1
|
Heidarrezaei M, Mauriello G, Shokravi H, Lau WJ, Ismail AF. Delivery of Probiotic-Loaded Microcapsules in the Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10311-6. [PMID: 38907825 DOI: 10.1007/s12602-024-10311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Probiotics are live microorganisms that inhabit the gastrointestinal tract and confer health benefits to consumers. However, a sufficient number of viable probiotic cells must be delivered to the specific site of interest in the gastrointestinal tract to exert these benefits. Enhanced viability and tolerance to sublethal gastrointestinal stress can be achieved using appropriate coating materials and food matrices for orally consumed probiotics. The release mechanism and interaction of probiotic microcapsules with the gastrointestinal tract have been minimally explored in the literature to date. To the authors' knowledge, no review has been published to discuss the nature of release and the challenges in the targeted delivery of probiotics. This review addresses gastrointestinal-related complications in the formulation of targeted delivery and controlled release of probiotic strains. It investigates the impacts of environmental stresses during the transition stage and delivery to the target region in the gastrointestinal tract. The influence of factors such as pH levels, enzymatic degradation, and redox conditions on the release mechanisms of probiotics is presented. Finally, the available methods to evaluate the efficiency of a probiotic delivery system, including in vitro and in vivo, are reviewed and assessed. The paper concludes with a discussion highlighting the emerging technologies in the field and emphasising key areas in need of future study.
Collapse
Affiliation(s)
- Mahshid Heidarrezaei
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049, Naples, Italy
| | - Hoofar Shokravi
- Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Woei Jye Lau
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Ahmad Fauzi Ismail
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
- Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| |
Collapse
|
2
|
Nobile V, Puoci F. Effect of a Multi-Strain Probiotic Supplementation to Manage Stress during the COVID-19 Pandemic: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Clinical Trial. Neuropsychobiology 2023; 82:61-71. [PMID: 36634645 PMCID: PMC9843736 DOI: 10.1159/000527956] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/31/2022] [Indexed: 01/14/2023]
Abstract
INTRODUCTION The COVID-19 pandemic strongly affected every aspect of the modern society, from health to socioeconomics, leading people to experience high levels of stress. METHODS A double-blind, cross-over, placebo-controlled clinical study was performed to investigate the ability of a food supplement containing two probiotic strains, Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077, in supporting 33 healthy adults, working at a university, in stress management. The efficacy of the tested strains in influencing the stress response, in terms of mood and sleep behavior, was assessed using the following validated questionnaires: Profile of Mood State (POMS) and Pittsburgh Sleep Quality Index (PSQI). RESULTS Outcomes of the POMS and the PSQI demonstrated a significant reduction of the questionnaire's scores both versus baseline and placebo after 30 days of probiotic intake. CONCLUSIONS According to the results, the probiotic food supplement investigated showed a remarkable effect on stress management by improving the quality of sleep and the mood.
Collapse
Affiliation(s)
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Cosenza, Italy,*Francesco Puoci,
| |
Collapse
|
3
|
Amato M, Di Spirito F, D’Ambrosio F, Boccia G, Moccia G, De Caro F. Probiotics in Periodontal and Peri-Implant Health Management: Biofilm Control, Dysbiosis Reversal, and Host Modulation. Microorganisms 2022; 10:2289. [PMID: 36422359 PMCID: PMC9694231 DOI: 10.3390/microorganisms10112289] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 07/30/2023] Open
Abstract
Periodontitis and peri-implantitis are microbially associated diseases of the tissues supporting the teeth and dental implants that are mediated by host inflammation and eventually lead to tooth and dental implant loss. Given the probiotics' role in biofilm control, dysbiosis reversal, and host modulation, their potential beneficial effects on the improvement of periodontitis and peri-implantitis have been recently investigated. Moreover, probiotics use has also been proposed in periodontal health management in patients undergoing fixed orthodontic therapy. Therefore, the present study aimed to review, considering the periodontal microbiome composition around teeth and dental implants in healthy and pathological conditions, the putative favorable effects of probiotics on gingivitis, periodontitis, and peri-implantitis. The secondary aim of the present narrative review was to synthesize the supporting evidence and proposed protocols for probiotics use as adjuncts in periodontitis and peri-implantitis treatment and the periodontal health management of orthodontic patients with fixed appliances. Contrasting findings from the literature may be due to the different methods, posology, and duration of probiotics prescriptions and due to the heterogeneous biological and clinical measurement methods employed. Thus, no definitive conclusions could be drawn about the effectiveness of probiotics in periodontal management, both in healthy and pathological conditions. Further studies are needed to validate probiotics for periodontal management and provide recommended protocols.
Collapse
|
4
|
Ahmed E, Hens K. Microbiome in Precision Psychiatry: An Overview of the Ethical Challenges Regarding Microbiome Big Data and Microbiome-Based Interventions. AJOB Neurosci 2022; 13:270-286. [PMID: 34379050 DOI: 10.1080/21507740.2021.1958096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
There has been a spurt in both fundamental and translational research that examines the underlying mechanisms of the human microbiome in psychiatric disorders. The personalized and dynamic features of the human microbiome suggest the potential of its manipulation for precision psychiatry in ways to improve mental health and avoid disease. However, findings in the field of microbiome also raise philosophical and ethical questions. From a philosophical point of view, they may yet be another attempt at providing a biological cause for phenomena that ultimately cannot be so easily localized. From an ethical point of view, it is relevant that the human gut microbiome comprises data on the individual's lifestyle, disease history, previous medications, and mental health. Massive datasets of microbiome sequences are collected to facilitate comparative studies to identify specific links between the microbiome and mental health. Although this emerging research domain may show promise for psychiatric patients, it is surrounded by ethical challenges regarding patient privacy, health risks, effects on personal identity, and concerns about responsibility. This narrative overview displays the roles and advances of microbiome research in psychiatry and discusses the philosophical and ethical implications of microbiome big data and microbiome-based interventions for psychiatric patients. We also investigate whether these issues are really "new," or "old wine in new bottles."
Collapse
Affiliation(s)
- Eman Ahmed
- University of Antwerp.,Suez Canal University
| | | |
Collapse
|
5
|
van Dorst JM, Tam RY, Ooi CY. What Do We Know about the Microbiome in Cystic Fibrosis? Is There a Role for Probiotics and Prebiotics? Nutrients 2022; 14:nu14030480. [PMID: 35276841 PMCID: PMC8840103 DOI: 10.3390/nu14030480] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic fibrosis (CF) is a life-shortening genetic disorder that affects the cystic fibrosis transmembrane conductance regulator (CFTR) protein. In the gastrointestinal (GI) tract, CFTR dysfunction results in low intestinal pH, thick and inspissated mucus, a lack of endogenous pancreatic enzymes, and reduced motility. These mechanisms, combined with antibiotic therapies, drive GI inflammation and significant alteration of the GI microbiota (dysbiosis). Dysbiosis and inflammation are key factors in systemic inflammation and GI complications including malignancy. The following review examines the potential for probiotic and prebiotic therapies to provide clinical benefits through modulation of the microbiome. Evidence from randomised control trials suggest probiotics are likely to improve GI inflammation and reduce the incidence of CF pulmonary exacerbations. However, the highly variable, low-quality data is a barrier to the implementation of probiotics into routine CF care. Epidemiological studies and clinical trials support the potential of dietary fibre and prebiotic supplements to beneficially modulate the microbiome in gastrointestinal conditions. To date, limited evidence is available on their safety and efficacy in CF. Variable responses to probiotics and prebiotics highlight the need for personalised approaches that consider an individual’s underlying microbiota, diet, and existing medications against the backdrop of the complex nutritional needs in CF.
Collapse
Affiliation(s)
- Josie M. van Dorst
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Rachel Y. Tam
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
| | - Chee Y. Ooi
- Discipline of Paediatrics & Child Health, Randwick Clinical Campus, School of Clinical Medicine, UNSW Medicine & Health, UNSW, Sydney 2031, Australia; (J.M.v.D.); (R.Y.T.)
- Molecular and Integrative Cystic Fibrosis (miCF) Research Centre, Sydney 2031, Australia
- Department of Gastroenterology, Sydney Children’s Hospital Randwick, Sydney 2031, Australia
- Correspondence:
| |
Collapse
|
6
|
Reid G, Dhir R, Bron PA. Fixing Functional GI Disorders Using Microbes: Easier Said Than Done. Front Endocrinol (Lausanne) 2022; 13:804179. [PMID: 35360061 PMCID: PMC8963371 DOI: 10.3389/fendo.2022.804179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Surgery, Western University, London, ON, Canada
- *Correspondence: Gregor Reid,
| | | | | |
Collapse
|
7
|
Ashaolu TJ, Fernández-Tomé S. Gut mucosal and adipose tissues as health targets of the immunomodulatory mechanisms of probiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Liu L, Zou Z, Yang J, Li X, Zhu B, Zhang H, Sun Y, Zhang Y, Zhang ZJ, Wang W. Jianpi Jieyu Decoction, An Empirical Herbal Formula, Exerts Psychotropic Effects in Association With Modulation of Gut Microbial Diversity and GABA Activity. Front Pharmacol 2021; 12:645638. [PMID: 33935741 PMCID: PMC8079981 DOI: 10.3389/fphar.2021.645638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Recent studies suggest that gut microbiota was associated with the bidirectional gut-brain axis which could modulate neuropsychological functions of the central nervous system. Gut microbiota could produce gamma aminobutyric acid (GABA) that could modulate the gut-brain axis response. Jianpi Jieyu (JPJY) decoction, a traditional Chinese formula, is mainly composed of Astragalus membranaxeus and Radix Pseudostellariae. Although the JPJY decoction has been used to treat the depression in China, the potential action of its antidepressant has not been well understood. Thus this study was aim to investigate the role of JPJY improve gut microbiota homeostasis in the chronic stress induced depressive mice. Methods: The antidepressant effect of JPJY on chronic unpredictable mild stress (CUMS) mice was evaluated by using sucrose preference test, tail suspension test and forced swim test. Fatigue-like behaviors were evaluated using degree of redness, grip strength test, and exhaustive swimming test. The new object recognition test was used to evaluate cognition performance. Fecal samples were collected and taxonomical analysis of intestinal microbial distribution was conducted with 16S rDNA. Serum level of GABA was measured using high performance liquid chromatography (HPLC). The expression of GluR1 and p-Tau protein in the hippocampus was determined using Western blotting. Results: The dose of 9.2 g/kg JPJY produced antidepressant-like effects. JPJY and its major components also modulated gut microbiota diversity in the CUMS mice. Serum level of GABA and the expressions of hippocampal GluR1 and p-Tau were reversed after the administration of JPJY in CUMS mice. Conclusion: JPJY regulates gut microbiota to produce antidepressant-like effect and improve cognition deficit in depressive mice while its molecular mechanism possibly be enhanced NR1 and Tau expression in hippocampus and increased GABA in serum.
Collapse
Affiliation(s)
- Lanying Liu
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Zhilu Zou
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Jiangwei Yang
- Department of Psychiatry, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Mental Health Center of Zhejiang Province, Hangzhou, China
| | - Xiaoqi Li
- Key Laboratory of Integrative Biomedicine of Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Boran Zhu
- Key Laboratory of Integrative Biomedicine of Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hailou Zhang
- Key Laboratory of Integrative Biomedicine of Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Sun
- Key Laboratory of Integrative Biomedicine of Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxuan Zhang
- Key Laboratory of Integrative Biomedicine of Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Wang
- Key Laboratory of Integrative Biomedicine of Brain Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Liu J, Xu F, Nie Z, Shao L. Gut Microbiota Approach-A New Strategy to Treat Parkinson's Disease. Front Cell Infect Microbiol 2020; 10:570658. [PMID: 33194809 PMCID: PMC7643014 DOI: 10.3389/fcimb.2020.570658] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by neuronal loss and dysfunction of dopaminergic neurons located in the substantia nigra, which contain a variety of misfolded α-synuclein (α-syn). Medications that increase or substitute for dopamine can be used for the treatment of PD. Recently, numerous studies have shown gut microbiota plays a crucial role in regulating and maintaining multiple aspects of host physiology including host metabolism and neurodevelopment. In this review article, the role of gut microbiota in the etiological mechanism of PD will be reviewed. Furthermore, we discussed current pharmaceutical medicine-based methods to prevent and treat PD, followed by describing specific strains that affect the host brain function through the gut-brain axis. We explained in detail how gut microbiota directly produces neurotransmitters or regulate the host biosynthesis of neurotransmitters. The neurotransmitters secreted by the intestinal lumen bacteria may induce epithelial cells to release molecules that, in turn, can regulate neural signaling in the enteric nervous system and subsequently control brain function and behavior through the brain-gut axis. Finally, we proved that the microbial regulation of the host neuronal system. Endogenous α-syn can be transmitted long distance and bidirectional between ENS and brain through the circulatory system which gives us a new option that the possibility of altering the community of gut microbiota in completely new medication option for treating PD.
Collapse
Affiliation(s)
- Jing Liu
- Department of Microbiology and Immunity, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Microbial Pharmacology Laboratory, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Fei Xu
- Department of Microbiology and Immunity, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Microbial Pharmacology Laboratory, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zhiyan Nie
- Department of Microbiology and Immunity, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine & Health Sciences, Shanghai, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| |
Collapse
|
10
|
Iglesias-Vázquez L, Van Ginkel Riba G, Arija V, Canals J. Composition of Gut Microbiota in Children with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Nutrients 2020; 12:nu12030792. [PMID: 32192218 PMCID: PMC7146354 DOI: 10.3390/nu12030792] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a public health problem and has a prevalence of 0.6%-1.7% in children. As well as psychiatric symptoms, dysbiosis and gastrointestinal comorbidities are also frequently reported. The gut-brain microbiota axis suggests that there is a form of communication between microbiota and the brain underlying some neurological disabilities. The aim of this study is to describe and compare the composition of gut microbiota in children with and without ASD. METHODS Electronic databases were searched as far as February 2020. Meta-analyses were performed using RevMan5.3 to estimate the overall relative abundance of gut bacteria belonging to 8 phyla and 17 genera in children with ASD and controls. RESULTS We included 18 studies assessing a total of 493 ASD children and 404 controls. The microbiota was mainly composed of the phyla Bacteroidetes, Firmicutes, and Actinobacteria, all of which were more abundant in the ASD children than in the controls. Children with ASD showed a significantly higher abundance of the genera Bacteroides, Parabacteroides, Clostridium, Faecalibacterium, and Phascolarctobacterium and a lower percentage of Coprococcus and Bifidobacterium. DISCUSSION This meta-analysis suggests that there is a dysbiosis in ASD children which may influence the development and severity of ASD symptomatology. Further studies are required in order to obtain stronger evidence of the effectiveness of pre- or probiotics in reducing autistic behaviors.
Collapse
Affiliation(s)
- Lucía Iglesias-Vázquez
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Health Science, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.I.-V.); (V.A.)
| | - Georgette Van Ginkel Riba
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
| | - Victoria Arija
- Department of Preventive Medicine and Public Health, Faculty of Medicine and Health Science, Universitat Rovira i Virgili, 43201 Reus, Spain; (L.I.-V.); (V.A.)
| | - Josefa Canals
- Department of Psychology, Faculty of Education Sciences and Psychology, Universitat Rovira i Virgili, 43007 Tarragona, Spain;
- Correspondence: ; Tel.: +34-977-55-80-74
| |
Collapse
|
11
|
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16:605-616. [PMID: 31296969 DOI: 10.1038/s41575-019-0173-3] [Citation(s) in RCA: 875] [Impact Index Per Article: 175.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/14/2022]
Abstract
Probiotics and prebiotics are microbiota-management tools for improving host health. They target gastrointestinal effects via the gut, although direct application to other sites such as the oral cavity, vaginal tract and skin is being explored. Here, we describe gut-derived effects in humans. In the past decade, research on the gut microbiome has rapidly accumulated and has been accompanied by increased interest in probiotics and prebiotics as a means to modulate the gut microbiota. Given the importance of these approaches for public health, it is timely to reiterate factual and supporting information on their clinical application and use. In this Review, we discuss scientific evidence on probiotics and prebiotics, including mechanistic insights into health effects. Strains of Lactobacillus, Bifidobacterium and Saccharomyces have a long history of safe and effective use as probiotics, but Roseburia spp., Akkermansia spp., Propionibacterium spp. and Faecalibacterium spp. show promise for the future. For prebiotics, glucans and fructans are well proven, and evidence is building on the prebiotic effects of other substances (for example, oligomers of mannose, glucose, xylose, pectin, starches, human milk and polyphenols).
Collapse
Affiliation(s)
- Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA
| | - Daniel J Merenstein
- Department of Family Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Gregor Reid
- Lawson Research Institute, and Western University, London, Ontario, Canada
| | - Glenn R Gibson
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| | - Robert A Rastall
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| |
Collapse
|
12
|
Reid G. Fourteen steps to relevance: taking probiotics from the bench to the consumer. Can J Microbiol 2019; 66:1-10. [PMID: 31526326 DOI: 10.1139/cjm-2019-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much is made of the need to translate scientific research into improved care of people or other life forms. Grant applications invariably start with the extent of a problem and end by claiming that their work will or could result in making an impact. In truth, very few projects ever lead to translation at the level of the host, nor was that really their intent. For those who are focused on applied science, there are many ways to reach the desired goal, sometimes through serendipity or by logical stepwise progress. The following paper will provide personal insight into the stages, pitfalls, and ultimate assessment of relevance in the context of using probiotic lactobacilli for human health and other applications.
Collapse
Affiliation(s)
- Gregor Reid
- Lawson Health Research Institute and Departments of Microbiology and Immunology and Surgery, Western University, London, ON, Canada
| |
Collapse
|