1
|
Pastò B, Vida R, Dri A, Foffano L, Della Rossa S, Gerratana L, Puglisi F. Beyond Hormone Receptors: liquid biopsy tools to unveil new clinical meanings and empower therapeutic decision-making in Luminal-like metastatic breast cancer. Breast 2024; 79:103859. [PMID: 39708442 DOI: 10.1016/j.breast.2024.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024] Open
Abstract
Immunohistochemical (IHC) tissue profiling is a standard practice in the management of metastatic breast cancer (mBC), that enables the identification of distinct biological phenotypes based on hormone receptors' expression. Luminal-like tumors primarily benefit from a first line treatment strategy combining endocrine therapy and cyclin-dependent kinase 4/6 inhibitors. However, IHC analyses necessitate invasive procedures and may encounter technical and interpretational challenges. In the current era of precision medicine, liquid biopsy holds potential to provide clinicians with additional insights into disease biology, including mechanisms underlying endocrine resistance and disease progression. Several liquid-based biomarkers are entering clinical practice and hold prognostic and predictive values in Luminal-like mBC, while many others are currently being investigated. The present work aims to summarize the current evidence regarding the clinical meanings of hormone receptors and their downstream molecular pathways, alongside their implications for therapeutic decision-making in Luminal-like mBC.
Collapse
Affiliation(s)
- Brenno Pastò
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Riccardo Vida
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Arianna Dri
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Lorenzo Foffano
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Serena Della Rossa
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| | - Lorenzo Gerratana
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy.
| | - Fabio Puglisi
- Department of Medicine (DMED), University of Udine, 33100, Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081, Aviano, Italy
| |
Collapse
|
2
|
Kasirzadeh S, Lenjisa JL, Wang S. Targeting CDK2 to combat drug resistance in cancer therapy. Future Oncol 2024; 20:3325-3341. [PMID: 39469865 PMCID: PMC11633421 DOI: 10.1080/14796694.2024.2416382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
Drug resistance remains a major obstacle in cancer treatment, leading to treatment failures and high mortality rates. Despite advancements in therapies, overcoming resistance requires a deeper understanding of its mechanisms. This review highlights CDK2's pivotal role in both intrinsic and acquired resistance, and its potential as a therapeutic target. Cyclin E upregulation, which partners with CDK2, is linked to poor prognosis and resistance across various cancers. Specifically, amplifications of CCNE1/CCNE2 are associated with resistance to targeted therapies, immunotherapy, endocrine therapies and chemo/radiotherapy. Given CDK2's involvement in resistance mechanisms, investigating its role presents promising opportunities for developing novel strategies to combat resistance and improve treatment outcomes.
Collapse
Affiliation(s)
- Sara Kasirzadeh
- Drug Discovery & Development, Clinical & Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Jimma Likisa Lenjisa
- Drug Discovery & Development, Clinical & Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Shudong Wang
- Drug Discovery & Development, Clinical & Health Sciences, University of South Australia, Adelaide, 5000, Australia
| |
Collapse
|
3
|
Wang X, Guo Y, Lin P, Yu M, Song S, Xu W, Kong D, Wang Y, Zhang Y, Lu F, Xie Q, Ma X. Nuclear receptor E75/NR1D2 promotes tumor malignant transformation by integrating Hippo and Notch pathways. EMBO J 2024; 43:6336-6363. [PMID: 39516282 DOI: 10.1038/s44318-024-00290-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hormone therapy resistance and the ensuing aggressive tumor progression present a significant clinical challenge. However, the mechanisms underlying the induction of tumor malignancy upon inhibition of steroid hormone signaling remain poorly understood. Here, we demonstrate that Drosophila malignant epithelial tumors show a similar reduction in ecdysone signaling, the main steroid hormone pathway. Our analysis of ecdysone-induced downstream targets reveals that overexpression of the nuclear receptor E75, particularly facilitates the malignant transformation of benign tumors. Genome-wide DNA binding profiles and biochemistry data reveal that E75 not only binds to the transcription factors of both Hippo and Notch pathways, but also exhibits widespread co-binding to their target genes, thus contributing to tumor malignancy. We further validated these findings by demonstrating that depletion of NR1D2, the mammalian homolog of E75, inhibits the activation of Hippo and Notch target genes, impeding glioblastoma progression. Together, our study unveils a novel mechanism by which hormone inhibition promotes tumor malignancy, and describes an evolutionarily conserved role of the oncogene E75/NR1D2 in integration of Hippo and Notch pathway activity during tumor progression.
Collapse
Affiliation(s)
- Xianping Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Yifan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Peng Lin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Du Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yin Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yanxiao Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
4
|
Eugene-Osoikhia TT, Odozi NW, Yeye EO, Isiaka M, Oladosu IA. In-silico study of novel dimeric flavonoid (OC251FR2) isolated from the seeds of Garcinia kola Heckel ( Clusiaceae) against alpha estrogen receptor (ER-α) of breast cancer. In Silico Pharmacol 2024; 12:108. [PMID: 39569035 PMCID: PMC11573959 DOI: 10.1007/s40203-024-00282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Estrogen hormone dependence accounts for a major cause in the incidence of women breast cancer. ER-α is the major ER subtype in the mammary epithelium and plays a critical role in breast cancer progression. Tamoxifen (1-[4-(2-dimethylaminoethoxy)-phenyl]-1,2- diphenylbut-1(Z)-ene) is a nonsteroidal antiestrogen prodrug which formed pharmacologically active metabolite, 4-hydroxytamoxifen, largely used for endocrine therapy in pre and postmenopausal women with ER-positive breast cancer. However, long term treatment with tamoxifen results in acquires resistance and high probability of disease recurring, hence the need for an alternative breast cancer drug. In silico approach was used to investigate the inhibitory activities of a novel dimeric flavanonol OC251FR2 (3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one)-3,3'-oxybis(5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one) isolated from the chloroform fraction of Garcinia kola, against alpha Estrogen receptor (ER-α); a major contributor to the growth of breast cancer. The docking was conducted using Maestro module 13.5 to obtained the ER-α PDB (5W9C) from NCBI. The OC251FR2 was docked using ligprep module with 4-hydroxytamoxifen being the reference drug. The qikpro was used to investigate the drug-likeliness while ligand docking and induced fit docking were used to investigate the interaction and binding affinity of the ligands with the active sites of the PDB. The result shows that the isolated OC251FR2 with docking score value of -6.214 interact more with amino acids in the active sites via H-bond, pi-pi interaction than the reference drug 4-Hydroxytamoxifen with a docking score value of -5.289. The drug-likeliness determined by qikpro shows that OC251FR2 violated three of the Lipinski rules of 5, and also have percent oral absorption. The quantum mechanics values show that OC251FR2 have similar properties comparable to the reference drug 4-hydroxytamoxifen. Hence, can serve as potential lead against alpha Estrogen receptor (ER-α). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00282-5.
Collapse
Affiliation(s)
| | - Nnenna W Odozi
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Emmanuel O Yeye
- Department of Basic Sciences, Adeleke University, Ede, Osun State Nigeria
| | - Mohammed Isiaka
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Ibrahim A Oladosu
- Department of Chemistry, University of Ibadan, Ibadan, Oyo State Nigeria
| |
Collapse
|
5
|
Surdacka LM, Jakubas A, Jagiełło J, Daniłowska K, Picheta N, Gil-Kulik P. Epigenetic and Immune Mechanisms Linking Breastfeeding to Lower Breast Cancer Rates. Med Sci Monit 2024; 30:e945451. [PMID: 39497379 PMCID: PMC11549897 DOI: 10.12659/msm.945451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/24/2024] [Indexed: 11/11/2024] Open
Abstract
This review shows how mammary stem cells (MaSCs) influence breast development, breastfeeding, and breast cancer risk. MaSCs, which can differentiate into various cell types, are vital for breast tissue health, but also disease development in breast tissue. Research shows that breastfeeding affects MaSCs, offering protection against breast cancer through various mechanisms. Hormonal changes such as increased prolactin concentration, oxytocin secretion, lower progesterone levels, and reduced exposure to estrogen during lactation promote apoptosis in potential cancer cells, boost immune surveillance, and modulate inflammation. Key findings reveal that pregnancy at an earlier age and extended breastfeeding reduce MaSC numbers, lowering cancer risk. Additionally, breastfeeding induces various epigenetic changes, such as DNA methylation and histone modification, which provide long-term protection against the development of cancer. Components of breast milk, like alpha-lactalbumin and lactoferrin, contribute by promoting cancer cell apoptosis and inhibiting tumor growth. The dual benefits of breastfeeding are reduced breast cancer risk for mothers and immunological advantages for infants. Multicenter epidemiology research has focused particular attention on longer breastfeeding duration associated with a reduced risk of triple-negative breast cancer. This review offers comprehensive evidence that breastfeeding protects against breast cancer through various biological, hormonal, and molecular mechanisms, showing the importance of promoting breastfeeding as a natural cancer prevention method. This article reviews the role of mammary stem cells in breast development, lactation, and breast cancer.
Collapse
Affiliation(s)
- Laura Maria Surdacka
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Adam Jakubas
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Jakub Jagiełło
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Karolina Daniłowska
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Natalia Picheta
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
6
|
Nandi D, Sharma D. Integrating immunotherapy with conventional treatment regime for breast cancer patients- an amalgamation of armamentarium. Front Immunol 2024; 15:1477980. [PMID: 39555066 PMCID: PMC11563812 DOI: 10.3389/fimmu.2024.1477980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Immunotherapy stands as the frontrunner in treatment strategies imparting efficient remission in various types of cancer. In fact, emerging breakthroughs with immune checkpoint inhibitors (ICI) in a spectrum of cancers have evoked interest in research related to the potential effects of immunotherapy in breast cancer patients. A major challenge with breast cancer is the molecular heterogeneity that limits the efficacy of many therapeutic regimes. Clinical trials have shown favorable clinical outcomes with immunotherapeutic options in some subtypes of breast cancer. However, ICI monotherapy may not be sufficient for all breast cancer patients, emphasizing the need for combinatorial approaches. Ongoing research is focused on untangling the interplay of ICI with established as well as novel anticancer therapeutic regimens in preclinical models of breast cancer. Our review will analyze the existing research regarding the mechanisms and clinical impact of immunotherapy for the treatment of breast cancer. We shall evaluate the role of immune cell modulation for improved therapeutic response in breast cancer patients. This review will provide collated evidences about the current clinical trials that are testing out the implications of immunotherapy in conjunction with traditional treatment modalities in breast cancer and summarize the potential future research directions in the field. In addition, we shall underline the recent findings related to microbiota modulation as a key regulator of immune therapy response in cancer patients and its plausible applications in breast cancer.
Collapse
Affiliation(s)
- Deeptashree Nandi
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
7
|
Bardia A, Cortés J, Bidard FC, Neven P, Garcia-Sáenz J, Aftimos P, O’Shaughnessy J, Lu J, Tonini G, Scartoni S, Paoli A, Binaschi M, Wasserman T, Kaklamani V. Elacestrant in ER+, HER2- Metastatic Breast Cancer with ESR1-Mutated Tumors: Subgroup Analyses from the Phase III EMERALD Trial by Prior Duration of Endocrine Therapy plus CDK4/6 Inhibitor and in Clinical Subgroups. Clin Cancer Res 2024; 30:4299-4309. [PMID: 39087959 PMCID: PMC11443208 DOI: 10.1158/1078-0432.ccr-24-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
PURPOSE Elacestrant significantly prolonged progression-free survival (PFS) with manageable safety versus standard-of-care (SOC) endocrine therapy (ET) in patients with estrogen receptor-positive (ER+), HER2- metastatic breast cancer and tumors harboring estrogen receptor 1 (ESR1) mutation following ET plus a cyclin-dependent kinase 4/6 inhibitor (ET+CDK4/6i). In patients with ESR1-mutated tumors, we evaluated the efficacy and safety of elacestrant versus SOC based on prior ET+CDK4/6i duration and in clinical subgroups with prior ET+CDK4/6i ≥12 months. PATIENTS AND METHODS EMERALD, an open-label phase III trial, randomly assigned patients with ER+, HER2- metastatic breast cancer who had received 1-2 prior lines of ET, mandatory CDK4/6i, and ≤1 chemotherapy to elacestrant (345 mg daily) or SOC (aromatase inhibitor or fulvestrant). PFS was assessed across subgroups in post hoc exploratory analyses without adjustment for multiple testing. RESULTS In patients with ESR1-mutated tumors and prior ET+CDK4/6i ≥12 months, the median PFS for elacestrant versus SOC was 8.6 versus 1.9 months (HR, 0.41; 95% confidence interval, 0.26-0.63). In this population, the median PFS (in months) for elacestrant versus SOC was 9.1 versus 1.9 (bone metastases), 7.3 versus 1.9 (liver and/or lung metastases), 9.0 versus 1.9 (<3 metastatic sites), 10.8 versus 1.8 (≥3 metastatic sites), 5.5 versus 1.9 (PIK3 catalytic subunit α mutation), 8.6 versus 1.9 (tumor protein p53 gene mutation), 9.0 versus 1.9 (HER2-low), 9.0 versus 1.9 (ESR1D538G-mutated tumors), and 9.0 versus 1.9 (ESR1Y537S/N-mutated tumors). Subgroup safety was consistent with the overall population. CONCLUSIONS The duration of prior ET+CDK4/6i ≥12 months in metastatic breast cancer was associated with a clinically meaningful improvement in PFS for elacestrant compared with SOC and was consistent across all subgroups evaluated in patients with ER+, HER2-, ESR1-mutated tumors.
Collapse
Affiliation(s)
- Aditya Bardia
- University of California Los Angeles (UCLA) Health Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California.
| | - Javier Cortés
- International Breast Cancer Center (IBCC), Pangaea Oncology, Quironsalud Group, Barcelona, Spain; and IOB Madrid, Hospital Beata Maria Ana, and Faculty of Biomedical and Health Sciences, Department of Medicine, Universidad Europea de Madrid, Madrid, Spain.
| | | | - Patrick Neven
- Universitaire Ziekenhuizen (UZ)—Leuven Cancer Institute, Leuven, Belgium.
| | - José Garcia-Sáenz
- Instituto de Investigación Sanitaria Hospital Clinico San Carlos (IdISSC), Madrid, Spain.
| | - Phillipe Aftimos
- Institut Jules Bordet—Université Libre de Bruxelles, Brussels, Belgium.
| | - Joyce O’Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas.
| | - Janice Lu
- Northwestern University Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois.
| | | | | | | | | | | | | |
Collapse
|
8
|
Marin A, Morales F, Walbaum B. Fibroblast growth factor receptor signaling in estrogen receptor-positive breast cancer: mechanisms and role in endocrine resistance. Front Oncol 2024; 14:1406951. [PMID: 39040443 PMCID: PMC11260626 DOI: 10.3389/fonc.2024.1406951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Fibroblast Growth Factor Receptors (FGFRs) play a significant role in Estrogen Receptor-positive (ER+) breast cancer by contributing to tumorigenesis and endocrine resistance. This review explores the structure, signaling pathways, and implications of FGFRs, particularly FGFR1, FGFR2, FGFR3, and FGFR4, in ER+ breast cancer. FGFR1 is frequently amplified, especially in aggressive Luminal B-like tumors, and its amplification is associated with poor prognosis and treatment resistance. The co-amplification of FGFR1 with oncogenes like EIF4EBP1 and NSD3 complicates its role as a standalone oncogenic driver. FGFR2 amplification, though less common, is critical in hormone receptor regulation, driving proliferation and treatment resistance. FGFR3 and FGFR4 also contribute to endocrine resistance through various mechanisms, including the activation of alternate signaling pathways like PI3K/AKT/mTOR and RAS/RAF/MEK/ERK. Endocrine resistance remains a major clinical challenge, with around 70% of breast cancers initially hormone receptor positive. Despite the success of CDK 4/6 inhibitors in combination with endocrine therapy (ET), resistance often develops, necessitating new treatment strategies. FGFR inhibitors have shown potential in preclinical studies, but clinical trials have yielded limited success due to off-target toxicities and lack of predictive biomarkers. Current clinical trials, including those evaluating FGFR inhibitors like erdafitinib, lucitanib, and dovitinib, have demonstrated mixed outcomes, underscoring the complexity of FGFR signaling in breast cancer. The interplay between FGFR and other signaling pathways highlights the need for comprehensive molecular profiling and personalized treatment approaches. Future research should focus on identifying robust biomarkers and developing combination therapies to enhance the efficacy of FGFR-targeted treatments. In conclusion, targeting FGFR signaling in ER+ breast cancer presents both challenges and opportunities. A deeper understanding of the molecular mechanisms and resistance pathways is crucial for the successful integration of FGFR inhibitors into clinical practice, aiming to improve outcomes for patients with endocrine-resistant breast cancer.
Collapse
Affiliation(s)
- Arnaldo Marin
- Doctoral Program in Medical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
- Oncology Program, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernanda Morales
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Benjamín Walbaum
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Department of Hematology-Oncology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Rani A. RAR-related orphan receptor alpha and the staggerer mice: a fine molecular story. Front Endocrinol (Lausanne) 2024; 14:1300729. [PMID: 38766309 PMCID: PMC11099308 DOI: 10.3389/fendo.2023.1300729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024] Open
Abstract
The retinoic acid-related orphan receptor alpha (RORα) protein first came into the limelight due to a set of staggerer mice, discovered at the Jackson Laboratories in the United States of America by Sidman, Lane, and Dickie (1962) and genetically deciphered by Hamilton et al. in 1996. These staggerer mice exhibited cerebellar defects, an ataxic gait, a stagger along with several other developmental abnormalities, compensatory mechanisms, and, most importantly, a deletion of 160 kilobases (kb), encompassing the RORα ligand binding domain (LBD). The discovery of the staggerer mice and the subsequent discovery of a loss of the LBD within the RORα gene of these mice at the genetic level clearly indicated that RORα's LBD played a crucial role in patterning during embryogenesis. Moreover, a chance study by Roffler-Tarlov and Sidman (1978) noted reduced concentrations of glutamic acid levels in the staggerer mice, indicating a possible role for the essence of a nutritionally balanced diet. The sequential organisation of the building blocks of intact genes, requires the nucleotide bases of deoxyribonucleic acid (DNA): purines and pyrimidines, both of which are synthesized, upon a constant supply of glutamine, an amino acid fortified in a balanced diet and a byproduct of the carbohydrate and lipid metabolic pathways. A nutritionally balanced diet, along with a metabolic "enzymatic machinery" devoid of mutations/aberrations, was essential in the uninterrupted transcription of RORα during embryogenesis. In addition to the above, following translation, a ligand-responsive RORα acts as a "molecular circadian regulator" during embryogenesis and not only is expressed selectively and differentially, but also promotes differential activity depending on the anatomical and pathological site of its expression. RORα is highly expressed in the central nervous system (CNS) and the endocrine organs. Additionally, RORα and the clock genes are core components of the circadian rhythmicity, with the expression of RORα fluctuating in a night-day-night sigmoidal pattern and undoubtedly serves as an endocrine-like, albeit "molecular-circadian regulator". Melatonin, a circadian hormone, along with tri-iodothyronine and some steroid hormones are known to regulate RORα-mediated molecular activity, with each of these hormones themselves being regulated rhythmically by the hypothalamic-pituitary axis (HPA). The HPA regulates the circadian rhythm and cyclical release of hormones, in a self-regulatory feedback loop. Irregular sleep-wake patterns affect circadian rhythmicity and the ability of the immune system to withstand infections. The staggerer mice with their thinner bones, an altered skeletal musculature, an aberrant metabolic profile, the ataxic gait and an underdeveloped cerebellar cortex; exhibited compensatory mechanisms, that not only allowed the survival of the staggerer mice, but also enhanced protection from microbial invasions and resistance to high-fat-diet induced obesity. This review has been compiled in its present form, more than 14 years later after a chromatin immunoprecipitation (ChIP) cloning and sequencing methodology helped me identify signal transducer and activator of transcription 5 (STAT5) target sequences, one of which was mapped to the first intron of the RORα gene. The 599-base-long sequence containing one consensus TTCNNNGAA (TTCN3GAA) gamma-activated sequence (GAS) and five other non-consensus TTN5AA sequences had been identified from the clones isolated from the STAT5 target sites (fragments) in human phytohemagglutinin-activated CD8+ T lymphocytes, during my doctoral studies between 2006 and 2009. Most importantly, preliminary studies noted a unique RORα expression profile, during a time-course study on the ribonucleic acid (RNA), extracted from human phytohemagglutinin (PHA) activated CD8+ T lymphocytes stimulated with interleukin-2 (IL-2). This review mainly focuses on the "staggerer mice" with one of its first roles materialising during embryogenesis, a molecular-endocrine mediated circadian-like regulatory process.
Collapse
Affiliation(s)
- Aradhana Rani
- Medical Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
- Human Resource Development and Management, Indian Institute of Technology (IIT) Kharagpur, West Bengal, India
- Immunology, King’s College London, London, United Kingdom
| |
Collapse
|
10
|
Lee J, Kim EA, Kang J, Chae YS, Park HY, Kang B, Lee SJ, Lee IH, Park JY, Park NJY, Jung JH. Long non-coding RNA SOX2OT in tamoxifen-resistant breast cancer. BMC Mol Cell Biol 2024; 25:12. [PMID: 38649821 PMCID: PMC11036730 DOI: 10.1186/s12860-024-00510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Hormone receptor (HR)-positive breast cancer can become aggressive after developing hormone-treatment resistance. This study elucidated the role of long non-coding RNA (lncRNA) SOX2OT in tamoxifen-resistant (TAMR) breast cancer and its potential interplay with the tumor microenvironment (TME). TAMR breast cancer cell lines TAMR-V and TAMR-H were compared with the luminal type A cell line (MCF-7). LncRNA expression was assessed via next-generation sequencing, RNA extraction, lncRNA profiling, and quantitative RT-qPCR. SOX2OT overexpression effects on cell proliferation, migration, and invasion were evaluated using various assays. SOX2OT was consistently downregulated in TAMR cell lines and TAMR breast cancer tissue. Overexpression of SOX2OT in TAMR cells increased cell proliferation and cell invasion. However, SOX2OT overexpression did not significantly alter SOX2 levels, suggesting an independent interaction within TAMR cells. Kaplan-Meier plot analysis revealed an inverse relationship between SOX2OT expression and prognosis in luminal A and B breast cancers. Our findings highlight the potential role of SOX2OT in TAMR breast cancer progression. The downregulation of SOX2OT in TAMR breast cancer indicates its involvement in resistance mechanisms. Further studies should explore the intricate interactions between SOX2OT, SOX2, and TME in breast cancer subtypes.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Eun-Ae Kim
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jieun Kang
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Yee Soo Chae
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Ho Yong Park
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Byeongju Kang
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Soo Jung Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - In Hee Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Ji-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Jin Hyang Jung
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Alrumaihi F. Chemoinformatics and machine learning techniques to identify novel inhibitors of the lemur tyrosine kinase-3 receptor involved in breast cancer. Front Mol Biosci 2024; 11:1366763. [PMID: 38638686 PMCID: PMC11025642 DOI: 10.3389/fmolb.2024.1366763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Breast cancer is still the largest cause of cancer death in women, and around 70% of primary breast cancer patients are estrogen receptor (ER)-positive, which is the most frequent kind of breast cancer. The lemur tyrosine kinase-3 (LMTK3) receptor has been linked to estrogen responsiveness in breast cancer. However, the function of LMTK3 in reaction to cytotoxic chemotherapy has yet to be studied. Breast cancer therapy research remains tricky due to a paucity of structural investigations on LMTK3. We performed structural investigations on LMTK3 using molecular docking and molecular dynamics (MD) simulations of the LMTK3 receptor in complex with the top three inhibitor molecules along with a control inhibitor. Analysis revealed the top three compounds show the best binding affinities during docking simulations. Interactive analysis of hydrogen bonds inferred hotspot residues Tyr163, Asn138, Asp133, Tyr56, Glu52, Ser132, Asp313, and Asp151. Some other residues in the 5-Å region determined strong alkyl bonds and conventional hydrogen bond linkages. Furthermore, protein dynamics analysis revealed significant modifications among the top complexes and the control system. There was a transition from a loop to a-helix conformation in the protein-top1 complex, and in contrast, in complexes top2 and top3, the formation of a stabilizing sheet in the C chain was observed, which limited significant mobility and increased complex stability. Significant structural alterations were observed in the protein-top complexes, including a shorter helix region and the creation of some loop regions in comparison to the control system. Interestingly, binding free energies, including MMGB/PBSA WaterSwap analysis estimation, reveals that the top1 complex system was more stable than other systems, especially in comparison to the control inhibitor complex system. These results suggest a the plausible mode of action for the novel inhibitors. Therefore, the current investigation contributes to understanding the mechanism of action, serving as a basis for future experimental studies.
Collapse
Affiliation(s)
- Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
12
|
Alzahrani AA, Saleh RO, Latypova A, Bokov DO, Kareem AH, Talib HA, Hameed NM, Pramanik A, Alawadi A, Alsalamy A. Therapeutic significance of long noncoding RNAs in estrogen receptor-positive breast cancer. Cell Biochem Funct 2024; 42:e3993. [PMID: 38532685 DOI: 10.1002/cbf.3993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
About 70% of cases of breast cancer are compromised by Estrogen-positive breast cancer. Through its regulation of several processes, including cell proliferation, cell cycle progression, and apoptosis, Estrogen signaling plays a pivotal role in the genesis and progression of this particular kind of breast cancer. One of the best treatment strategies for treating Estrogen-positive breast cancer is blocking Estrogen signaling. However, patients' treatment failure is mainly caused by the emergence of resistance and metastases, necessitating the development of novel therapeutic targets. Numerous studies have shown long noncoding RNAs (lncRNAs) to play a role in Estrogen-mediated carcinogenesis. These lncRNAs interact with co-regulators and the Estrogen signaling cascade components, primarily due to Estrogen activation. Vimentin and E-cadherin are examples of epithelial-to-mesenchymal transition markers, and they regulate genes involved in cell cycle progression, such as Cyclins, to affect the growth, proliferation, and metastasis of Estrogen-positive breast cancer. Furthermore, a few of these lncRNAs contribute to developing resistance to chemotherapy, making them more desirable targets for enhancing results. Thus, to shed light on the creation of fresh approaches for treating this cancer, this review attempts to compile recently conducted studies on the relationship between lncRNAs and the advancement of Estrogen-positive breast cancer.
Collapse
Affiliation(s)
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Amaliya Latypova
- Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russia
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Mishref Campus, Kuwait
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | | | - Hayder Abdullah Talib
- College of Agriculture, National University of Science and Technology, Dhi Qar, Dhi Qar, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Iraq
| | - Atreyi Pramanik
- Divison of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
13
|
He L, She C, Jiang S, Qi Z, Deng Z, Ji L, Cui Y, Wu J. Mammalian enabled protein enhances tamoxifen sensitivity of the hormone receptor-positive breast cancer patients by suppressing the AKT signaling pathway. Biol Direct 2024; 19:21. [PMID: 38459605 PMCID: PMC10921784 DOI: 10.1186/s13062-024-00464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/05/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Mammalian enabled (MENA) protein is a member of the enabled/vasodilator stimulated phosphoprotein (Ena/VASP) protein family, which regulates cytoplasmic actin network assembly. It plays a significant role in breast cancer invasion, migration, and resistance against targeted therapy and chemotherapy. However, its role in the efficacy of endocrine therapy for the hormone receptor-positive (HR+) breast cancer patients is not known. This study investigated the role of MENA in the resistance against tamoxifen therapy in patients with HR+ breast cancer and the underlying mechanisms. METHODS MENA expression levels in the clinical HR+ breast cancer samples (n = 119) were estimated using immunohistochemistry (IHC) to determine its association with the clinicopathological features, tamoxifen resistance, and survival outcomes. Western blotting (WB) and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis was performed to estimate the MENA protein and mRNA levels in the tamoxifen-sensitive and -resistant HR+ breast cancer cell lines. Furthermore, CCK8, colony formation, and the transwell invasion and migration assays were used to analyze the effects of MENA knockdown on the biological behavior and tamoxifen sensitivity of the HR+ breast cancer cell lines. Xenograft tumor experiments were performed in the nude mice to determine the tumor growth rates and tamoxifen sensitivity of the control and MENA knockdown HR+ breast cancer cells in the presence and absence of tamoxifen treatment. Furthermore, we estimated the growth rates of organoids derived from the HR+ breast cancer patients (n = 10) with high and low MENA expression levels when treated with tamoxifen. RESULTS HR+ breast cancer patients with low MENA expression demonstrated tamoxifen resistance and poorer prognosis compared to those with high MENA expression. Univariate and multivariate Cox regression analysis demonstrated that MENA expression was an independent predictor of tamoxifen resistance in patients with HR+ breast cancer. MENA knockdown HR+ breast cancer cells showed significantly reduced tamoxifen sensitivity in the in vitro experiments and the in vivo xenograft tumor mouse model compared with the corresponding controls. Furthermore, MENA knockdown increased the in vitro invasion and migration of the HR+ breast cancer cells. HR+ breast cancer organoids with low MENA expression demonstrated reduced tamoxifen sensitivity than those with higher MENA expression. Mechanistically, P-AKT levels were significantly upregulated in the MENA-knockdown HR + breast cancer cells treated with or without 4-OHT compared with the corresponding controls. CONCLUSIONS This study demonstrated that downregulation of MENA promoted tamoxifen resistance in the HR+ breast cancer tissues and cells by enhancing the AKT signaling pathway. Therefore, MENA is a promising prediction biomarker for determining tamoxifen sensitivity in patients with HR+ breast cancer.
Collapse
Affiliation(s)
- Lifang He
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Laboratory for Breast Cancer Diagnosis and Treatment of Shantou University Medical College, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Chuanghong She
- The Breast Center, People's Hospital of Jieyang, Jieyang, Guangdong, China.
| | - Sen Jiang
- Department of Radiology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhaochang Qi
- Laboratory for Breast Cancer Diagnosis and Treatment of Shantou University Medical College, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zihao Deng
- Laboratory for Breast Cancer Diagnosis and Treatment of Shantou University Medical College, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Likeng Ji
- Laboratory for Breast Cancer Diagnosis and Treatment of Shantou University Medical College, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yukun Cui
- Laboratory for Breast Cancer Diagnosis and Treatment of Shantou University Medical College, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jundong Wu
- Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
14
|
Grasset EM, Barillé-Nion S, Juin PP. Stress in the metastatic journey - the role of cell communication and clustering in breast cancer progression and treatment resistance. Dis Model Mech 2024; 17:dmm050542. [PMID: 38506114 PMCID: PMC10979546 DOI: 10.1242/dmm.050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Breast cancer stands as the most prevalent malignancy afflicting women. Despite significant advancements in its diagnosis and treatment, breast cancer metastasis continues to be a leading cause of mortality among women. To metastasize, cancer cells face numerous challenges: breaking away from the primary tumor, surviving in the circulation, establishing in a distant location, evading immune detection and, finally, thriving to initiate a new tumor. Each of these sequential steps requires cancer cells to adapt to a myriad of stressors and develop survival mechanisms. In addition, most patients with breast cancer undergo surgical removal of their primary tumor and have various therapeutic interventions designed to eradicate cancer cells. Despite this plethora of attacks and stresses, certain cancer cells not only manage to persist but also proliferate robustly, giving rise to substantial tumors that frequently culminate in the patient's demise. To enhance patient outcomes, there is an imperative need for a deeper understanding of the molecular and cellular mechanisms that empower cancer cells to not only survive but also expand. Herein, we delve into the intrinsic stresses that cancer cells encounter throughout the metastatic journey and the additional stresses induced by therapeutic interventions. We focus on elucidating the remarkable strategies adopted by cancer cells, such as cell-cell clustering and intricate cell-cell communication mechanisms, to ensure their survival.
Collapse
Affiliation(s)
- Eloïse M. Grasset
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
| | - Sophie Barillé-Nion
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
| | - Philippe P. Juin
- Université de Nantes, INSERM, CNRS, CRCI2NA, 44000 Nantes, France
- Équipe Labellisée LIGUE Contre le Cancer CRCI2NA, 44000 Nantes, France
- Institut de Cancérologie de l'Ouest, 44805 Saint Herblain, France
| |
Collapse
|
15
|
Ortega Quesada BA, Cuccia J, Coates R, Nassar B, Littlefield E, Martin EC, Melvin AT. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER + breast cancer cells. MICROSYSTEMS & NANOENGINEERING 2024; 10:25. [PMID: 38370397 PMCID: PMC10873338 DOI: 10.1038/s41378-024-00653-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/17/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024]
Abstract
Metastatic breast cancer leads to poor prognoses and worse outcomes in patients due to its invasive behavior and poor response to therapy. It is still unclear what biophysical and biochemical factors drive this more aggressive phenotype in metastatic cancer; however recent studies have suggested that exposure to fluid shear stress in the vasculature could cause this. In this study a modular microfluidic platform capable of mimicking the magnitude of fluid shear stress (FSS) found in human vasculature was designed and fabricated. This device provides a platform to evaluate the effects of FSS on MCF-7 cell line, an estrogen receptor positive (ER+) breast cancer cell line, during circulation in the vessels. Elucidation of the effects of FSS on MCF-7 cells was carried out utilizing two approaches: single cell analysis and bulk analysis. For single cell analysis, cells were trapped in a microarray after exiting the serpentine channel and followed by immunostaining on the device (on-chip). Bulk analysis was performed after cells were collected in a microtube at the outlet of the microfluidic serpentine channel for western blotting (off-chip). It was found that cells exposed to an FSS magnitude of 10 dyn/cm2 with a residence time of 60 s enhanced expression of the proliferation marker Ki67 in the MCF-7 cell line at a single cell level. To understand possible mechanisms for enhanced Ki67 expression, on-chip and off-chip analyses were performed for pro-growth and survival pathways ERK, AKT, and JAK/STAT. Results demonstrated that after shearing the cells phosphorylation of p-AKT, p-mTOR, and p-STAT3 were observed. However, there was no change in p-ERK1/2. AKT is a mediator of ER rapid signaling, analysis of phosphorylated ERα was carried out and no significant differences between sheared and non-sheared populations were observed. Taken together these results demonstrate that FSS can increase phosphorylation of proteins associated with a more aggressive phenotype in circulating cancer cells. These findings provide additional information that may help inform why cancer cells located at metastatic sites are usually more aggressive than primary breast cancer cells.
Collapse
Affiliation(s)
- Braulio Andrés Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| | - Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Rachael Coates
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Blake Nassar
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Ethan Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Elizabeth C. Martin
- Department Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA 70118 USA
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 USA
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
16
|
Kolahi Azar H, Gharibshahian M, Rostami M, Mansouri V, Sabouri L, Beheshtizadeh N, Rezaei N. The progressive trend of modeling and drug screening systems of breast cancer bone metastasis. J Biol Eng 2024; 18:14. [PMID: 38317174 PMCID: PMC10845631 DOI: 10.1186/s13036-024-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Bone metastasis is considered as a considerable challenge for breast cancer patients. Various in vitro and in vivo models have been developed to examine this occurrence. In vitro models are employed to simulate the intricate tumor microenvironment, investigate the interplay between cells and their adjacent microenvironment, and evaluate the effectiveness of therapeutic interventions for tumors. The endeavor to replicate the latency period of bone metastasis in animal models has presented a challenge, primarily due to the necessity of primary tumor removal and the presence of multiple potential metastatic sites.The utilization of novel bone metastasis models, including three-dimensional (3D) models, has been proposed as a promising approach to overcome the constraints associated with conventional 2D and animal models. However, existing 3D models are limited by various factors, such as irregular cellular proliferation, autofluorescence, and changes in genetic and epigenetic expression. The imperative for the advancement of future applications of 3D models lies in their standardization and automation. The utilization of artificial intelligence exhibits the capability to predict cellular behavior through the examination of substrate materials' chemical composition, geometry, and mechanical performance. The implementation of these algorithms possesses the capability to predict the progression and proliferation of cancer. This paper reviewed the mechanisms of bone metastasis following primary breast cancer. Current models of breast cancer bone metastasis, along with their challenges, as well as the future perspectives of using these models for translational drug development, were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maliheh Gharibshahian
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Mansouri
- Gene Therapy Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Leila Sabouri
- Department of Tissue Engineering and Applied Cell Sciences, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
17
|
Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, Shabani M, Koochaki A, Safarzadeh M, Hoseini MHM. Anti-cancer Effects of a Chitosan Based Nanoformulation Expressing miR-340 on 4T1 Breast Cancer Cells. J Pharm Sci 2024; 113:445-454. [PMID: 37806438 DOI: 10.1016/j.xphs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
MicroRNAs (miRNAs) have a crucial role in the regulation of gene expression in tumor development, invasion, and metastasis. Herein, miRNA-340 (miR-340) has been shown to play tumor suppressor activity in breast cancer (BC). However, the clinical applications of miRNAs request the development of safe and effective delivery systems capable of protecting nucleic acids from degradation. In this study, biodegradable chitosan nanoparticles incorporating miR-340 plasmid DNA (pDNA) (miR-340 CNPs) were synthesized and characterized. Then, the anti-tumor effects of miR-340 CNPs were investigated using 4T1 BCE cells. The spherical nanoparticles (NPs) with an appropriate mean diameter of around 266 ± 9.3 nm and zeta potential of +17 ± 1.8 mV were successfully prepared. The NPs showed good stability, high entrapment efficiency and a reasonable release behavior, meanwhile their high resistance against enzymatic degradation was verified. Furthermore, NPs demonstrated appropriate transfection efficiency and could induce apoptosis, so had toxicity in 4T1 BCE cells. Also, CD47 expression on the surface of cancer cells was significantly reduced after treatment with miR-340 CNPs. The results showed that miR-340 CNPs augmented the expression of P-27 in BC cells. Furthermore, miR-340 CNPs caused down-regulation of BRP-39 (breast regression protein-39) increasingly suggested as a prognostic biomarker for neoplastic diseases like BC. In conclusion, our data show that miR-340 CNPs can be considered as a promising new platform for BC gene therapy.
Collapse
Affiliation(s)
- Sarvenaz Kashefi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Yu Q, Xu C, Song J, Jin Y, Gao X. Mechanisms of Traditional Chinese medicine/natural medicine in HR-positive Breast Cancer: A comprehensive Literature Review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117322. [PMID: 37866466 DOI: 10.1016/j.jep.2023.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the emergence of endocrine resistance, the survival and good prognosis of HR-positive breast cancer (HR + BC) patients are threatened. As a common complementary and alternative therapy in cancer treatment, traditional Chinese medicine (TCM) has been widely used, and its internal mechanisms have been increasingly explored. AIM OF THE REVIEW In this review, the development status and achievements in understanding of the mechanisms related to the anti-invasion and anti-metastasis effects of TCM against HR + BC and the reversal of endocrine drug resistance by TCM in recent years have been summarized to provide ideas for antitumour research on the active components of TCM/natural medicine. METHODS We searched the electronic databases PubMed, Web of Science, and China National Knowledge Infrastructure database (CNKI) (from inception to July 2023) with the key words "HR-positive breast cancer" or "HR-positive breast carcinoma", "HR + BC" and "traditional Chinese medicine", "TCM", or "natural plant", "herb", etc., with the aim of elucidating the intrinsic mechanisms of traditional Chinese medicine and natural medicine in the treatment of HR + BC. RESULTS TCM/natural medicine monomers and formulas can regulate the expression of related genes and proteins through the PI3K/AKT, JAK2/STAT3, MAPK, Wnt and other signalling pathways, inhibit the proliferation and metastasis of HR + BC tumours, play a synergistic role in combination with endocrine drugs, and reverse endocrine drug resistance. CONCLUSION The wide variety of TCM/natural medicine components makes the research and development of new methods of TCM for BC treatments more selective and innovative. Although progress has been made on research on TCM/natural medicine, there are still many problems in clinical and basic experimental designs, and more in-depth scientific explorations and research are still needed.
Collapse
Affiliation(s)
- Qinghong Yu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Chuchu Xu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Jiaqing Song
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Ying Jin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Xiufei Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, NO. 54 Youdian Road, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
19
|
Liu L, Jiang D, Bai S, Zhang X, Kang Y. Research progress of exosomes in drug resistance of breast cancer. Front Bioeng Biotechnol 2024; 11:1214648. [PMID: 38239920 PMCID: PMC10794616 DOI: 10.3389/fbioe.2023.1214648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/24/2023] [Indexed: 01/22/2024] Open
Abstract
Since breast cancer is a heterogeneous disease, there are currently a variety of treatment methods available, including chemotherapy, endocrine therapy, molecular targeted therapy, immunotherapy, radiation therapy, etc. Breast cancer recurrence and metastasis, despite many treatment modalities, constitute a considerable threat to patients' survival time and pose a clinical challenge that is difficult to tackle precisely. Exosomes have a very special and crucial role in the treatment of drug resistance in breast cancer as a carrier of intercellular communication in the tumor microenvironment. Exosomes and breast cancer treatment resistance have been linked in a growing number of clinical investigations in recent years. This paper covers the status of research on exosomes in the treatment of breast cancer drug resistance and offers theoretical guidance for investigating new strategies to treat breast cancer drug resistance.
Collapse
Affiliation(s)
- Lihui Liu
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Daqing Jiang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shi Bai
- School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China
| | - Xinfeng Zhang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Kang
- Department of Breast Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Yang P, Yang X, Wang D, Yang H, Li Z, Zhang C, Zhang S, Zhu J, Li X, Su P, Zhuang T. PSMD14 stabilizes estrogen signaling and facilitates breast cancer progression via deubiquitinating ERα. Oncogene 2024; 43:248-264. [PMID: 38017133 PMCID: PMC10798890 DOI: 10.1038/s41388-023-02905-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
The over-activation of ERα signaling is regarded as the major driver for luminal breast cancers, which could be effective controlled via selective estrogen receptor modulators (SERM), such as tamoxifen. The endocrine resistance is still a challenge for breast cancer treatment, while recently studies implicate the post-translational modification on ERα play important roles in endocrine resistance. The stability of ERα protein and ERα transcriptome are subject to a balance between E3 ubiquitin ligases and deubiquitinases. Through deubiquitinases siRNA library screening, we discover PSMD14 as a critical deubiquitinase for ERα signaling and breast cancer progression. PSMD14 could facilitate breast cancer progression through ERα signaling in vitro and in vivo, while pharmaceutical inhibition of PSMD14 via Thiolutin could block the tumorigenesis in breast cancer. In endocrine resistant models, PSMD14 inhibition could de-stabilize the resistant form of ERα (Y537S) and restore tamoxifen sensitivity. Molecular studies reveal that PSMD14 could inhibition K48-linked poly-ubiquitination on ERα, facilitate ERα transcriptome. Interestingly, ChIP assay shows that ERα could bind to the promoter region of PSMD14 and facilitate its gene transcription, which indicates PSMD14 is both the upstream modulator and downstream target for ERα signaling in breast cancer. In general, we identified a novel positive feedback loop between PSMD14 and ERα signaling in breast cancer progression, while blockade of PSMD14 could be a plausible strategy for luminal breast cancer.
Collapse
Affiliation(s)
- Penghe Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Xiao Yang
- Department of Laboratory Medicine, Xinxiang Central Hospital, Xinxiang, 453003, Henan Province, PR China
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China
| | - Dehai Wang
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China
| | - Huijie Yang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Zhongbo Li
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Chenmiao Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Shuqing Zhang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China
| | - Jian Zhu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
- Department of General Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong Province, PR China.
| | - Xin Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110000, Liaoning Province, PR China.
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, PR China.
| | - Ting Zhuang
- Xinxiang Key Laboratory of Tumor Migration and Invasion Precision Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Medical Technology, Xinxiang Medical University, Xinxiang, 453003, Henan Province, PR China.
| |
Collapse
|
21
|
Li X, Zhang Y, Zhang T, Zhao L, Lin CG, Hu H, Zheng H. Tafazzin mediates tamoxifen resistance by regulating cellular phospholipid composition in ER-positive breast cancer. Cancer Gene Ther 2024; 31:69-81. [PMID: 37935981 DOI: 10.1038/s41417-023-00683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Tamoxifen is the frontline therapeutic agent for the estrogen receptor-positive (ER + ) subtype of breast cancer patients, which accounts for 70-80% of total breast cancer incidents. However, clinical resistance to tamoxifen has become increasingly common, highlighting the need to identify the underlying cellular mechanisms. In our study, we employed a genome-scale CRISPR-Cas9 loss-of-function screen and validation experiments to discover that Tafazzin (TAZ), a mitochondrial transacylase, is crucial for maintaining the cellular sensitivity of ER+ breast cancer cells to tamoxifen and other chemotherapies. Mechanistically, we found that cardiolipin, whose synthesis and maturation rely on TAZ, is required to maintain cellular sensitivity to tamoxifen. Loss of metabolic enzymatic activity of TAZ causes ERα downregulation and therapy resistance. Interestingly, we observed that TAZ deficiency also led to the upregulation of lysophosphatidylcholine (LPC), which in turn suppressed ERα expression and nuclear localization, thereby contributing to tamoxifen resistance. LPC is further metabolized to lysophosphatidic acid (LPA), a bioactive molecule that supports cell survival. Thus, our findings suggest that the depletion of TAZ promotes tamoxifen resistance through an LPC-LPA phospholipid synthesis axis, and targeting this lipid metabolic pathway could restore cell susceptibility to tamoxifen treatment.
Collapse
Affiliation(s)
- Xuan Li
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yuan Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Tengjiang Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Luyang Zhao
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Christopher G Lin
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Haitian Hu
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Hanqiu Zheng
- State Key Laboratory of Molecular Oncology and Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
22
|
Schlefman J, Brenin C, Millard T, Dillon P. Estrogen receptor positive breast cancer: contemporary nuances to sequencing therapy. Med Oncol 2023; 41:19. [PMID: 38103078 DOI: 10.1007/s12032-023-02255-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
The treatment landscape of hormone receptor-positive, human epidermal growth factor receptor 2-negative metastatic breast cancer has evolved dramatically in recent years. While the combination of endocrine therapy and a cyclin-dependent kinase 4/6 inhibitor is accepted as standard first-line treatment in most settings without visceral crisis, newer therapies have challenged traditional treatment models where cytotoxic chemotherapy was previously felt to be the only second-line option at time of progression. The incorporation of next-generation sequencing has led to the identification of molecular targets for therapeutic agents, including phosphatidylinositol 3-kinase and ESR1, though similar pathways can be targeted even in the absence of a mutation, such as with use of inhibitors of mammalian target of rapamycin. Current data also supports the use of cyclin-dependent kinase inhibitors beyond progression, even prior to the patient's first introduction to chemotherapy. The abundance of therapeutic options not only delay time to cytotoxic chemotherapy and antibody-drug conjugate initiation, but has resulted in improvement in breast cancer survivorship. Many unanswered questions remain, however, as to the most efficacious way to sequence these novel agents. To assist in this decision-making, we will review the existing data on systemic therapy and propose a treatment paradigm.
Collapse
Affiliation(s)
- Jenna Schlefman
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA
| | - Christiana Brenin
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA
| | - Trish Millard
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA
| | - Patrick Dillon
- Division of Hematology/Oncology, University of Virginia Cancer Center, 1240 Lee Street, Charlottesville, VA, 22908-0334, USA.
| |
Collapse
|
23
|
Wang D, Yang Y, Yang L, Yang H. Bibliometric analysis and visualization of endocrine therapy for breast cancer research in the last two decade. Front Endocrinol (Lausanne) 2023; 14:1287101. [PMID: 38116321 PMCID: PMC10728495 DOI: 10.3389/fendo.2023.1287101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Background Breast cancer endocrine therapy research has become a crucial domain in oncology since hormone receptor-positive breast cancers have been increasingly recognized, and targeted therapeutic interventions have been advancing over the past few years. This bibliometric analysis attempts to shed light on the trends, dynamics, and knowledge hotspots that have shaped the landscape of breast cancer endocrine therapy research between 2003 and 2022. Methods In this study, we comprehensively reviewed the scientific literature spanning the above-mentioned period, which included publications accessible through the database of the Web of Science (WOS) and the National Center for Biotechnology Information (NCBI). Next, a systematic and data-driven analysis supported by sophisticated software tools was conducted, such that the core themes, prolific authors, influential journals, prominent countries, and critical citation patterns in the relevant research field can be clarified. Results A continuous and substantial expansion of breast cancer endocrine therapy research was revealed over the evaluated period. A total of 1,317 scholarly articles were examined. The results of the analysis suggested that research on endocrine therapy for breast cancer has laid a solid basis for the treatment of hormone receptor-positive breast cancer. From a geographical perspective, the US, the UK, and China emerged as the most active contributors, illustrating the global impact of this study. Furthermore, our analysis delineated prominent research topics that have dominated the discourse in the past two decades, including drug therapy, therapeutic efficacy, molecular biomarkers, and hormonal receptor interactions. Conclusion This comprehensive bibliometric analysis provides a panoramic view of the ever-evolving landscape of breast cancer endocrine therapy research. The findings highlight the trajectory of past developments while signifying an avenue of vast opportunities for future investigations and therapeutic advancements. As the field continues to burgeon, this analysis will provide valuable guidance for to researchers toward pertinent knowledge hotspots and emerging trends, which can expedite the discoveries in the realm of breast cancer endocrine therapy.
Collapse
Affiliation(s)
| | | | | | - Hongwei Yang
- Department of Breast and Thyroid Surgery, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
24
|
Zamanian MY, Golmohammadi M, Nili-Ahmadabadi A, Alameri AA, Al-Hassan M, Alshahrani SH, Hasan MS, Ramírez-Coronel AA, Qasim QA, Heidari M, Verma A. Targeting autophagy with tamoxifen in breast cancer: From molecular mechanisms to targeted therapy. Fundam Clin Pharmacol 2023; 37:1092-1108. [PMID: 37402635 DOI: 10.1111/fcp.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Tamoxifen (TAM) is often recommended as a first-line treatment for estrogen receptor-positive breast cancer (BC). However, TAM resistance continues to be a medical challenge for BC with hormone receptor positivity. The function of macro-autophagy and autophagy has recently been identified to be altered in BC, which suggests a potential mechanism for TAM resistance. Autophagy is a cellular stress-induced response to preserve cellular homeostasis. Also, therapy-induced autophagy, which is typically cytoprotective and activated in tumor cells, could sometimes be non-protective, cytostatic, or cytotoxic depending on how it is regulated. OBJECTIVE This review explored the literature on the connections between hormonal therapies and autophagy. We investigated how autophagy could develop drug resistance in BC cells. METHODS Scopus, Science Direct, PubMed, and Google Scholar were used to search articles for this study. RESULTS The results demonstrated that protein kinases such as pAMPK, BAX, and p-p70S6K could be a sign of autophagy in developing TAM resistance. According to the study's findings, autophagy plays an important role in BC patients' TAM resistance. CONCLUSION Therefore, by overcoming endocrine resistance in estrogen receptor-positive breast tumors, autophagy inhibition may improve the therapeutic efficacy of TAM.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Nili-Ahmadabadi
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | | | - Mohammed Sami Hasan
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- University of Palermo, Buenos Aires, Argentina
- Research Group in Educational Statistics, National University of Education, Azogues, Ecuador
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagari, India
| |
Collapse
|
25
|
Petri BJ, Piell KM, Wilt AE, Howser AD, Winkler L, Whitworth MR, Valdes BL, Lehman NL, Clem BF, Klinge CM. MicroRNA regulation of the serine synthesis pathway in endocrine-resistant breast cancer cells. Endocr Relat Cancer 2023; 30:e230148. [PMID: 37650685 PMCID: PMC10546957 DOI: 10.1530/erc-23-0148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Despite the successful combination of therapies improving survival of estrogen receptor α (ER+) breast cancer patients with metastatic disease, mechanisms for acquired endocrine resistance remain to be fully elucidated. The RNA binding protein HNRNPA2B1 (A2B1), a reader of N(6)-methyladenosine (m6A) in transcribed RNA, is upregulated in endocrine-resistant, ER+ LCC9 and LY2 cells compared to parental MCF-7 endocrine-sensitive luminal A breast cancer cells. The miRNA-seq transcriptome of MCF-7 cells overexpressing A2B1 identified the serine metabolic processes pathway. Increased expression of two key enzymes in the serine synthesis pathway (SSP), phosphoserine aminotransferase 1 (PSAT1) and phosphoglycerate dehydrogenase (PHGDH), correlates with poor outcomes in ER+ breast patients who received tamoxifen (TAM). We reported that PSAT1 and PHGDH were higher in LCC9 and LY2 cells compared to MCF-7 cells and their knockdown enhanced TAM sensitivity in these-resistant cells. Here we demonstrate that stable, modest overexpression of A2B1 in MCF-7 cells increased PSAT1 and PHGDH and endocrine resistance. We identified four miRNAs downregulated in MCF-7-A2B1 cells that directly target the PSAT1 3'UTR (miR-145-5p and miR-424-5p), and the PHGDH 3'UTR (miR-34b-5p and miR-876-5p) in dual luciferase assays. Lower expression of miR-145-5p and miR-424-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PSAT1 and lower expression of miR-34b-5p and miR-876-5p in LCC9 and ZR-75-1-4-OHT cells correlated with increased PHGDH. Transient transfection of these miRNAs restored endocrine-therapy sensitivity in LCC9 and ZR-75-1-4-OHT cells. Overall, our data suggest a role for decreased A2B1-regulated miRNAs in endocrine resistance and upregulation of the SSP to promote tumor progression in ER+ breast cancer.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Kellianne M. Piell
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Ali E. Wilt
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Alexa D. Howser
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Laura Winkler
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Mattie R. Whitworth
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Bailey L. Valdes
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Norman L. Lehman
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- Pathology and Laboratory Medicine, University of Louisville, Louisville, KY, 40202, USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Brian F. Clem
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- The Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
26
|
da Silva FC, Brandão DC, Ferreira EA, Siqueira RP, Ferreira HSV, Da Silva Filho AA, Araújo TG. Tailoring Potential Natural Compounds for the Treatment of Luminal Breast Cancer. Pharmaceuticals (Basel) 2023; 16:1466. [PMID: 37895937 PMCID: PMC10610388 DOI: 10.3390/ph16101466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithelial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hormone therapy is essential for the survival of patients, but therapeutic resistance has been shown to be worrying, significantly compromising the prognosis. In this context, the need to explore new compounds emerges, especially compounds of plant origin, since they are biologically active and particularly promising. Natural products are being continuously screened for treating cancer due to their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored, opening new opportunities for the design of optimized therapies.
Collapse
Affiliation(s)
- Fernanda Cardoso da Silva
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Douglas Cardoso Brandão
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Everton Allan Ferreira
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Raoni Pais Siqueira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Helen Soares Valença Ferreira
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
| | - Ademar Alves Da Silva Filho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil; (E.A.F.); (A.A.D.S.F.)
| | - Thaise Gonçalves Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Universidade Federal de Uberlândia, Patos de Minas 38700-002, MG, Brazil; (F.C.d.S.); (D.C.B.); (R.P.S.); (H.S.V.F.)
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart Filho, Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlandia 38405-302, MG, Brazil
| |
Collapse
|
27
|
Yuan J, Yang L, Li Z, Zhang H, Wang Q, Huang J, Wang B, Mohan CD, Sethi G, Wang G. The role of the tumor microenvironment in endocrine therapy resistance in hormone receptor-positive breast cancer. Front Endocrinol (Lausanne) 2023; 14:1261283. [PMID: 37900137 PMCID: PMC10611521 DOI: 10.3389/fendo.2023.1261283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Endocrine therapy is the prominent strategy for the treatment of hormone-positive breast cancers. The emergence of resistance to endocrine therapy is a major health concern among hormone-positive breast cancer patients. Resistance to endocrine therapy demands the design of newer therapeutic strategies. The understanding of underlying molecular mechanisms of endocrine resistance, components of the tumor microenvironment (TME), and interaction of resistant breast cancer cells with the cellular/acellular components of the intratumoral environment are essential to formulate new therapeutic strategies for the treatment of endocrine therapy-resistant breast cancers. In the first half of the article, we have discussed the general mechanisms (including mutations in estrogen receptor gene, reregulated activation of signaling pathways, epigenetic changes, and cell cycle alteration) responsible for endocrine therapy resistance in hormone-positive breast cancers. In the latter half, we have emphasized the precise role of cellular (cancer-associated fibroblasts, immune cells, and cancer stem cells) and acellular components (collagen, fibronectin, and laminin) of TME in the development of endocrine resistance in hormone-positive breast cancers. In sum, the article provides an overview of the relationship between endocrine resistance and TME in hormone-positive breast cancers.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Zhi Li
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Hua Zhang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Qun Wang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Jun Huang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Bei Wang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore Karnataka, India
- FEST Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Geng Wang
- Department of Endocrine and Vascular Surgery, Taihe Hospital, Hubei University of Medicine, Hubei, China
| |
Collapse
|
28
|
Quesada BAO, Cuccia J, Coates R, Nassar B, Littlefield E, Martin EC, Melvin AT. A modular microfluidic platform to study how fluid shear stress alters estrogen receptor phenotype in ER + breast cancer cells. RESEARCH SQUARE 2023:rs.3.rs-3399118. [PMID: 37886527 PMCID: PMC10602101 DOI: 10.21203/rs.3.rs-3399118/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Metastatic breast cancer leads to poor prognoses and worse outcomes in patients due to its invasive behavior and poor response to therapy. It is still unclear what biophysical and biochemical factors drive this more aggressive phenotype in metastatic cancer; however recent studies have suggested that exposure to fluid shear stress in the vasculature could cause this. In this study a modular microfluidic platform capable of mimicking the magnitude of fluid shear stress (FSS) found in human vasculature was designed and fabricated. This device provides a platform to evaluate the effects of FSS on MCF-7 cell line, a receptor positive (ER+) breast cancer cell line, during circulation in the vessels. Elucidation of the effects of FSS on MCF-7 cells was carried out utilizing two approaches: single cell analysis and bulk analysis. For single cell analysis, cells were trapped in a microarray after exiting the serpentine channel and followed by immunostaining on the device (on-chip). Bulk analysis was performed after cells were collected in a microtube at the outlet of the microfluidic serpentine channel for western blotting (off-chip). It was found that cells exposed to an FSS magnitude of 10 dyn/cm2 with a residence time of 60 seconds enhanced expression of the proliferation marker Ki67 in the MCF-7 cell line at a single cell level. To understand possible mechanisms for enhanced Ki67 expression, on-chip and off-chip analyses were performed for pro-growth and survival pathways ERK, AKT, and JAK/STAT. Results demonstrated that after shearing the cells phosphorylation of p-AKT, p-mTOR, and p-STAT3 were observed. However, there was no change in p-ERK1/2. AKT is a mediator of ER rapid signaling, analysis of phosphorylated ERα was carried out and no significant differences between sheared and non-sheared populations were observed. Taken together these results demonstrate that FSS can increase phosphorylation of proteins associated with a more aggressive phenotype in circulating cancer cells. These findings provide additional information that may help inform why cancer cells located at metastatic sites are usually more aggressive than primary breast cancer cells.
Collapse
Affiliation(s)
- Braulio Andrés Ortega Quesada
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC, 29634
| | - Jonathan Cuccia
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Rachael Coates
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Blake Nassar
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Ethan Littlefield
- Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, LA, 70803
| | - Elizabeth C. Martin
- Department Medicine, Section Hematology and Medical Oncology, Tulane University, New Orleans, LA, 70118
| | - Adam T. Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803
- Department of Chemical and Biological Engineering, Clemson University, Clemson, SC, 29634
| |
Collapse
|
29
|
Gerratana L, Davis AA, Velimirovic M, Clifton K, Hensing WL, Shah AN, Dai CS, Reduzzi C, D'Amico P, Wehbe F, Medford A, Wander SA, Gradishar WJ, Behdad A, Puglisi F, Ma CX, Bardia A, Cristofanilli M. Interplay between ESR1/PIK3CA codon variants, oncogenic pathway alterations and clinical phenotype in patients with metastatic breast cancer (MBC): comprehensive circulating tumor DNA (ctDNA) analysis. Breast Cancer Res 2023; 25:112. [PMID: 37784176 PMCID: PMC10546685 DOI: 10.1186/s13058-023-01718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/24/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND although being central for the biology and druggability of hormone-receptor positive, HER2 negative metastatic breast cancer (MBC), ESR1 and PIK3CA mutations are simplistically dichotomized as mutated or wild type in current clinical practice. METHODS The study analyzed a multi-institutional cohort comprising 703 patients with luminal-like MBC characterized for circulating tumor DNA through next generation sequencing (NGS). Pathway classification was defined based on previous work (i.e., RTK, RAS, RAF, MEK, NRF2, ER, WNT, MYC, P53, cell cycle, notch, PI3K). Single nucleotide variations (SNVs) were annotated for their oncogenicity through OncoKB. Only pathogenic variants were included in the models. Associations among clinical characteristics, pathway classification, and ESR1/PIK3CA codon variants were explored. RESULTS The results showed a differential pattern of associations for ESR1 and PIK3CA codon variants in terms of co-occurring pathway alterations patterns of metastatic dissemination, and prognosis. ESR1 537 was associated with SNVs in the ER and RAF pathways, CNVs in the MYC pathway and bone metastases, while ESR1 538 with SNVs in the cell cycle pathway and liver metastases. PIK3CA 1047 and 542 were associated with CNVs in the PI3K pathway and with bone metastases. CONCLUSIONS The study demonstrated how ESR1 and PIK3CA codon variants, together with alterations in specific oncogenic pathways, can differentially impact the biology and clinical phenotype of luminal-like MBC. As novel endocrine therapy agents such as selective estrogen receptor degraders (SERDS) and PI3K inhibitors are being developed, these results highlight the pivotal role of ctDNA NGS to describe tumor evolution and optimize clinical decision making.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Andrew A Davis
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Marko Velimirovic
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Katherine Clifton
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Whitney L Hensing
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ami N Shah
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles S Dai
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Carolina Reduzzi
- Weill Cornell Medicine, 420 E 70th St, LH 204, New York, NY, 10021, USA
| | - Paolo D'Amico
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Firas Wehbe
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arielle Medford
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Seth A Wander
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Amir Behdad
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fabio Puglisi
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Cynthia X Ma
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aditya Bardia
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
30
|
Li L, Wan N, He Y, Zhang Y, He X, Lu L. A global bibliometric and visualized analysis of the status and trends of bone metastasis in breast cancer research from 2002 to 2021. J Bone Oncol 2023; 42:100500. [PMID: 37664160 PMCID: PMC10474073 DOI: 10.1016/j.jbo.2023.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/24/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Bone metastasis of breast cancer considerably reduces not only overall survival but also health-related quality of life due to pain, fatigue, and skeletal-related events. OBJECTIVE This study aims to analyze the research hotspots and trends of global research on bone metastasis of breast cancer in the past 20 years to provide a reference for relevant personnel in this field to carry out academic research. METHODS The literature related to bone metastasis of breast cancer from 2002 to 2021 was retrieved from the Web of Science. The bibliometric research method and VOSviewer and CiteSpace were used to analyze the publications, and the research status and development direction in the last 20 years were visualized. RESULTS A total of 7381 articles were included. The number of global publications is increasing every year. The United States contributes the most to global research, with the most citations and the highest H-index. The journal Cancer Research published the most articles on this issue. "Macrophage" and "skeletal related event" will receive more attention and be the next popular hotspot in the future. CONCLUSION There will be an increasing number of publications on bone metastasis of breast cancer based on current global trends. The United States made the largest contribution to this field. More focus will be placed on the mechanisms of metastasis research, which may be the next popular topic in bone metastasis of breast cancer.
Collapse
Affiliation(s)
- Li Li
- The Second Department of Breast Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Nengbin Wan
- The Second Department of Breast Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Ying He
- The Second Department of Breast Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yi Zhang
- The Second Department of Breast Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiao He
- The Second Department of Breast Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lingli Lu
- The Second Department of Breast Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Department of Breast Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Peng T, Chen J, Wu T. Efficacy and safety of cyclin-dependent kinase 4/6 inhibitor in patients with advanced breast cancer: A real-world experience. Thorac Cancer 2023; 14:3012-3019. [PMID: 37667421 PMCID: PMC10599972 DOI: 10.1111/1759-7714.15090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i) have been shown to improve progression-free survival (PFS) in patients with metastatic breast cancer (MBC) in randomized control trials. This study aimed to evaluate the efficacy and safety of CDK4/6i in patients with advanced breast cancer (ABC) in a clinical setting. METHODS Consecutive patients with ABC were treated between October 2019 and March 2023 at Taipei Tzu Chi Hospital, Taiwan. Patients who had received at least one dose of CDK4/6i were included in this retrospective study. The main outcome of this study was efficacy based on the treating physicians' assessments in terms of PFS, and overall survival (OS), as well as the factors associated with patient outcome. The secondary outcome was safety. RESULTS A total of 85 patients were included in the analysis, with a mean age of 66.8 years. After a median follow-up of 16.1 months, the median PFS was 28.4 months (95% CI: 22.5-33.6) and the median OS could not yet be estimated. The most common adverse events (AE) were fatigue (50.8%), anorexia (45.9%), and leukopenia (44.7%). In multivariable analysis, treatment with CDK4/6i with any grade AE or response to treatment effect (CR/PR) was an independent predictor for longer PFS (hazard ratio [HR] = 0.27, 95% CI: 0.11-0.68; HR = 0.21, 95% CI: 0.06-0.67; p < 0.05). CONCLUSION CDK4/6i administered in a real-world setting exhibits a similar survival benefit with the clinical trials.
Collapse
Affiliation(s)
- Tzu‐Rong Peng
- Department of Pharmacy, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| | - Jia‐Hui Chen
- Division of General Surgery, Department of Surgery, Taipei Tzu Chi HospitalThe Buddhist Medical FoundationNew Taipei CityTaiwan
- School of MedicineBuddhist Tzu Chi UniversityHualienTaiwan
| | - Ta‐Wei Wu
- Department of Pharmacy, Taipei Tzu Chi HospitalBuddhist Tzu Chi Medical FoundationNew Taipei CityTaiwan
| |
Collapse
|
32
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
33
|
Sankofi BM, Valencia-Rincón E, Sekhri M, Ponton-Almodovar AL, Bernard JJ, Wellberg EA. The impact of poor metabolic health on aggressive breast cancer: adipose tissue and tumor metabolism. Front Endocrinol (Lausanne) 2023; 14:1217875. [PMID: 37800138 PMCID: PMC10548218 DOI: 10.3389/fendo.2023.1217875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
Obesity and type 2 diabetes are chronic metabolic diseases that impact tens to hundreds of millions of adults, especially in developed countries. Each condition is associated with an elevated risk of breast cancer and with a poor prognosis after treatment. The mechanisms connecting poor metabolic health to breast cancer are numerous and include hyperinsulinemia, inflammation, excess nutrient availability, and adipose tissue dysfunction. Here, we focus on adipose tissue, highlighting important roles for both adipocytes and fibroblasts in breast cancer progression. One potentially important mediator of adipose tissue effects on breast cancer is the fibroblast growth factor receptor (FGFR) signaling network. Among the many roles of FGFR signaling, we postulate that key mechanisms driving aggressive breast cancer include epithelial-to-mesenchymal transition and cellular metabolic reprogramming. We also pose existing questions that may help better understand breast cancer biology in people with obesity, type 2 diabetes, and poor metabolic health.
Collapse
Affiliation(s)
- Barbara Mensah Sankofi
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Estefania Valencia-Rincón
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Malika Sekhri
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adriana L. Ponton-Almodovar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Nicolas V. Perricone Division of Dermatology, Michigan State University, East Lansing, MI, United States
- Department of Medicine, Michigan State University, East Lansing, MI, United States
| | - Elizabeth A. Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
34
|
Elgohary S, Eissa RA, El Tayebi HM. Thymoquinone, a Novel Multi-Strike Inhibitor of Pro-Tumorigenic Breast Cancer (BC) Markers: CALR, NLRP3 Pathway and sPD-L1 in PBMCs of HR+ and TNBC Patients. Int J Mol Sci 2023; 24:14254. [PMID: 37762557 PMCID: PMC10531892 DOI: 10.3390/ijms241814254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is not only a mass of malignant cells but also a systemic inflammatory disease. BC pro-tumorigenic inflammation has been shown to promote immune evasion and provoke BC progression. The NOD-like receptor (NLR) family pyrin domain-containing protein 3 (NLRP3) inflammasome is activated when pattern recognition receptors (PRRs) sense danger signals such as calreticulin (CALR) from damaged/dying cells, leading to the secretion of interleukin-1β (IL-1β). CALR is a novel BC biological marker, and its high levels are associated with advanced tumors. NLRP3 expression is strongly correlated with an elevated proliferative index Ki67, BC progression, metastasis, and recurrence in patients with hormone receptor-positive (HR+) and triple-negative BC (TNBC). Tumor-associated macrophages (TAMs) secrete high levels of IL-1β promoting endocrine resistance in HR+ BC. Recently, an immunosuppressive soluble form of programmed death ligand 1 (sPD-L1) has been identified as a novel prognostic biomarker in triple-negative breast cancer (TNBC) patients. Interestingly, IL-1β induces sPD-L1 release. BC Patients with elevated IL-1β and sPD-L1 levels show significantly short progression-free survival. For the first time, this study aims to investigate the inhibitory impact of thymoquinone (TQ) on CALR, the NLRP3 pathway and sPD-L1 in HR+ and TNBC. Blood samples were collected from 45 patients with BC. The effect of differing TQ concentrations for different durations on the expression of CALR, NLRP3 complex components and IL-1β as well as the protein levels of sPD-L1 and IL-1β were investigated in the peripheral blood mononuclear cells (PBMCs) and TAMs of TNBC and HR+ BC patients, respectively. The findings showed that TQ significantly downregulated the expression of CALR, NLRP3 components and IL-1β together with the protein levels of secreted IL-1β and sPD-L1. The current findings demonstrated novel immunomodulatory effects of TQ, highlighting its potential role not only as an excellent adjuvant but also as a possible immunotherapeutic agent in HR+ and TNBC patients.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt;
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt;
| |
Collapse
|
35
|
Ryu S, Yoon SH, Song J, Choi Y, Lee S, Baek M, Lee HB, Jeon SY, Jon S, Lee D, Kim HS, Han W. Impact of media compositions and culture systems on the immunophenotypes of patient-derived breast cancer cells. BMC Cancer 2023; 23:831. [PMID: 37670250 PMCID: PMC10481485 DOI: 10.1186/s12885-023-11185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Heterogeneous tumor cells are thought to be a significant factor in the failure of endocrine therapy in estrogen receptor-positive (ER+) cancers. Culturing patient-derived breast cancer cells (PDBCCs) provides an invaluable tool in pre-clinical and translational research for the heterogeneity of cancer cells. This study aimed to investigate the effects of different media components and culture methods on the BCSC-associated immunophenotypes and gene expression in ER + PDBCCs. METHODS Ten patients with ER + breast cancer were employed in this study, six of whom had neoadjuvant chemotherapy and four of whom did not. PDBCCs were isolated by enzymatic methods using collagen I and hyaluronidase. PDBCCs were grown as monolayers in mediums with different compositions and as multicellular spheroid in a suspended condition. Collagen I-coated plate and ultralow attachment plate coated with polymer-X were used for monolayer and spheroid culture. Flow cytometry, immunofluorescent staining, RT-PCR, and RNA-sequencing were employed to examine the immunophenotype and genetic profile of PDBCCs. RESULTS More than 95% of PDBCCs sustain EpCAM high/+/fibroblast marker- phenotypes in monolayer conditions by subculturing 3-4 times. A83-01 removal induced senescent cells with high β-galactosidase activity. PDBCCs grown as monolayers were characterized by the majority of cells having an EpCAM+/CD49f + phenotype. Compared to full media in monolayer culture, EGF removal increased EpCAM+/CD49f - phenotype (13.8-fold, p = 0.028), whereas R-spondin removal reduced it (0.8-fold, p = 0.02). A83-01 removal increased EpCAM+/CD24 + phenotype (1.82-fold, p = 0.023) and decreased EpCAM low/-/CD44+/CD24- phenotype (0.45-fold, p = 0.026). Compared to monolayer, spheroid resulted in a significant increase in the population with EpCAM-/CD49+ (14.6-fold, p = 0.006) and EpCAM low/-/CD44+/CD24- phenotypes (4.16-fold, p = 0.022) and ALDH high activity (9.66-fold, p = 0.037). ALDH1A and EMT-related genes were upregulated. In RNA-sequencing analysis between spheroids and monolayers, a total of 561 differentially expressed genes (2-fold change, p < 0.05) were enriched in 27 KEGG pathways including signaling pathways regulating pluripotency of stem cells. In a recurrence-free survival analysis based on the Kaplan-Meier Plotter database of the up-and down-regulated genes identified in spheroids, 15 up-, and 14 down-regulated genes were associated with poor prognosis of breast cancer patients. CONCLUSION The media composition and spheroid culture method change in the BCSCs and EMT markers of PDBCCs, implying the importance of defining the media composition and culture method for studying PDBCCs in vitro.
Collapse
Affiliation(s)
- Seungyeon Ryu
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - So-Hyun Yoon
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - Junhyuk Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Yoonjung Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Sangeun Lee
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - Moonjou Baek
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Sook Young Jeon
- Department of Surgery, Kangnam Sacred Heart Hospital, 1 Shingil-ro, Youngdeungpo-ku, 07441, Seoul, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Hoe Suk Kim
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Department of Pharmaceutical Sciences, College of Pharmacy & Allied Health Professions, South Dakota State University, SAV# 255, Box2202C, Brookings, SD 57007, USA.
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Interdisciplinary Programs in Cancer Biology Major, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, 103, Daehak-ro, Jongno-gu, 03080, Seoul, Republic of Korea.
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Genomic Medicine Institute, Medical Research Center, Seoul National University, 103, Daehak- ro, Jongno-gu, 03080, Seoul, Republic of Korea.
| |
Collapse
|
36
|
Rao X, Chen Y, Beyrer J, Nash Smyth E, Morato Guimaraes C, Litchfield LM, Bowman L, Lawrence GW, Aggarwal A, Andre F. Clinical and Genomic Characteristics of Patients with Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer Following Progression on Cyclin-Dependent Kinase 4 and 6 Inhibitors. Clin Cancer Res 2023; 29:3372-3383. [PMID: 37289194 PMCID: PMC10472108 DOI: 10.1158/1078-0432.ccr-22-3843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE We explored the clinical and genomic characteristics of hormone receptor-positive (HR+), HER2-negative (HER2-) metastatic breast cancer (MBC) after progression on cyclin-dependent kinase 4 and 6 inhibitors (CDK4 and 6i) ± endocrine therapy (ET) to understand potential resistance mechanisms that may aid in identifying treatment options. EXPERIMENTAL DESIGN Patients in the United States with HR+, HER2- MBC had tumor biopsies collected from a metastatic site during routine care following progression on a CDK4 and 6i ± ET (CohortPost) or prior to initiating CDK4 and 6i treatment (CohortPre) and analyzed using a targeted mutation panel and RNA-sequencing. Clinical and genomic characteristics were described. RESULTS The mean age at MBC diagnosis was 59 years in CohortPre (n = 133) and 56 years in CohortPost (n = 223); 14% and 45% of patients had prior chemotherapy/ET, and 35% and 26% had de novo stage IV MBC, respectively. The most common biopsy site was liver (CohortPre, 23%; CohortPost, 56%). CohortPost had significantly higher tumor mutational burden (TMB; median 3.16 vs. 1.67 Mut/Mb, P < 0.0001), ESR1 alteration frequency (mutations: 37% vs. 10%, FDR < 0.0001; fusions: 9% vs. 2%, P = 0.0176), and higher copy-number amplification of genes on chr12q15, including MDM2, FRS2, and YEATS4 versus patients in the CohortPre group. In addition, CDK4 copy-number gain on chr12q13 was significantly higher in CohortPost versus CohortPre (27% vs. 11%, P = 0.0005). CONCLUSIONS Distinct mechanisms potentially associated with resistance to CDK4 and 6i ± ET, including alterations in ESR1 and amplification of chr12q15 and CDK4 copy-number gain, were identified.
Collapse
Affiliation(s)
- Xi Rao
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | | | | - Lee Bowman
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | - Fabrice Andre
- Université Paris Sud, Orsay, France
- Inserm, Gustave Roussy Cancer Campus, UMR981, Villejuif, France
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
37
|
Chandarlapaty S, Dickler MN, Perez Fidalgo JA, Villanueva-Vázquez R, Giltnane J, Gates M, Chang CW, Cheeti S, Fredrickson J, Wang X, Collier A, Moore HM, Metcalfe C, Lauchle J, Humke EW, Bardia A. An Open-label Phase I Study of GDC-0927 in Postmenopausal Women with Locally Advanced or Metastatic Estrogen Receptor-Positive Breast Cancer. Clin Cancer Res 2023; 29:2781-2790. [PMID: 37261814 PMCID: PMC10390885 DOI: 10.1158/1078-0432.ccr-23-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE GDC-0927 is a novel, potent, nonsteroidal, orally bioavailable, selective estrogen receptor (ER) degrader that induces tumor regression in ER+ breast cancer xenograft models. PATIENTS AND METHODS This phase I dose-escalation multicenter study enrolled postmenopausal women with ER+/HER2- metastatic breast cancer to determine the safety, pharmacokinetics, and recommended phase II dose of GDC-0927. Pharmacodynamics was assessed with [18F]-fluoroestradiol (FES) PET scans. RESULTS Forty-two patients received GDC-0927 once daily. The MTD was not reached. The most common adverse events (AE) regardless of causality were nausea, constipation, diarrhea, arthralgia, fatigue, hot flush, back pain, and vomiting. There were no deaths, grade 4/5 AEs, or treatment-related serious AEs. Two patients experienced grade 2 AEs of special interest of deep vein thrombosis and jugular vein thrombosis, both considered unrelated to GDC-0927. Following dosing, approximately 1.6-fold accumulation was observed, consistent with the observed half-life and dosing frequency. There were no complete or partial responses. Pharmacodynamics was supported by >90% reduction in FES uptake and an approximately 40% reduction in ER expression, suggesting ER degradation is not the mechanistic driver of ER antagonism. Twelve patients (29%) achieved clinical benefit; 17 patients (41%) showed a confirmed best overall response of stable disease. Baseline levels of ER and progesterone receptor protein and mutant ESR1 circulating tumor DNA did not correlate with clinical benefit. CONCLUSIONS GDC-0927 appeared to be well tolerated with pharmacokinetics supporting once-daily dosing. There was evidence of target engagement and preliminary evidence of antitumor activity in heavily pretreated patients with advanced/metastatic ER+/HER2- breast cancer with and without ESR1 mutations.
Collapse
Affiliation(s)
| | | | | | | | | | - Mary Gates
- Genentech, Inc., South San Francisco, California
| | | | | | | | | | - Ann Collier
- Genentech, Inc., South San Francisco, California
| | | | | | | | | | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Decker NS, Johnson T, Behrens S, Obi N, Kaaks R, Chang-Claude J, Fortner RT. Endogenous estrogen receptor modulating oxysterols and breast cancer prognosis: Results from the MARIE patient cohort. Br J Cancer 2023; 129:492-502. [PMID: 37355720 PMCID: PMC10403581 DOI: 10.1038/s41416-023-02315-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND 27-hydroxycholesterol (HC) and 25-HC were identified as endogenous selective estrogen receptor modulators (SERMs) and estrogen receptor (ER) modulators, respectively. They are hypothesized to play a role in multiple physiologic processes and pathologies, including breast cancer development and progression. METHODS We evaluated circulating 27-HC and 25-HC, and outcomes following a breast cancer diagnosis in 2282 women from the MARIE study over median follow-up of 11.6 years. 27-HC and 25-HC were quantified by liquid chromatography-mass spectrometry. We calculated hazard ratios (HR) and 95% confidence intervals [CI] using multivariable Cox Proportional Hazards regression. RESULTS We observed no associations between 27-HC and breast cancer prognosis overall. Associations between 27-HC and survival differed by circulating estradiol concentrations and endocrine therapy, but not by hormone receptor status. Among women with estradiol levels below the median (0.08 nM), 27-HC was associated with higher risk of all-cause mortality (HRlog2 = 1.80 [1.20-2.71]) and breast cancer-specific mortality (HRlog2 = 1.95 [1.14-3.31]). No associations were observed in women with estradiol levels above the median. Higher 25-HC levels were associated with lower risk of recurrence (HRlog2 = 0.87 [0.77-0.98]). CONCLUSION Associations between 27-HC and breast cancer prognosis varied by circulating estradiol levels and endocrine therapy. Less consistent results were observed for 25-HC.
Collapse
Affiliation(s)
- Nina Sophia Decker
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Theron Johnson
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Nadia Obi
- Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Renée Turzanski Fortner
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Department of Research, Cancer Registry of Norway, Ullernchausseen 64, 0379, Oslo, Norway.
| |
Collapse
|
39
|
Zbiral B, Weber A, Vivanco MDM, Toca-Herrera JL. Characterization of Breast Cancer Aggressiveness by Cell Mechanics. Int J Mol Sci 2023; 24:12208. [PMID: 37569585 PMCID: PMC10418463 DOI: 10.3390/ijms241512208] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
In healthy tissues, cells are in mechanical homeostasis. During cancer progression, this equilibrium is disrupted. Cancer cells alter their mechanical phenotype to a softer and more fluid-like one than that of healthy cells. This is connected to cytoskeletal remodeling, changed adhesion properties, faster cell proliferation and increased cell motility. In this work, we investigated the mechanical properties of breast cancer cells representative of different breast cancer subtypes, using MCF-7, tamoxifen-resistant MCF-7, MCF10A and MDA-MB-231 cells. We derived viscoelastic properties from atomic force microscopy force spectroscopy measurements and showed that the mechanical properties of the cells are associated with cancer cell malignancy. MCF10A are the stiffest and least fluid-like cells, while tamoxifen-resistant MCF-7 cells are the softest ones. MCF-7 and MDA-MB-231 show an intermediate mechanical phenotype. Confocal fluorescence microscopy on cytoskeletal elements shows differences in actin network organization, as well as changes in focal adhesion localization. These findings provide further evidence of distinct changes in the mechanical properties of cancer cells compared to healthy cells and add to the present understanding of the complex alterations involved in tumorigenesis.
Collapse
Affiliation(s)
- Barbara Zbiral
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Andreas Weber
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| | - Maria dM. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain;
| | - José L. Toca-Herrera
- Institute of Biophysics, Department of Bionanosciences, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (B.Z.); (A.W.)
| |
Collapse
|
40
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
41
|
Yin L, Chen GL, Xiang Z, Liu YL, Li XY, Bi JW, Wang Q. Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomed Pharmacother 2023; 162:114648. [PMID: 37023621 DOI: 10.1016/j.biopha.2023.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Breast cancer is the leading cancer in women. Around 20-30% breast cancer patients undergo invasion or metastasis after radical surgical resection and eventually die. Number of breast cancer patients show poor sensitivity toward treatments despite the advances in chemotherapy, endocrine therapy, and molecular targeted treatments. Therapeutic resistance and tumor recurrence or metastasis develop with the ongoing treatments. Conducive treatment strategies are thus required. Chimeric antigen receptor (CAR)-modified T-cell therapy has progressed as a part of tumor immunotherapy. However, CAR-T treatment has not been effective in solid tumors because of tumor microenvironment complexity, inhibitory effects of extracellular matrix, and lacking ideal tumor antigens. Herein, the prospects of CAR-T cell therapy for metastatic breast cancer are discussed, and the targets for CAR-T therapy in breast cancer (HER-2, C-MET, MSLN, CEA, MUC1, ROR1, EGFR) at clinical level are reviewed. Moreover, solutions are proposed for the challenges of breast cancer CAR-T therapy regarding off-target effects, heterogeneous antigen expression by tumor cells and immunosuppressive tumor microenvironment. Ideas for improving the therapeutics of CAR-T cell therapy in metastatic breast cancer are suggested.
Collapse
Affiliation(s)
- Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Shandong University of Traditional Chinese Medicine, 250355 Jinan, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China
| | - Xing-Yu Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China
| | - Jing-Wang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China.
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, 250023 Jinan, China; Oncology Department, Shandong Second Provincial General Hospital, 250023 Jinan, China; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
42
|
Sadasivam K, Manoharan JP, Palanisamy H, Vidyalakshmi S. The genomic landscape associated with resistance to aromatase inhibitors in breast cancer. Genomics Inform 2023; 21:e20. [PMID: 37415453 PMCID: PMC10326531 DOI: 10.5808/gi.23012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
Aromatase inhibitors (AI) are drugs that are widely used in treating estrogen receptor (ER)-positive breast cancer patients. Drug resistance is a major obstacle to aromatase inhibition therapy. There are diverse reasons behind acquired AI resistance. This study aims at identifying the plausible cause of acquired AI resistance in patients administered with non-steroidal AIs (anastrozole and letrozole). We used genomic, transcriptomic, epigenetic, and mutation data of breast invasive carcinoma from The Cancer Genomic Atlas database. The data was then separated into sensitive and resistant sets based on patients' responsiveness to the non-steroidal AIs. A sensitive set of 150 patients and a resistant set of 172 patients were included for the study. These data were collectively analyzed to probe into the factors that might be responsible for AI resistance. We identified 17 differentially regulated genes (DEGs) among the two groups. Then, methylation, mutation, miRNA, copy number variation, and pathway analyses were performed for these DEGs. The top mutated genes (FGFR3, CDKN2A, RNF208, MAPK4, MAPK15, HSD3B1, CRYBB2, CDC20B, TP53TG5, and MAPK8IP3) were predicted. We also identified a key miRNA - hsa-mir-1264 regulating the expression of CDC20B. Pathway analysis revealed HSD3B1 to be involved in estrogen biosynthesis. This study reveals the involvement of key genes that might be associated with the development of AI resistance in ER-positive breast cancers and hence may act as a potential prognostic and diagnostic biomarker for these patients.
Collapse
Affiliation(s)
- Kirithika Sadasivam
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, Tamil Nadu, India
| | | | - Hema Palanisamy
- Department of Biotechnology, PSG College of Technology, Coimbatore 641004, Tamil Nadu, India
| | | |
Collapse
|
43
|
Jang SH, Paek SH, Kim JK, Seong JK, Lim W. A New Culture Model for Enhancing Estrogen Responsiveness in HR+ Breast Cancer Cells through Medium Replacement: Presumed Involvement of Autocrine Factors in Estrogen Resistance. Int J Mol Sci 2023; 24:ijms24119474. [PMID: 37298425 DOI: 10.3390/ijms24119474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Hormone receptor-positive breast cancer (HR+ BC) cells depend on estrogen and its receptor, ER. Due to this dependence, endocrine therapy (ET) such as aromatase inhibitor (AI) treatment is now possible. However, ET resistance (ET-R) occurs frequently and is a priority in HR+ BC research. The effects of estrogen have typically been determined under a special culture condition, i.e., phenol red-free media supplemented with dextran-coated charcoal-stripped fetal bovine serum (CS-FBS). However, CS-FBS has some limitations, such as not being fully defined or ordinary. Therefore, we attempted to find new experimental conditions and related mechanisms to improve cellular estrogen responsiveness based on the standard culture medium supplemented with normal FBS and phenol red. The hypothesis of pleiotropic estrogen effects led to the discovery that T47D cells respond well to estrogen under low cell density and medium replacement. These conditions made ET less effective there. The fact that several BC cell culture supernatants reversed these findings implies that housekeeping autocrine factors regulate estrogen and ET responsiveness. Results reproduced in T47D subclone and MCF-7 cells highlight that these phenomena are general among HR+ BC cells. Our findings offer not only new insights into ET-R but also a new experimental model for future ET-R studies.
Collapse
Affiliation(s)
- Seok-Hoon Jang
- Department of Surgery, Ewha Womans University Mokdong Hospital, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Se Hyun Paek
- Department of Surgery, Ewha Womans University Seoul Hospital, 260, Gonghang-daero, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Jong-Kyu Kim
- Department of Surgery, Ewha Womans University Seoul Hospital, 260, Gonghang-daero, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University Mokdong Hospital, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| |
Collapse
|
44
|
Mandapati A, Ning Z, Baharani A, Lukong KE. BRK confers tamoxifen-resistance in breast cancer via regulation of tyrosine phosphorylation of CDK1. Cell Signal 2023:110723. [PMID: 37216999 DOI: 10.1016/j.cellsig.2023.110723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Tamoxifen (Tam) has been the first-line therapy for estrogen receptor-positive breast cancer since its FDA-approval in 1998. Tam-resistance, however, presents a challenge and the mechanisms that drive it have yet to be fully elucidated. The non-receptor tyrosine kinase BRK/PTK6 is a promising candidate as previous research has shown that BRK knockdown resensitizes Tam-resistant breast cancer cells to the drug. However, the specific mechanisms that drive its importance to resistance remain to be investigated. Here, we investigate the role and mechanism of action of BRK in Tam-resistant (TamR), ER+, and T47D breast cancer cells using phosphopeptide enrichment and high throughput phopshoproteomics analysis. We conducted BRK-specific shRNA knockdown in TamR T47D cells and compared phosphopeptides identified in these cells with their Tam-resistant counterpart and parental, Tam-sensitive cells (Par). A total of 6492 STY phosphosites were identified. Of these sites, 3739 high-confidence pST sites and 118 high-confidence pY sites were analyzed for significant changes in phosphorylation levels to identify pathways that were differentially regulated in TamR versus Par and to investigate changes in these pathways when BRK is knocked down in TamR. We observed and validated increased CDK1 phosphorylation at Y15 in TamR cells compared to BRK-depleted TamR cells. Our data suggest that BRK is a potential Y15-directed CDK1 regulatory kinase in Tam-resistant breast cancer.
Collapse
Affiliation(s)
- Aditya Mandapati
- Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Zhibin Ning
- Ottawa Institute of Systems Biology, College of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON. K1H 8M5, Canada
| | - Akanksha Baharani
- Department of Psychiatry, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kiven Erique Lukong
- Biochemistry, Microbiology & Immunology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
45
|
Fonseca-Montaño MA, Cisneros-Villanueva M, Coales I, Hidalgo-Miranda A. LINC00426 is a potential immune phenotype-related biomarker and an overall survival predictor in PAM50 luminal B breast cancer. Front Genet 2023; 14:1034569. [PMID: 37260772 PMCID: PMC10228735 DOI: 10.3389/fgene.2023.1034569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Background: Breast cancer (BRCA) represents the most frequent diagnosed malignancy in women worldwide. Despite treatment advances, BRCAs eventually develop resistance to targeted therapies, resulting in poor prognosis. The identification of new biomarkers, like immune-related long non-coding RNAs (lncRNAs), could contribute to the clinical management of BRCA patients. In this report, we evaluated the LINC00426 expression in PAM50 BRCA subtypes from two clinical independent cohorts (BRCA-TCGA and GEO-GSE96058 datasets). Methods and results: Using Cox regression models and Kaplan-Meier survival analyses, we identified that LINC00426 expression was a consistent overall survival (OS) predictor in luminal B (LB) BRCA patients. Subsequently, differential gene expression and gene set enrichment analyses identified that LINC00426 expression was associated with different immune-related and cancer-related pathways and processes in LB BRCA. Additionally, the LINC00426 expression was correlated with the infiltration level of diverse immune cell populations, alongside immune checkpoint and cytolytic activity-related gene expression. Conclusion: This evidence suggests that LINC00426 is a potential biomarker of immune phenotype and an OS predictor in PAM50 LB BRCA.
Collapse
Affiliation(s)
- Marco Antonio Fonseca-Montaño
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado, Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mireya Cisneros-Villanueva
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| | - Isabelle Coales
- Centre for Host Microbiome Interactions, King’s College London, London, United Kingdom
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
46
|
Shanmugarajan D, Biju A, Sibi D, Sibi R, Shaji M, David C. Dynamacophore model for breast cancer estrogen receptor alpha as an effective lead generation screening technique. J Biomol Struct Dyn 2023; 41:13029-13040. [PMID: 37154819 DOI: 10.1080/07391102.2023.2203245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/11/2023] [Indexed: 05/10/2023]
Abstract
Regardless to overwhelming quantum of cancer research worldwide, there are few drugs on the market to treat disease conditions. This is owing to multiple process inferences of drug targets in integrated pathways for invasion, growth, and metastasis. Over the past years, the death rate due to breast cancer has been increasing, that set the stage for improved better treatment. Therefore, there is a persistent and vital demand for innovative development of drugs to treat breast cancer. Many studies have reported that more than 60% of breast cancers are Estrogen receptor-α (ERα)-positive tumours and a key transcription factor, Estrogen receptor-α (ERα) was believed to promote proliferation of breast cancer cells. In this study, 150 ns of molecular dynamics was performed for protein-ligand complex to retrieve the potential stable conformations. The most populated dynamics cluster of 4-Hydroxytamoxifen intact with active site amino acid was selected to generate dynamacophore model (dynamic pharmacophore). Further, internal model validation with AU-ROC values ∼0.93 indicate the best model to screen library. The refined hits are funnelled in pharmacokinetics/dynamics, CDOCKER molecular docking, MM-GBSA and density functional theory to identify the promising ERα ligand candidates.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhivya Shanmugarajan
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Anagha Biju
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Dona Sibi
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Rona Sibi
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Maria Shaji
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| | - Charles David
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh, India
| |
Collapse
|
47
|
Avti PK, Singh J, Dahiya D, Khanduja KL. Dual functionality of pyrimidine and flavone in targeting genomic variants of EGFR and ER receptors to influence the differential survival rates in breast cancer patients. Integr Biol (Camb) 2023; 15:zyad014. [PMID: 38084900 DOI: 10.1093/intbio/zyad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/01/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023]
Abstract
Breast cancer ranks as one of the most prevalent forms of cancer and stands as the primary global cause of mortality among women. Overexpression of EGFR and ER receptors or their genomic alterations leads to malignant transformation, disease aggression and is linked to poor patient survival outcomes. The clinical breast cancer patient's genomic expression, survival analysis, and computational drug-targeting approaches were used to identify best-hit phytochemicals for therapeutic purposes. Breast cancer patients have genomic alterations in EGFR (4%, n = 5699) and ER (9%, n = 8461), with the highest proportion being missense mutations. No statistically significant difference was observed in the patient survival rates between the altered and unaltered ER groups, unlike EGFR, with the lowest survival rates in the altered group. Computational screening of natural compound libraries (7711) against each EGFR (3POZ) and ER (3ERT) receptor shortlists the best-hit 3 compounds with minimum docking score (ΔG = -7.9 to -10.8), MMGBSA (-40.16 to -51.91 kcal/mol), strong intermolecular H-bonding, drug-like properties with least kd, and ki. MD simulation studies display stable RMSD, RMSF, and good residual correlation of best-hit common compounds (PubChem ID: 5281672 and 5280863) targeting both EGFR and ER receptors. In vitro, studies revealed that these common drugs exhibited a high anti-proliferative effect on MCF-7 and MDA-MB-231 breast cancer cells, with effective IC50 values (15-40 μM) and lower free energy, kd, and ki (5281672 > 5280863 > 5330286) much affecting HEK-293 non-cancerous cells, indicating the safety profile. The experimental and computational correlation studies suggest that the highly expressed EGFR and ER receptors in breast cancer patients having poor survival rates can be effectively targeted with best-hit common potent drugs with a multi-target therapeutic approach. Insight Box: The findings of this study provide valuable insights into the genomic/proteomic data, breast cancer patient's survival analysis, and EGFR and ER receptor variants structural analysis. The genetic alterations analysis of EGFR and ER/ESR1 in breast cancer patients reveals the high frequency of mutation types, which affect patient's survival rate and targeted therapies. The common best-hit compounds affect the cell survival patterns with effective IC50, drug-like properties having lower equilibrium and dissociation constants demonstrating the anti-proliferative effects. This work integrates altered receptor structural analysis, molecular interaction-based simulations, and ADMET properties to illuminate the identified best hits phytochemicals potential efficacy targeting both EGFR and ER receptors, demonstrating a multi-target therapeutic approach.
Collapse
Affiliation(s)
- Pramod K Avti
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jitender Singh
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Divya Dahiya
- Department of General Surgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Krishan L Khanduja
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
48
|
Breast cancer cells interact with tumor-derived extracellular matrix in a molecular subtype-specific manner. BIOMATERIALS ADVANCES 2023; 146:213301. [PMID: 36709629 DOI: 10.1016/j.bioadv.2023.213301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Mimicking the native microenvironment is vital for tumor engineering. Breast cancer is a highly heterogeneous disease with various molecular subtypes exhibiting distinct biological behaviors and treatment responsiveness. The heterogeneity of extracellular matrix (ECM) of breast cancer has remained largely unexplored and underestimated. The present study addressed this issue by comparing the composition, architecture, and functional roles of ECMs derived from breast cancers of two molecular subtypes, which are luminal-A breast cancer (less aggressive, ERα+)-derived ECM (LA-ECM) and triple-negative breast cancer (high aggressive, ERα-)-derived ECM (TN-ECM). Compared with normal breast tissue-derived ECMs (B-ECM), tumor-derived ECMs showed higher contents of pro-collagen I, fibronectin, and laminin, in addition with a significantly altered architecture. Transcriptome sequencing revealed that, compared with those cultured with B-ECM, MCF7 cells (an estrogen receptor (ER)α + luminal-A breast cancer cell line) cultured with LA-ECM and TN-ECM showed approximately 9.65 % and 9.04 % changes in the expression of all detected genes, respectively. The TN-ECM induced proliferation, promoted epithelial-to-mesenchymal transition, downregulated ERα expression, and reduced endocrine treatment sensitivity of MCF7. Above results have elucidated the role of phenotype-specific tumor ECM in cell phenotype maintenance, treatment sensitivity, and cancer progression, which highlighted the importance of ECM heterogeneity as well as its role in tumor microenvironment engineering and drug screening.
Collapse
|
49
|
Crucitta S, Ruglioni M, Lorenzini G, Bargagna I, Luculli GI, Albanese I, Bilancio D, Patanè F, Fontana A, Danesi R, Del Re M. CDK4/6 Inhibitors Overcome Endocrine ESR1 Mutation-Related Resistance in Metastatic Breast Cancer Patients. Cancers (Basel) 2023; 15:cancers15041306. [PMID: 36831647 PMCID: PMC9954458 DOI: 10.3390/cancers15041306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
ESR1 mutations contribute to endocrine resistance and occur in a high percentage of hormone-receptor-positive (HR+) metastatic breast cancer (mBC) cases. Cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) changed the treatment landscape of HR+ mBC, as they are able to overcome estrogen resistance. The present retrospective study investigates the clinical benefit of CDK4/6i in ESR1 mutant HR+ mBC patients treated with a CDK4/6i as first- or second-line therapy. Plasma was collected at baseline prior to CDK4/6i plus hormone therapy as a first- or second-line treatment. Circulating free DNA (cfDNA) was extracted from plasma, and ESR1 mutation analysis was performed on a ddPCR. Statistical analyses were performed to investigate the predictive power of ESR1 mutations and any association with clinical factors. A total of 42 patients with mBC treated with CDK4/6i plus endocrine therapy as first- (n = 35) or second-line (n = 7) were enrolled. Twenty-eight patients received hormonal therapy (AI or tamoxifen) in the adjuvant setting. ESR1 mutation status in blood was associated with shorter median disease-free survival (DFS) (30 vs. 110 months; p = 0.006). Multivariate analysis confirmed ESR1 mutations as independent factors of resistance in adjuvant hormone therapy. On the contrary, no difference in progression-free survival (PFS) was observed in the presence or absence of an ESR1 mutation in patients treated with CDK4/6i as first-line treatment (p = 0.29). No statistically significant correlation between the best response to CDK4/6i and ESR1 mutation was found (p = 0.46). This study indicates that the ESR1 mutation detected in cfDNA is an independent predictive factor of clinical recurrence in the adjuvant setting and that CDK4/6i can overcome ESR1-dependent resistance.
Collapse
Affiliation(s)
- Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giulia Lorenzini
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Irene Bargagna
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Irene Albanese
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Diana Bilancio
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Francesca Patanè
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Andrea Fontana
- Unit of Medical Oncology, Department of Translational Research and New Technologies in Medicine, University of Pisa, 56126 Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
50
|
Xu B, Zhang Q, Hu X, Li Q, Sun T, Li W, Ouyang Q, Wang J, Tong Z, Yan M, Li H, Zeng X, Shan C, Wang X, Yan X, Zhang J, Zhang Y, Wang J, Zhang L, Lin Y, Feng J, Chen Q, Huang J, Zhang L, Yang L, Tian Y, Shang H. Entinostat, a class I selective histone deacetylase inhibitor, plus exemestane for Chinese patients with hormone receptor-positive advanced breast cancer: A multicenter, randomized, double-blind, placebo-controlled, phase 3 trial. Acta Pharm Sin B 2023; 13:2250-2258. [DOI: 10.1016/j.apsb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
|