 35694811 DOI: 10.1021/acs.jnatprod.2c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuropeptides are a group of neuronal signaling molecules that regulate physiological and behavioral processes in animals. Here, we used in silico mining to predict the polypeptide composition of available transcriptomic data of Turbinaria peltata. In total, 118 transcripts encoding putative peptide precursors were discovered. One neuropeptide Y/F-like peptide, named TpNPY, was identified and selected for in silico structural, in silico binding, and pharmacological studies. In our study, the anti-inflammation effect of TpNPY was evaluated using an LPS-stimulated C8-D1A astrocyte cell model. Our results demonstrated that TpNPY, at 0.75-3 μM, inhibited LPS-induced NO production and reduced the expression of iNOS in a dose-dependent manner. Furthermore, TpNPY reduced the secretion of proinflammatory cytokines. Additionally, treatment with TpNPY reduced LPS-mediated elevation of ROS production and the intracellular calcium concentration. Further investigation revealed that TpNPY downregulated the IKK/IκB/NF-κB signaling pathway and inhibited expression of the NLRP3 inflammasome. Through molecular docking and using an NPY receptor antagonist, TpNPY was shown to have the ability to interact with the NPY Y1 receptor. On the basis of these findings, we concluded that TpNPY might prevent LPS-induced injury in astrocytes through activation of the NPY-Y1R.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qian Yue
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xiufen Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Shirley Weng In Siu
- Institute of Science and Environment, University of Saint Joseph, Macao, China
| | - Maggie Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
| |
Collapse
|
19
|
Das De T, Sharma P, Tevatiya S, Chauhan C, Kumari S, Yadav P, Singla D, Srivastava V, Rani J, Hasija Y, Pandey KC, Kajla M, Dixit R. Bidirectional Microbiome-Gut-Brain-Axis Communication Influences Metabolic Switch-Associated Responses in the Mosquito Anopheles culicifacies. Cells 2022; 11:1798. [PMID: 35681493 PMCID: PMC9180301 DOI: 10.3390/cells11111798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
The periodic ingestion of a protein-rich blood meal by adult female mosquitoes causes a drastic metabolic change in their innate physiological status, which is referred to as a 'metabolic switch'. While understanding the neural circuits for host-seeking is modestly attended, how the gut 'metabolic switch' modulates brain functions, and resilience to physiological homeostasis, remains unexplored. Here, through a comparative brain RNA-Seq study, we demonstrate that the protein-rich diet induces the expression of brain transcripts related to mitochondrial function and energy metabolism, possibly causing a shift in the brain's engagement to manage organismal homeostasis. A dynamic mRNA expression pattern of neuro-signaling and neuro-modulatory genes in both the gut and brain likely establishes an active gut-brain communication. The disruption of this communication through decapitation does not affect the modulation of the neuro-modulator receptor genes in the gut. In parallel, an unusual and paramount shift in the level of neurotransmitters (NTs), from the brain to the gut after blood feeding, further supports the idea of the gut's ability to serve as a 'second brain'. After blood-feeding, a moderate enrichment of the gut microbial population, and altered immunity in the gut of histamine receptor-silenced mosquitoes, provide initial evidence that the gut-microbiome plays a crucial role in gut-brain-axis communication. Finally, a comparative metagenomics evaluation of the gut microbiome highlighted that blood-feeding enriches the family members of the Morganellaceae and Pseudomonadaceae bacterial communities. The notable observation of a rapid proliferation of Pseudomonas bacterial sp. and tryptophan enrichment in the gut correlates with the suppression of appetite after blood-feeding. Additionally, altered NTs dynamics of naïve and aseptic mosquitoes provide further evidence that gut-endosymbionts are key modulators for the synthesis of major neuroactive molecules. Our data establish a new conceptual understanding of microbiome-gut-brain-axis communication in mosquitoes.
Collapse
Affiliation(s)
- Tanwee Das De
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Punita Sharma
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Sanjay Tevatiya
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Charu Chauhan
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Seena Kumari
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Pooja Yadav
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Deepak Singla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Vartika Srivastava
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Jyoti Rani
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Kailash C. Pandey
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Mayur Kajla
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| | - Rajnikant Dixit
- Laboratory of Host-Parasite Interaction Studies, ICMR-National Institute of Malaria Research, Sector-8, Dwarka, Delhi 110077, India; (T.D.D.); (P.S.); (S.T.); (C.C.); (S.K.); (P.Y.); (D.S.); (V.S.); (J.R.); (K.C.P.); (M.K.)
| |
Collapse
|
20
|
Yoon S, Kim MA, Lee JS, Sohn YC. Functional analysis of LFRFamide signaling in Pacific abalone, Haliotis discus hannai. PLoS One 2022; 17:e0267039. [PMID: 35511902 PMCID: PMC9071130 DOI: 10.1371/journal.pone.0267039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 12/29/2022] Open
Abstract
The invertebrate LFRFamide (LFRFa) and short neuropeptide F (sNPF), consisting of 6 to 10 amino acids, are orthologs for bilaterian NPF/Y, which consist of 36 to 40 amino acids. Recently, a molluscan G protein-coupled receptor (GPCR) for NPF was characterized in Pacific abalone (Haliotis discus hannai). To address the functional evolutionary route of the invertebrate LFRFa and NPF signaling system, in this study, we identified cDNAs encoding LFRFa precursors and the sNPF receptor (Hdh-sNPFR) in Pacific abalone. Four LFRFa mature peptides with 6 or 7 amino acids were predicted: GSLFRFa, GGLFRFa, GTLFRFa, and GSTLFRFa. Hdh-sNPFR was identified as a classical rhodopsin-like GPCR and classified into a molluscan sNPFR group. In HEK293 cells, Hdh-sNPFR was mainly localized in the cell membranes and internalized in the cytoplasm following treatment with LFRFa peptides. Reporter assays demonstrated that LFRFa peptides inhibit forskolin-stimulated cAMP accumulation in Hdh-sNPFR-expressing HEK293 cells. LFRFa precursor and Hdh-sNPFR transcripts were more strongly expressed in the cerebral and pleural-pedal ganglia of Pacific abalone than in the peripheral tissues such as the ovary, gills, intestine, and hepatopancreas. The levels of LFRFa transcripts in the ovary, intestine, and hepatopancreas were significantly higher in mature female abalone than in immature females. Injection of LFRFa induced the egg release and spawning behavior of mature abalone, but suppressed food intake. These results suggest that LFRFa peptides are endogenous ligands for Hdh-sNPFR involved in food intake and reproduction through a Gαi-protein dependent signaling pathway.
Collapse
Affiliation(s)
- Sungwoo Yoon
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
| | - Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, Gangwon, Republic of Korea
| | - Jung Sick Lee
- Department of Aqualife Medicine, Chonnam National University, Gwangju, Jeonnam, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea
- * E-mail:
| |
Collapse
|
21
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
22
|
Waldman J, Xavier MA, Vieira LR, Logullo R, Braz GRC, Tirloni L, Ribeiro JMC, Veenstra JA, Silva Vaz ID. Neuropeptides in Rhipicephalus microplus and other hard ticks. Ticks Tick Borne Dis 2022; 13:101910. [PMID: 35121230 PMCID: PMC9477089 DOI: 10.1016/j.ttbdis.2022.101910] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/15/2022]
Abstract
The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.
Collapse
Affiliation(s)
- Jéssica Waldman
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Rezende Vieira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raquel Logullo
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gloria Regina Cardoso Braz
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - José Marcos C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Jan A Veenstra
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287 CNRS, Université de Bordeaux, Bordeaux, France
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia - Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Cui X, Gruzdeva A, Kim H, Yapici N. Of flies, mice and neural control of food intake: lessons to learn from both models. Curr Opin Neurobiol 2022; 73:102531. [PMID: 35390643 PMCID: PMC9167741 DOI: 10.1016/j.conb.2022.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/20/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
In her book, A Room of One's Own, the famous author Virginia Woolf writes "One cannot think well, love well, sleep well if one has not dined well". This is true. All animals need to forage for food and consume specific nutrients to maintain their physiological homeostasis, maximize their fitness and their reproduction. After decades of research in humans and many model organisms, we now know that our brain is one of the key players that control what, when, and how much we eat. In this review, we discuss the recent literature on neural control of food intake behaviors in mice and flies with the view that these two model organisms complement one another in efforts to uncover conserved principles brains use to regulate energy metabolism and food ingestion.
Collapse
Affiliation(s)
- Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Anna Gruzdeva
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
24
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
25
|
Li Y, Gao H, Yu R, Zhang Y, Feng F, Tang J, Li B. Identification and characterization of G protein-coupled receptors in Spodoptera frugiperda (Insecta: Lepidoptera). Gen Comp Endocrinol 2022; 317:113976. [PMID: 35016911 DOI: 10.1016/j.ygcen.2022.113976] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022]
Abstract
Spodoptera frugiperda (Insecta: Lepidoptera) is a destructive invasive pest feeding on various plants and causing serious damage to several economically-important crops. G protein-coupled receptors (GPCRs) are cellular receptors that coordinate diverse signaling processes, associated with many physiological processes and disease states. However, less information about GPCRs had been reported in S. frugiperda, limiting the recognition of signaling system and in-depth studies of this pest. Here, a total of 167 GPCRs were identified in S. frugiperda. Compared with other insects, the GPCRs of S. frugiperda were significantly expanded. A large of tandem duplication and segmental duplication events were observed, which may be the key factor to increase the size of GPCR family. In detail, these expansion events mainly concentrate on biogenic amine receptors, neuropeptide and protein hormone receptors, which may be involved in feeding, reproduction, life span, and tolerance of S. frugiperda. Additionally, 17 Mth/Mthl members were identified in S. frugiperda, which may be similar to the evolutionary pattern of 16 Mth/Mthl members in Drosophila. Moreover, the expression patterns across different developmental stages of all GPCR genes were also analyzed. Among these, most of the GPCR genes are poorly expressed in S. frugiperda and some highly expressed GPCR genes help S. frugiperda adapt to the environment better, such as Rh6 and AkhR. In this study, all GPCRs in S. frugiperda were identified for the first time, which provided a basis for further revealing the role of these receptors in the physiological and behavioral regulation of this pest.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
26
|
Bestea L, Briard E, Carcaud J, Sandoz JC, Velarde R, Giurfa M, de Brito Sanchez MG. The short neuropeptide F (sNPF) promotes the formation of appetitive visual memories in honey bees. Biol Lett 2022; 18:20210520. [PMID: 35104428 PMCID: PMC8807059 DOI: 10.1098/rsbl.2021.0520] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 02/04/2023] Open
Abstract
Motivation can critically influence learning and memory. Multiple neural mechanisms regulate motivational states, among which signalling via specific neuropeptides, such as NPY in vertebrates and NPF and its short variant sNPF in invertebrates, plays an essential role. The honey bee (Apis mellifera) is a privileged model for the study of appetitive learning and memory. Bees learn and memorize sensory cues associated with nectar reward while foraging, and their learning is affected by their feeding state. However, the neural underpinnings of their motivational states remain poorly known. Here we focused on the short neuropeptide F (sNPF) and studied if it modulates the acquisition and formation of colour memories. Artificially increasing sNPF levels in partially fed foragers with a reduced motivation to learn colours resulted in significant colour learning and memory above the levels exhibited by starved foragers. Our results thus identify sNPF as a critical component of motivational processes involved in foraging and in the cognitive processes associated with this activity in honey bees.
Collapse
Affiliation(s)
- Louise Bestea
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, Toulouse cedex 09 F-31062, France
| | - Emmanuelle Briard
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, Toulouse cedex 09 F-31062, France
| | - Julie Carcaud
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), IRD, University Paris Saclay, 1 avenue de la Terrasse, Gif-sur-Yvette, 91198, France
| | - Jean-Christophe Sandoz
- Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), IRD, University Paris Saclay, 1 avenue de la Terrasse, Gif-sur-Yvette, 91198, France
| | - Rodrigo Velarde
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, Toulouse cedex 09 F-31062, France
- Latin American Society for Bee Research (SOLATINA), Bolivian Chapter, Santivañez 0134, Cochabamba, Bolivia
| | - Martin Giurfa
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, Toulouse cedex 09 F-31062, France
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
- Institut Universitaire de France, Paris, France
| | - Maria Gabriela de Brito Sanchez
- Research Centre on Animal Cognition, Centre for Integrative Biology, CNRS, University of Toulouse, 118 route de Narbonne, Toulouse cedex 09 F-31062, France
| |
Collapse
|
27
|
Groß VE, Gershkovich MM, Schöneberg T, Kaiser A, Prömel S. NanoBRET in C. elegans illuminates functional receptor interactions in real time. BMC Mol Cell Biol 2022; 23:8. [PMID: 35100990 PMCID: PMC8805316 DOI: 10.1186/s12860-022-00405-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Protein-protein interactions form the basis of every organism and thus, investigating their dynamics, intracellular protein localization, trafficking and interactions of distinct proteins such as receptors and their ligand-binding are of general interest. Bioluminescence resonance energy transfer (BRET) is a powerful tool to investigate these aspects in vitro. Since in vitro approaches mostly neglect the more complex in vivo situation, we established BRET as an in vivo tool for studying protein interactions in the nematode C. elegans. Results We generated worms expressing NanoBRET sensors and elucidated the interaction of two ligand-G protein-coupled receptor (GPCR) pairs, the neuropeptide receptor NPR-11 and the Adhesion GPCR LAT-1. Furthermore, we adapted the enhanced bystander BRET technology to measure subcellular protein localization. Using this approach, we traced ligand-induced internalization of NPR-11 in vivo. Conclusions Our results indicate that in vivo NanoBRET is a tool to investigate specific protein interactions and localization in a physiological setting in real time in the living organism C. elegans. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-022-00405-w.
Collapse
Affiliation(s)
- Victoria Elisabeth Groß
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany.,Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | | | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
| | - Anette Kaiser
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, 04103, Leipzig, Germany.
| | - Simone Prömel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany. .,Institute of Cell Biology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
28
|
The short neuropeptide F regulates appetitive but not aversive responsiveness in a social insect. iScience 2022; 25:103619. [PMID: 35005557 PMCID: PMC8719019 DOI: 10.1016/j.isci.2021.103619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022] Open
Abstract
The neuropeptide F (NPF) and its short version (sNPF) mediate food- and stress-related responses in solitary insects. In the honeybee, a social insect where food collection and defensive responses are socially regulated, only sNPF has an identified receptor. Here we increased artificially sNPF levels in honeybee foragers and studied the consequences of this manipulation in various forms of appetitive and aversive responsiveness. Increasing sNPF in partially fed bees turned them into the equivalent of starved animals, enhancing both their food consumption and responsiveness to appetitive gustatory and olfactory stimuli. Neural activity in the olfactory circuits of fed animals was reduced and could be rescued by sNPF treatment to the level of starved bees. In contrast, sNPF had no effect on responsiveness to nociceptive stimuli. Our results thus identify sNPF as a key modulator of hunger and food-related responses in bees, which are at the core of their foraging activities.
Collapse
|
29
|
Xu Z, Wei Y, Huang H, Guo S, Ye H. Immunomodulatory role of short neuropeptide F in the mud crab Scylla paramamosain. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104260. [PMID: 34536467 DOI: 10.1016/j.dci.2021.104260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Short neuropeptide F (sNPF) is bioactive peptide secreted by neurons of invertebrates. It is one of the important pleiotropic neural molecules that is associated with a variety of physiological processes in invertebrates. However, little is known about the role of sNPF in the immune response. This study aimed to determine the distribution, localization, functional characteristics and signaling mechanisms of the sNPF gene and sNPF receptor (sNPF-R) gene in the mud crab Scylla paramamosain. Results of this study showed that Sp-sNPF and Sp-sNPF-R were widely expressed in neural tissue and other tissues including hemocytes. Further, in situ hybridization analysis revealed that Sp-sNPF and Sp-sNPF-R have specific localization in cerebral ganglion and hemocytes. It was also found that immune stimuli significantly induced Sp-sNPF expression in cerebral ganglion. The hemocyte-derived Sp-sNPF and Sp-sNPF-R were also efficiently activated upon immune stimulation. In vitro sNPF peptide administration enhanced phagocytic ability of hemocytes. However, this activity could be blocked through knockdown of sNPF-R-dsRNA or using adenylate cyclase inhibitors SQ 22536. The results of this study also demonstrated that the contents of signaling molecule adenylyl cyclase (AC), cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in hemocytes can be up-regulated after incubation with sNPF peptide. In addition, the results of in vivo experiments showed that sNPF increased concentration of nitric oxide (NO) and enhanced phagocytic potential in S. paramamosain. The sNPF also significantly induced the expression of immune-related molecules at the gene level in S. paramamosain. In conclusion, the findings of this study indicate that sNPF mediates hemocyte phagocytosis via sNPF-R receptor-coupled AC-cAMP-PKA pathway and influences the innate immune processes in S. paramamosain.
Collapse
Affiliation(s)
- Zhanning Xu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yujie Wei
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huiyang Huang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Songlin Guo
- College of Fisheries, Jimei University, Xiamen 361021, China
| | - Haihui Ye
- College of Fisheries, Jimei University, Xiamen 361021, China.
| |
Collapse
|
30
|
Meng Z, Chen H, Deng C, Meng S. Potential cellular endocrinology mechanisms underlying the effects of Chinese herbal medicine therapy on asthma. Front Endocrinol (Lausanne) 2022; 13:916328. [PMID: 36051395 PMCID: PMC9424672 DOI: 10.3389/fendo.2022.916328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Asthma is a complex syndrome with polygenetic tendency and multiple phenotypes, which has variable expiratory airflow limitation and respiratory symptoms that vary over time and in intensity. In recent years, continuous industrial development has seriously impacted the climate and air quality at a global scale. It has been verified that climate change can induce asthma in predisposed individuals and that atmospheric pollution can exacerbate asthma severity. At present, a subset of patients is resistant to the drug therapy for asthma. Hence, it is urgent to find new ideas for asthma prevention and treatment. In this review, we discuss the prescription, composition, formulation, and mechanism of traditional Chinese medicine monomer, traditional Chinese medicine monomer complex, single herbs, and traditional Chinese patent medicine in the treatment of asthma. We also discuss the effects of Chinese herbal medicine on asthma from the perspective of cellular endocrinology in the past decade, emphasizing on the roles as intracellular and extracellular messengers of three substances-hormones, substances secreted by pulmonary neuroendocrine cells, and neuroendocrine-related signaling protein-which provide the theoretical basis for clinical application and new drug development.
Collapse
Affiliation(s)
- Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Shengxi Meng,
| |
Collapse
|
31
|
Hoshino R, Niwa R. Regulation of Mating-Induced Increase in Female Germline Stem Cells in the Fruit Fly Drosophila melanogaster. Front Physiol 2021; 12:785435. [PMID: 34950056 PMCID: PMC8689587 DOI: 10.3389/fphys.2021.785435] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 01/19/2023] Open
Abstract
In many insect species, mating stimuli can lead to changes in various behavioral and physiological responses, including feeding, mating refusal, egg-laying behavior, energy demand, and organ remodeling, which are collectively known as the post-mating response. Recently, an increase in germline stem cells (GSCs) has been identified as a new post-mating response in both males and females of the fruit fly, Drosophila melanogaster. We have extensively studied mating-induced increase in female GSCs of D. melanogaster at the molecular, cellular, and systemic levels. After mating, the male seminal fluid peptide [e.g. sex peptide (SP)] is transferred to the female uterus. This is followed by binding to the sex peptide receptor (SPR), which evokes post-mating responses, including increase in number of female GSCs. Downstream of SP-SPR signaling, the following three hormones and neurotransmitters have been found to act on female GSC niche cells to regulate mating-induced increase in female GSCs: (1) neuropeptide F, a peptide hormone produced in enteroendocrine cells; (2) octopamine, a monoaminergic neurotransmitter synthesized in ovary-projecting neurons; and (3) ecdysone, a steroid hormone produced in ovarian follicular cells. These humoral factors are secreted from each organ and are received by ovarian somatic cells and regulate the strength of niche signaling in female GSCs. This review provides an overview of the latest findings on the inter-organ relationship to regulate mating-induced female GSC increase in D. melanogaster as a model. We also discuss the remaining issues that should be addressed in the future.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
32
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
33
|
Berdan EL, Mérot C, Pavia H, Johannesson K, Wellenreuther M, Butlin RK. A large chromosomal inversion shapes gene expression in seaweed flies ( Coelopa frigida). Evol Lett 2021; 5:607-624. [PMID: 34917400 PMCID: PMC8645196 DOI: 10.1002/evl3.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 11/12/2022] Open
Abstract
Inversions often underlie complex adaptive traits, but the genic targets inside them are largely unknown. Gene expression profiling provides a powerful way to link inversions with their phenotypic consequences. We examined the effects of the Cf-Inv(1) inversion in the seaweed fly Coelopa frigida on gene expression variation across sexes and life stages. Our analyses revealed that Cf-Inv(1) shapes global expression patterns, most likely via linked variation, but the extent of this effect is variable, with much stronger effects in adults than larvae. Furthermore, within adults, both common as well as sex-specific patterns were found. The vast majority of these differentially expressed genes mapped to Cf-Inv(1). However, genes that were differentially expressed in a single context (i.e., in males, females, or larvae) were more likely to be located outside of Cf-Inv(1). By combining our findings with genomic scans for environmentally associated SNPs, we were able to pinpoint candidate variants in the inversion that may underlie mechanistic pathways that determine phenotypes. Together the results of this study, combined with previous findings, support the notion that the polymorphic Cf-Inv(1) inversion in this species is a major factor shaping both coding and regulatory variation resulting in highly complex adaptive effects.
Collapse
Affiliation(s)
- Emma L. Berdan
- Department of Marine SciencesUniversity of GothenburgGothenburgSE‐40530Sweden
| | - Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCG1V 0A6Canada
| | - Henrik Pavia
- Department of Marine SciencesUniversity of GothenburgGothenburgSE‐40530Sweden
| | - Kerstin Johannesson
- Department of Marine SciencesUniversity of GothenburgGothenburgSE‐40530Sweden
| | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd.Nelson7010New Zealand
- School of Biological SciencesUniversity of AucklandAuckland1010New Zealand
| | - Roger K. Butlin
- Department of Marine SciencesUniversity of GothenburgGothenburgSE‐40530Sweden
- Ecology and Evolutionary Biology, School of BiosciencesUniversity of SheffieldSheffieldS10 2TNUnited Kingdom
| |
Collapse
|
34
|
NPF activates a specific NPF receptor and regulates food intake in Pacific abalone Haliotis discus hannai. Sci Rep 2021; 11:20912. [PMID: 34686694 PMCID: PMC8536682 DOI: 10.1038/s41598-021-00238-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 01/13/2023] Open
Abstract
Neuropeptides function through G protein-coupled receptors (GPCRs) with high specificity, implying a significant degree of neuropeptide-GPCR coevolution. However, potential neuropeptide signaling systems in non-chordates are relatively elusive. We determined the specificity of the neuropeptide F (Hdh-NPF) signaling system with a cognate receptor (Hdh-NPFR) in the Pacific abalone, Haliotis discus hannai. Phylogenetic and exon–intron arrangement analyses of bilaterian NPF and the chordate ortholog NPY with their receptor sequences revealed a likely common ancestor, and Hdh-NPFR was similar to the NPYR2 subtype among the NPYR1, NPYR2, and NPYR5 subtypes. Among four Hdh-NPFR-related receptors, Hdh-NPFR specifically responded to Hdh-NPF peptide, supported by the dose–response luciferase reporter curve, intracellular Ca2+ mobilization, and phosphorylation of ERK1/2 and its inhibition with a protein kinase C inhibitor. Peptide fragmentations and shuffling of Hdh-NPF with human NPY could not activate the cellular response of Hdh-NPFR. Three-dimensional in silico modeling suggested that interaction of Hdh-NPF C-terminal amino acids with the extracellular loops of Hdh-NPFR is critical for Hdh-NPFR activation. In vivo injection of Hdh-NPF peptide increased food consumption, and knockdown of Hdh-NPF expression decreased food consumption in Pacific abalone. These findings provide evidence for co-evolution of the NPF/Y ligand-receptor system, enabling further research on mollusk orexigenic neuropeptides.
Collapse
|
35
|
Insects as a New Complex Model in Hormonal Basis of Obesity. Int J Mol Sci 2021; 22:ijms222011066. [PMID: 34681728 PMCID: PMC8540125 DOI: 10.3390/ijms222011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nowadays, one of the biggest problems in healthcare is an obesity epidemic. Consumption of cheap and low-quality energy-rich diets, low physical activity, and sedentary work favor an increase in the number of obesity cases within many populations/nations. This is a burden on society, public health, and the economy with many deleterious consequences. Thus, studies concerning this disorder are extremely needed, including searching for new, effective, and fitting models. Obesity may be related, among other factors, to disrupting adipocytes activity, disturbance of metabolic homeostasis, dysregulation of hormonal balance, cardiovascular problems, or disorders in nutrition which may lead to death. Because of the high complexity of obesity, it is not easy to find an ideal model for its studies which will be suitable for genetic and physiological analysis including specification of different compounds’ (hormones, neuropeptides) functions, as well as for signaling pathways analysis. In recent times, in search of new models for human diseases there has been more and more attention paid to insects, especially in neuro-endocrine regulation. It seems that this group of animals might also be a new model for human obesity. There are many arguments that insects are a good, multidirectional, and complex model for this disease. For example, insect models can have similar conservative signaling pathways (e.g., JAK-STAT signaling pathway), the presence of similar hormonal axis (e.g., brain–gut axis), or occurrence of structural and functional homologues between neuropeptides (e.g., neuropeptide F and human neuropeptide Y, insulin-like peptides, and human insulin) compared to humans. Here we give a hint to use insects as a model for obesity that can be used in multiple ways: as a source of genetic and peptidomic data about etiology and development correlated with obesity occurrence as well as a model for novel hormonal-based drug activity and their impact on mechanism of disease occurrence.
Collapse
|
36
|
Barajas-Azpeleta R, Tastekin I, Ribeiro C. Neuroscience: How the brain prioritizes behaviors. Curr Biol 2021; 31:R1125-R1127. [PMID: 34637713 DOI: 10.1016/j.cub.2021.08.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To optimize our choices, we need to prioritize among different goals. A recent study used a new Drosophila behavioral paradigm, bringing together conflicting behavioral choices in the context of different internal states and sensory cues, to provide foundational insights into the circuit mechanisms underlying how the brain prioritizes behavioral decisions.
Collapse
|
37
|
Tinikul Y, Kruangkum T, Tinikul R, Sobhon P. Comparative neuroanatomical distribution and expression levels of neuropeptide F in the central nervous system of the female freshwater prawn, Macrobrachium rosenbergii, during the ovarian cycle. J Comp Neurol 2021; 530:729-755. [PMID: 34545567 DOI: 10.1002/cne.25241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022]
Abstract
Neuropeptide F (NPF) plays critical roles in controlling the feeding and reproduction of prawns. In the present study, we investigated changes in the expression levels of Macrobrachium rosenbergii neuropeptide F (MrNPF), and its neuroanatomical distribution in eyestalk (ES), brain (BR), subesophageal ganglion (SEG), thoracic ganglia (TG), and abdominal ganglia (AG), during the ovarian cycle of female prawn. By qRT-PCR, the amount of MrNPF transcripts exhibited a gradual increase in the ES, BR, and combined SEG and TG from stages I and II, to reach a maximum level at stage III, and slightly declined at stage IV, respectively. The highest to lowest expression levels were detected in combined SEG and TG, BR, ES, and AG, respectively. MrNPF immunolabeling was observed in several neuronal clusters, associated fibers, and neuropils of these central nervous system (CNS) tissues. MrNPF-ir was more intense in neurons and neuropils of SEG and TG than those found in other parts of the CNS. The number of MrNPF-ir neurons and intensity of MrNPF-ir were higher in the ES, BR, SEG, and TG at the late stages than those at the early stages of the ovarian cycle, while those in AG exhibited insignificant change. Taken together, there is a correlation between changes in the neuroanatomical distribution of MrNPF and stages of the ovarian cycle, implying that MrNPF may be an important neuropeptide that integrates sensory stimuli, including photo-, chemo-, and gustatory receptions, to control feeding and reproduction, particularly ovarian development, of this female prawn, M. rosenbergii.
Collapse
Affiliation(s)
- Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanapong Kruangkum
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence for Shrimp Molecular Biology and Biotechnology (CENTEX Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Rahmani A, Chew YL. Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 2021; 159:417-451. [PMID: 34528252 DOI: 10.1111/jnc.15510] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/15/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022]
Abstract
Learning is an essential biological process for survival since it facilitates behavioural plasticity in response to environmental changes. This process is mediated by a wide variety of genes, mostly expressed in the nervous system. Many studies have extensively explored the molecular and cellular mechanisms underlying learning and memory. This review will focus on the advances gained through the study of the nematode Caenorhabditis elegans. C. elegans provides an excellent system to study learning because of its genetic tractability, in addition to its invariant, compact nervous system (~300 neurons) that is well-characterised at the structural level. Importantly, despite its compact nature, the nematode nervous system possesses a high level of conservation with mammalian systems. These features allow the study of genes within specific sensory-, inter- and motor neurons, facilitating the interrogation of signalling pathways that mediate learning via defined neural circuits. This review will detail how learning and memory can be studied in C. elegans through behavioural paradigms that target distinct sensory modalities. We will also summarise recent studies describing mechanisms through which key molecular and cellular pathways are proposed to affect associative and non-associative forms of learning.
Collapse
Affiliation(s)
- Aelon Rahmani
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yee Lian Chew
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Godoy RSM, Barbosa RC, Procópio TF, Costa BA, Jacobs-Lorena M, Martins GF. FMRF-related peptides in Aedes aegypti midgut: neuromuscular connections and enteric nervous system. Cell Tissue Res 2021; 385:585-602. [PMID: 33961128 PMCID: PMC9841599 DOI: 10.1007/s00441-021-03462-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
FMRFamide-related peptides (FaRPs) are a class of neuropeptides that participate in a variety of physiological processes in invertebrates. They occur in nerves of stomatogastric ganglia and enteroendocrine cells of the insect digestive tract, where they may control muscle functions. However, their direct involvement in muscle function has never been shown in situ. We studied the relationship between FaRPs and midgut muscle during larval-pupal transition of the mosquito Aedes aegypti. In late L4, FaRP-positive neuronal extensions attach to the bundles of the external circular muscle layer, and muscle stem cells start to undergo mitosis in the internal circular layer. Thereafter, the external muscle layer degenerates, disappearing during early pupal development, and is completely absent in the adult mosquito. Our results indicate that FaRP-based neural signals are involved in the reorganization of the muscle fibers of the mosquito midgut during the larval-pupal transition. In addition to confirming FaRP involvement in muscle function, we show that the mosquito midgut muscles are largely innervated, and that circular and longitudinal muscle have specific neuron bodies associated with them.
Collapse
Affiliation(s)
- Raquel S. M. Godoy
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil,Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Renata C. Barbosa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Thamara F. Procópio
- Departamento de Bioquímica e Fisiologia, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-420, Brazil
| | - Breno A. Costa
- Fundação Oswaldo Cruz, Instituto René Rachou, Fiocruz, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Marcelo Jacobs-Lorena
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Gustavo F. Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
40
|
Yoshinari Y, Kosakamoto H, Kamiyama T, Hoshino R, Matsuoka R, Kondo S, Tanimoto H, Nakamura A, Obata F, Niwa R. The sugar-responsive enteroendocrine neuropeptide F regulates lipid metabolism through glucagon-like and insulin-like hormones in Drosophila melanogaster. Nat Commun 2021; 12:4818. [PMID: 34376687 PMCID: PMC8355161 DOI: 10.1038/s41467-021-25146-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/24/2021] [Indexed: 02/08/2023] Open
Abstract
The enteroendocrine cell (EEC)-derived incretins play a pivotal role in regulating the secretion of glucagon and insulins in mammals. Although glucagon-like and insulin-like hormones have been found across animal phyla, incretin-like EEC-derived hormones have not yet been characterised in invertebrates. Here, we show that the midgut-derived hormone, neuropeptide F (NPF), acts as the sugar-responsive, incretin-like hormone in the fruit fly, Drosophila melanogaster. Secreted NPF is received by NPF receptor in the corpora cardiaca and in insulin-producing cells. NPF-NPFR signalling resulted in the suppression of the glucagon-like hormone production and the enhancement of the insulin-like peptide secretion, eventually promoting lipid anabolism. Similar to the loss of incretin function in mammals, loss of midgut NPF led to significant metabolic dysfunction, accompanied by lipodystrophy, hyperphagia, and hypoglycaemia. These results suggest that enteroendocrine hormones regulate sugar-dependent metabolism through glucagon-like and insulin-like hormones not only in mammals but also in insects.
Collapse
Affiliation(s)
- Yuto Yoshinari
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Takumi Kamiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryo Hoshino
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rena Matsuoka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shu Kondo
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Akira Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Fumiaki Obata
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development Chiyoda-ku, Tokyo, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
41
|
Peng X, Chen C, Huang Y, Wang S, Su S, Chen M. Expression patterns and functional analysis of the short neuropeptide F and NPF receptor genes in Rhopalosiphum padi. INSECT SCIENCE 2021; 28:952-964. [PMID: 32538527 DOI: 10.1111/1744-7917.12842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The short neuropeptide F (sNPF) and NPF receptor (NPFR) genes play important roles in many physiological processes. However, information on the survival-related functions of sNPF and NPFR under different stress conditions is lacking in aphids. In this study, we cloned sNPF and NPFR, and investigated the expression levels of these genes in different developmental stages, wing morphs, and stress conditions of the bird cherry-oat aphid (Rhopalosiphum padi L.), an important agricultural pest. The sNPF and NPFR transcript levels varied among developmental stages, and their expression levels in alate females were significantly higher than those in apterous females. In addition, starvation resulted in significantly increased sNPF expression, which then recovered after refeeding. Heat stress and insecticides significantly affected transcription of both genes. sNPF and NPFR knockdown in R. padi using RNA interference revealed optimal interference efficiency at 48 h post-injection. sNPF knockdown significantly decreased adult longevity, 15-d fecundity, and food intake. Additionally, mortality under starvation, insecticides, and heat stress conditions was significantly higher after injection with double-stranded sNPF in R. padi. NPFR knockdown significantly affected food intake and starvation resistance in R. padi. These results strongly indicate that sNPF plays vital roles in food intake, longevity, and reproduction in R. padi, and it can significantly affect the pest's response to stress conditions.
Collapse
Affiliation(s)
- Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Cheng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yixiao Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
42
|
Chowański S, Walkowiak-Nowicka K, Winkiel M, Marciniak P, Urbański A, Pacholska-Bogalska J. Insulin-Like Peptides and Cross-Talk With Other Factors in the Regulation of Insect Metabolism. Front Physiol 2021; 12:701203. [PMID: 34267679 PMCID: PMC8276055 DOI: 10.3389/fphys.2021.701203] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
The insulin-like peptide (ILP) and insulin-like growth factor (IGF) signalling pathways play a crucial role in the regulation of metabolism, growth and development, fecundity, stress resistance, and lifespan. ILPs are encoded by multigene families that are expressed in nervous and non-nervous organs, including the midgut, salivary glands, and fat body, in a tissue- and stage-specific manner. Thus, more multidirectional and more complex control of insect metabolism can occur. ILPs are not the only factors that regulate metabolism. ILPs interact in many cross-talk interactions of different factors, for example, hormones (peptide and nonpeptide), neurotransmitters and growth factors. These interactions are observed at different levels, and three interactions appear to be the most prominent/significant: (1) coinfluence of ILPs and other factors on the same target cells, (2) influence of ILPs on synthesis/secretion of other factors regulating metabolism, and (3) regulation of activity of cells producing/secreting ILPs by various factors. For example, brain insulin-producing cells co-express sulfakinins (SKs), which are cholecystokinin-like peptides, another key regulator of metabolism, and express receptors for tachykinin-related peptides, the next peptide hormones involved in the control of metabolism. It was also shown that ILPs in Drosophila melanogaster can directly and indirectly regulate AKH. This review presents an overview of the regulatory role of insulin-like peptides in insect metabolism and how these factors interact with other players involved in its regulation.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Karolina Walkowiak-Nowicka
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Magdalena Winkiel
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Pawel Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.,HiProMine S.A., Robakowo, Poland
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
43
|
Liu B, Fu D, Gao H, Ning H, Sun Y, Chen H, Tang M. Cloning and Expression of the Neuropeptide F and Neuropeptide F Receptor Genes and Their Regulation of Food Intake in the Chinese White Pine Beetle Dendroctonus armandi. Front Physiol 2021; 12:662651. [PMID: 34220532 PMCID: PMC8249871 DOI: 10.3389/fphys.2021.662651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/31/2023] Open
Abstract
Neuropeptide F (NPF) is an important signaling molecule that acts as a neuromodulator to regulate a diversity of physiological and behavioral processes from vertebrates to invertebrates by interaction with NPF receptors, which are G protein-coupled receptors (GPCR). However, nothing is known about NPF in Chinese white pine beetle, Dendroctonus armandi, a destructive pest of natural and coniferous forests in the middle Qinling Mountains of China. We have cloned and characterized cDNAs encoding one NPF precursor and two NPF receptors in D. armandi and made bioinformatics predictions according to the deduced amino acid sequences. They were highly similar to that of Dendroctonus ponderosa. The transcription levels of these genes were different between larvae and adults of sexes, and there were significant differences among the different developmental stages and tissues and between beetles under starvation and following re-feeding states. Additionally, downregulation of NPF and NPFR by injecting dsRNA into beetles reduced their food intake, caused increases of mortality and decreases of body weight, and also resulted in a decrease of glycogen and free fatty acid and an increase of trehalose. These results indicate that the NPF signaling pathway plays a significant positive role in the regulation of food intake and provides a potential target for the sustainable management of this pest.
Collapse
Affiliation(s)
- Bin Liu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Danyang Fu
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Haiming Gao
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hang Ning
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Yaya Sun
- College of Forestry, Northwest A&F University, Xianyang, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Xianyang, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Xianyang, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
44
|
Wan GJ, Jiang SL, Zhang M, Zhao JY, Zhang YC, Pan WD, Sword GA, Chen FJ. Geomagnetic field absence reduces adult body weight of a migratory insect by disrupting feeding behavior and appetite regulation. INSECT SCIENCE 2021; 28:251-260. [PMID: 32065478 DOI: 10.1111/1744-7917.12765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
The geomagnetic field (GMF) is well documented for its essential role as a cue used in animal orientation or navigation. Recent evidence indicates that the absence of GMF (mimicked by the near-zero magnetic field, NZMF) can trigger stress-like responses such as reduced body weight, as we have previously shown in the brown planthopper, Nilaparvata lugens. In this study, we found that consistent with the significantly decreased body weight of newly emerged female (-14.67%) and male (-13.17%) adult N. lugens, the duration of the phloem ingestion feeding waveform was significantly reduced by 32.02% in 5th instar nymphs reared under the NZMF versus GMF. Interestingly, 5th instar nymphs that exhibited reduced feeding had significantly higher glucose levels (+16.98% and +20.05%; 24 h and 48 h after molting), which are associated with food aversion, and expression patterns of their appetite-related neuropeptide genes (neuropeptide F, down-regulated overall; short neuropeptide F, down-regulated overall; adipokinetic hormone, up-regulated overall; and adipokinetic hormone receptor, down-regulated overall) were also altered under the absence of GMF in a manner consistent with diminishing appetite. Moreover, the expressions of the potential magnetosensor cryptochromes (Crys) were found significantly altered under the absence of GMF, indicating the likely upstream signaling of the Cry-mediated magnetoreception mechanisms. These findings support the hypothesis that strong changes in GMF intensity can reduce adult body weight through affecting insect feeding behavior and underlying regulatory processes including appetite regulation. Our results highlight that GMF could be necessary for the maintenance of energy homeostasis in insects.
Collapse
Affiliation(s)
- Gui-Jun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shou-Lin Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Yu Zhao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ying-Chao Zhang
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei-Dong Pan
- Beijing Key Laboratory of Bioelectromagetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gregory A Sword
- Department of Entomology, Texas A&M University, College Station, TX, U.S.A
| | - Fa-Jun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
45
|
Dong N, Bandura J, Zhang Z, Wang Y, Labadie K, Noel B, Davison A, Koene JM, Sun HS, Coutellec MA, Feng ZP. Ion channel profiling of the Lymnaea stagnalis ganglia via transcriptome analysis. BMC Genomics 2021; 22:18. [PMID: 33407100 PMCID: PMC7789530 DOI: 10.1186/s12864-020-07287-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The pond snail Lymnaea stagnalis (L. stagnalis) has been widely used as a model organism in neurobiology, ecotoxicology, and parasitology due to the relative simplicity of its central nervous system (CNS). However, its usefulness is restricted by a limited availability of transcriptome data. While sequence information for the L. stagnalis CNS transcripts has been obtained from EST libraries and a de novo RNA-seq assembly, the quality of these assemblies is limited by a combination of low coverage of EST libraries, the fragmented nature of de novo assemblies, and lack of reference genome. RESULTS In this study, taking advantage of the recent availability of a preliminary L. stagnalis genome, we generated an RNA-seq library from the adult L. stagnalis CNS, using a combination of genome-guided and de novo assembly programs to identify 17,832 protein-coding L. stagnalis transcripts. We combined our library with existing resources to produce a transcript set with greater sequence length, completeness, and diversity than previously available ones. Using our assembly and functional domain analysis, we profiled L. stagnalis CNS transcripts encoding ion channels and ionotropic receptors, which are key proteins for CNS function, and compared their sequences to other vertebrate and invertebrate model organisms. Interestingly, L. stagnalis transcripts encoding numerous putative Ca2+ channels showed the most sequence similarity to those of Mus musculus, Danio rerio, Xenopus tropicalis, Drosophila melanogaster, and Caenorhabditis elegans, suggesting that many calcium channel-related signaling pathways may be evolutionarily conserved. CONCLUSIONS Our study provides the most thorough characterization to date of the L. stagnalis transcriptome and provides insights into differences between vertebrates and invertebrates in CNS transcript diversity, according to function and protein class. Furthermore, this study provides a complete characterization of the ion channels of Lymnaea stagnalis, opening new avenues for future research on fundamental neurobiological processes in this model system.
Collapse
Affiliation(s)
- Nancy Dong
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Julia Bandura
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Zhaolei Zhang
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Yan Wang
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Karine Labadie
- Genoscope, Institut de biologie François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, BP5706, 91057, Evry, France
| | - Benjamin Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, University of Evry, Université Paris-Saclay, 91057, Evry, France
| | - Angus Davison
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK, NG7 2RD, UK
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Hong-Shuo Sun
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | - Zhong-Ping Feng
- Department of Physiology, University of Toronto, 3308 MSB, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
46
|
Dvořáček J, Kodrík D. Drosophila reward system - A summary of current knowledge. Neurosci Biobehav Rev 2021; 123:301-319. [PMID: 33421541 DOI: 10.1016/j.neubiorev.2020.12.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 01/19/2023]
Abstract
The fruit fly Drosophila melanogaster brain is the most extensively investigated model of a reward system in insects. Drosophila can discriminate between rewarding and punishing environmental stimuli and consequently undergo associative learning. Functional models, especially those modelling mushroom bodies, are constantly being developed using newly discovered information, adding to the complexity of creating a simple model of the reward system. This review aims to clarify whether its reward system also includes a hedonic component. Neurochemical systems that mediate the 'wanting' component of reward in the Drosophila brain are well documented, however, the systems that mediate the pleasure component of reward in mammals, including those involving the endogenous opioid and endocannabinoid systems, are unlikely to be present in insects. The mushroom body components exhibit differential developmental age and different functional processes. We propose a hypothetical hierarchy of the levels of reinforcement processing in response to particular stimuli, and the parallel processes that take place concurrently. The possible presence of activity-silencing and meta-satiety inducing levels in Drosophila should be further investigated.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, CAS, and Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
47
|
Hou X, Qin Z, Wei M, Fu Z, Liu R, Lu L, Bai S, Ma Y, Zhang Z. Identification of the neuropeptide precursor genes potentially involved in the larval settlement in the Echiuran worm Urechis unicinctus. BMC Genomics 2020; 21:892. [PMID: 33317448 PMCID: PMC7737342 DOI: 10.1186/s12864-020-07312-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In marine invertebrate life cycles, which often consist of planktonic larval and benthonic adult stages, settlement of the free-swimming larva to the sea floor in response to environmental cues is a key life cycle transition. Settlement is regulated by a specialized sensory-neurosecretory system, the larval apical organ. The neuroendocrine mechanisms through which the apical organ transduces environmental cues into behavioral responses during settlement are not fully understood yet. RESULTS In this study, a total of 54 neuropeptide precursors (pNPs) were identified in the Urechis unicinctus larva and adult transcriptome databases using local BLAST and NpSearch prediction, of which 10 pNPs belonging to the ancient eumetazoa, 24 pNPs belonging to the ancient bilaterian, 3 pNPs belonging to the ancient protostome, 9 pNPs exclusive in lophotrochozoa, 3 pNPs exclusive in annelid, and 5 pNPs only found in U. unicinctus. Furthermore, four pNPs (MIP, FRWamide, FxFamide and FILamide) which may be associated with the settlement and metamorphosis of U. unicinctus larvae were analysed by qRT-PCR. Whole-mount in situ hybridization results showed that all the four pNPs were expressed in the region of the apical organ of the larva, and the positive signals were also detected in the ciliary band and abdomen chaetae. We speculated that these pNPs may regulate the movement of larval cilia and chaeta by sensing external attachment signals. CONCLUSIONS This study represents the first comprehensive identification of neuropeptides in Echiura, and would contribute to a complete understanding on the roles of various neuropeptides in larval settlement of most marine benthonic invertebrates.
Collapse
Affiliation(s)
- Xitan Hou
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao, 066002, China
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining, 272067, China
| | - Li Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shumiao Bai
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China.
| |
Collapse
|
48
|
Riffell JA. The neuroecology of insect-plant interactions: the importance of physiological state and sensory integration. CURRENT OPINION IN INSECT SCIENCE 2020; 42:118-124. [PMID: 33127509 PMCID: PMC7749044 DOI: 10.1016/j.cois.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Natural behaviorally important stimuli are combinations of cues that are integrated by the nervous system to elicit behavior. Nonetheless, these cues dynamically change in time and space. In turn, the animal's internal state can cause changes in the encoding and representation of these stimuli. Despite abundant behavioral examples, links between the neural bases of sensory integration and the internal state-dependency of these responses remains an active study area. Recent studies in different insect models have provided new insights into how plasticity and the insect's internal state may influence odor representation. These studies show that complex stimuli are represented in unique percepts that are different from their sensory channels and that the representations may be modulated by physiological state.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195-1800, United States.
| |
Collapse
|
49
|
Zeng H, Qin Y, Du E, Wei Q, Li Y, Huang D, Wang G, Veenstra JA, Li S, Li N. Genomics- and Peptidomics-Based Discovery of Conserved and Novel Neuropeptides in the American Cockroach. J Proteome Res 2020; 20:1217-1228. [PMID: 33166158 DOI: 10.1021/acs.jproteome.0c00596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As a model hemimetabolous insect species and an invasive urban pest that is globally distributed, the American cockroach, Periplaneta americana, is of great interest in both basic and applied research. Previous studies on P. americana neuropeptide identification have been based on biochemical isolation and molecular cloning. In the present study, an integrated approach of genomics- and peptidomics-based discovery was performed for neuropeptide identification in this insect species. First, 67 conserved neuropeptide or neurohormone precursor genes were predicted via an in silico analysis of the P. americana genome and transcriptome. Using a large-scale peptidomic analysis of peptide extracts from four different tissues (the central nervous system, corpora cardiac and corpora allata complex, midgut, and male accessory gland), 35 conserved (predicted) neuropeptides and a potential (novel) neuropeptide were then identified. Subsequent experiments revealed the tissue distribution, sex difference, and developmental patterns of two conserved neuropeptides (allatostatin B and short neuropeptide F) and a novel neuropeptide (PaOGS36577). Our study shows a comprehensive neuropeptidome and detailed spatiotemporal distribution patterns, providing a solid basis for future functional studies of neuropeptides in the American cockroach (data are available via ProteomeXchange with identifier PXD021660).
Collapse
Affiliation(s)
- Huanchao Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Erxia Du
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Qiulan Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Danyan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Guirong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Jan A Veenstra
- INCIA, UMR 5287 CNRS, Université de Bordeaux, Pessac F33615, France
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
50
|
De Loof A, Schoofs L. Two Undervalued Functions of the Golgi Apparatus: Removal of Excess Ca 2+ and Biosynthesis of Farnesol-Like Sesquiterpenoids, Possibly as Ca 2+-Pump Agonists and Membrane "Fluidizers-Plasticizers". Front Physiol 2020; 11:542879. [PMID: 33178030 PMCID: PMC7593688 DOI: 10.3389/fphys.2020.542879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The extensive literature dealing with the Golgi system emphasizes its role in protein secretion and modification, usually without specifying from which evolutionary ancient cell physiological necessity such secretion originated. Neither does it specify which functional requirements the secreted proteins must meet. From a reinterpretation of some classical and recent data gained mainly, but not exclusively, from (insect) endocrinology, the view emerged that the likely primordial function of the rough endoplasmic reticulum (RER)–Golgi complex in all eukaryotes was not the secretion of any type of protein but the removal of toxic excess Ca2+ from the cytoplasm. Such activity requires the concurrent secretion of large amounts of Ca2+-carrying/transporting proteins acting as a micro-conveyor belt system inside the RER–Golgi. Thus, (fitness increasing) protein secretion is subordinate to Ca2+ removal. Milk with its high content of protein and Ca2+ (60–90 mM vs. 100 nM in unstimulated mammary gland cells) is an extreme example. The sarco(endo)plasmatic reticulum Ca2+-ATPases (SERCAs) and SPCA1a Ca2+/Mn2+ transport ATPases are major players in Ca2+ removal through the Golgi. Both are blocked by the sesquiterpenoid thapsigargin. This strengthens the hypothesis (2014) that endogenous farnesol-like sesquiterpenoids (FLSs) may act as the long sought for but still unidentified agonist(s) for Ca2+-pumps in both the ER and Golgi. A second putative function also emerges. The fusion of both the incoming and outgoing transport vesicles, respectively, at the cis- and trans- side of Golgi stacks, with the membrane system requiring high flexibility and fast self-closing of the involved membranes. These properties may—possibly partially—be controlled by endogenous hydrophobic membrane “fluidizers” for which FLSs are prime candidates. A recent reexamination of unexplained classical data suggests that they are likely synthesized by the Golgi itself. This game-changing hypothesis is endorsed by several arguments and data, some of which date from 1964, that the insect corpus allatum (CA), which is the major production site of farnesol-esters, has active Golgi systems. Thus, in addition to secreting FLS, in particular juvenile hormone(s), it also secretes a protein(s) or peptide(s) with thus far unknown function. This paper suggests answers to various open questions in cell physiology and general endocrinology.
Collapse
Affiliation(s)
- Arnold De Loof
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Research Group of Functional Genomics and Proteomics, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|