1
|
Tombari S, Amri Y, Hasni Y, Hadj Fredj S, Salem Y, Ferchichi S, Essaddam L, Messaoud T, Dabboubi R. Vitamin D status and VDR gene polymorphisms in patients with growth hormone deficiency: A case control Tunisian study. Heliyon 2024; 10:e34947. [PMID: 39149044 PMCID: PMC11325357 DOI: 10.1016/j.heliyon.2024.e34947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024] Open
Abstract
Introduction Growth Hormone Deficiency (GHD) is a rare disease marked by a complete or partial reduction in the production of growth hormone. Vitamin D deficiency is frequent and may be associated with several pathologies. However, the association between GHD and vitamin D deficiency has not been extensively studied. This study aimed to analyse VDR gene polymorphisms related to vitamin D status to ensure better care for patients with GHD. Material and methods A case-control study was conducted at the Children's Hospital of Tunis in collaboration with the Farhat Hached's Hospital of Sousse, including patients with GHD and healthy subjects. Genetic analysis of the VDR gene polymorphisms was performed using PCR-RFLP technique. Haplotypes were examined with Haploview software, while statistical analyses were carried out using SPSS and R programming language. Results Our study revealed significant differences in vitamin D (p = 0, 049) and calcium concentrations between patients and healthy subjects, which were lower in the GHD group (p = 0,018). A comparison of allelic and genotypic frequencies of the five polymorphisms indicated an association between the FokI polymorphism and GHD. Furthermore, significant difference was observed between the ApaI genotypes and PTH (p = 0,019) and ALP (p = 0,035). FokI genotypes were associated with phosphorus (p = 0,021). Additionally, One haplotype, CTAGT, exhibited a significant difference between the patients and healthy subjects (p = 0,002). Conclusion Our study findings indicate that hypovitaminosis D is common among patients with GHD, even when undergoing treatment with rhGH. This underscores the critical importance of vitamin D supplementation during treatment.
Collapse
Affiliation(s)
- Sarra Tombari
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Yessine Amri
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Tunis, Tunisia
- University of Jendouba, Higher Institute of Applied Studies in Humanity Le Kef, Department of Educational Sciences, Kef, Tunisia
| | - Yosra Hasni
- Department of Endocrinology, Farhat Hached Hospital, Sousse, Tunisia
| | - Sondess Hadj Fredj
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Yesmine Salem
- Biochemistry Laboratory, Farhat Hached Hospital, Sousse, Tunisia
| | - Salima Ferchichi
- Biochemistry Laboratory, Farhat Hached Hospital, Sousse, Tunisia
| | - Leila Essaddam
- Department of Pediatrics, Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Taieb Messaoud
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Tunis, Tunisia
| | - Rym Dabboubi
- Biochemistry Laboratory (LR00SP03), Bechir Hamza Children's Hospital, Tunis, Tunisia
| |
Collapse
|
2
|
Doi H, Kageyama I, Katoh-Fukui Y, Hattori A, Fukami M, Shimura N. Homozygous 6-bp deletion of IGFALS in a prepubertal boy with short stature. Hum Genome Var 2024; 11:27. [PMID: 39060265 PMCID: PMC11282113 DOI: 10.1038/s41439-024-00285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Biallelic IGFALS variants lead to acid‒labile subunit (ALS) deficiency characterized by growth hormone resistance with or without delayed puberty. Here, we report a prepubertal boy with a homozygous 2-amino acid deletion within the fourth N-glycosylation motif (c.1103_1108del, p.N368_S370delinsT) associated with parental consanguinity. He showed short stature consistent with ALS deficiency. This case expands the mutation spectrum of IGFALS to include the elimination of only one N-glycosylation motif of ALS.
Collapse
Affiliation(s)
- Hibiki Doi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo, Japan
| | - Ikuko Kageyama
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuko Katoh-Fukui
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Atsushi Hattori
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.
| | - Naoto Shimura
- Department of Pediatrics, Tokyo Rinkai Hospital, Tokyo, Japan
| |
Collapse
|
3
|
Karaoglan M. Short Stature due to Bioinactive Growth Hormone (Kowarski Syndrome). Endocr Pract 2023; 29:902-911. [PMID: 37657628 DOI: 10.1016/j.eprac.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
OBJECTIVE Bioinactive growth hormone (BGH) is a structurally abnormal, biologically inactive, but immunoreactive form of growth hormone encoded by pathogenic growth hormone 1 gene variants. The underlying cause of the defective physiology is decreased BGH binding affinity to both growth hormone binding proteins and growth hormone receptors (GHRs). GHR cannot dimerize when it is in a quiescent state because BGH cannot activate it. Nondimerized GHR is unable to activate intracytoplasmic signaling pathway molecules such as Janus kinase 2 and signal transducer and activator of transcription, which initiate insulin-like growth factor-1 (IGF-1) transcription. IGF-1 cannot therefore be synthesized and IGF-1 levels in the circulation decrease. In contrast to children with growth hormone insensitivity, children with short stature due to BGH, known as Kowarski syndrome, exhibit an outstanding linear growth response to recombinant growth hormone therapy. For a number of reasons, differential diagnosis presents some difficulties. Similar diseases caused by genetic abnormalities that cause short stature range in severity from minor to severe clinical spectrum. Furthermore, some patients with Kowarski syndrome have previously been diagnosed with familial short stature, constitutional delayed puberty, and idiopathic short stature. This paper aims to review the particular clinical and laboratory findings of BGH. METHODS This study collected clinical and laboratory data from KS cases reported in the literature. RESULTS This review reports that KS cases have lower SDSs for height and IGF-1 compared to growth hormone deficiency. CONCLUSION The diversity of genetic defects underlying Kowarski syndrome (KS) will provide new insights into growth hormone insensitivity. As the availability of genetic analysis, including functional investigations expands, researchers will identify new underlying genetic pathways.
Collapse
Affiliation(s)
- Murat Karaoglan
- Department of Pediatric Endocrinology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|
4
|
Baxter MF, Hansen M, Gration D, Groza T, Baynam G. Surfacing undiagnosed disease: consideration, counting and coding. Front Pediatr 2023; 11:1283880. [PMID: 38027298 PMCID: PMC10646190 DOI: 10.3389/fped.2023.1283880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
The diagnostic odyssey for people living with rare diseases (PLWRD) is often prolonged for myriad reasons including an initial failure to consider rare disease and challenges to systemically and systematically identifying and tracking undiagnosed diseases across the diagnostic journey. This often results in isolation, uncertainty, a delay to targeted treatments and increase in risk of complications with significant consequences for patient and family wellbeing. This article aims to highlight key time points to consider a rare disease diagnosis along with elements to consider in the potential operational classification for undiagnosed rare diseases during the diagnostic odyssey. We discuss the need to create a coding framework that traverses all stages of the diagnostic odyssey for PLWRD along with the potential benefits this will have to PLWRD and the wider community.
Collapse
Affiliation(s)
- Megan F. Baxter
- Emergency Department, Perth Children’s Hospital, Perth, WA, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD, Australia
| | - Michele Hansen
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, WA, Australia
| | - Dylan Gration
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, WA, Australia
| | - Tudor Groza
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Rare Care Centre, Perth Children’s Hospital, Perth, WA, Australia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, WA, Australia
- Rare Care Centre, Perth Children’s Hospital, Perth, WA, Australia
- Undiagnosed Diseases Program, WA, Genetic Services of WA, Perth, WA, Australia
| |
Collapse
|
5
|
Gregory LC, Cionna C, Cerbone M, Dattani MT. Identification of genetic variants and phenotypic characterization of a large cohort of patients with congenital hypopituitarism and related disorders. Genet Med 2023; 25:100881. [PMID: 37165954 DOI: 10.1016/j.gim.2023.100881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
PURPOSE Congenital hypopituitarism (CH) disorders are phenotypically variable. Variants in multiple genes are associated with these disorders, with variable penetrance and inheritance. METHODS We screened a large cohort (N = 1765) of patients with or at risk of CH using Sanger sequencing, selected according to phenotype, and conducted next-generation sequencing (NGS) in 51 families within our cohort. We report the clinical, hormonal, and neuroradiological phenotypes of patients with variants in known genes associated with CH. RESULTS We identified variants in 178 patients: GH1/GHRHR (51 patients of 414 screened), PROP1 (17 of 253), POU1F1 (15 of 139), SOX2 (13 of 59), GLI2 (7 of 106), LHX3/LHX4 (8 of 110), HESX1 (8 of 724), SOX3 (9 of 354), OTX2 (5 of 59), SHH (2 of 64), and TCF7L1, KAL1, FGFR1, and FGF8 (2 of 585, respectively). NGS identified 26 novel variants in 35 patients (from 24 families). Magnetic resonance imaging showed prevalent hypothalamo-pituitary abnormalities, present in all patients with PROP1, GLI2, SOX3, HESX1, OTX2, LHX3, and LHX4 variants. Normal hypothalamo-pituitary anatomy was reported in 24 of 121, predominantly those with GH1, GHRHR, POU1F1, and SOX2 variants. CONCLUSION We identified variants in 10% (178 of 1765) of our CH cohort. NGS has revolutionized variant identification, and careful phenotypic patient characterization has improved our understanding of CH. We have constructed a flow chart to guide genetic analysis in these patients, which will evolve upon novel gene discoveries.
Collapse
Affiliation(s)
- Louise C Gregory
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Cecilia Cionna
- Pediatric Unit, Department of Mother and Child Health, G. Salesi Children's Hospital, Ancona, Italy
| | - Manuela Cerbone
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Endocrinology, Great Ormond Street Hospital for Children, Great Ormond Street, United Kingdom
| | - Mehul T Dattani
- Genetics and Genomic Medicine Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Endocrinology, Great Ormond Street Hospital for Children, Great Ormond Street, United Kingdom.
| |
Collapse
|
6
|
Early epigenetic markers for precision medicine. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:153-164. [DOI: 10.1016/bs.pmbts.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
7
|
Tiffany AS, Harley BAC. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv Healthc Mater 2022; 11:e2200471. [PMID: 35905390 PMCID: PMC9547842 DOI: 10.1002/adhm.202200471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Growth plates, or physis, are highly specialized cartilage tissues responsible for longitudinal bone growth in children and adolescents. Chondrocytes that reside in growth plates are organized into three distinct zones essential for proper function. Modeling key features of growth plates may provide an avenue to develop advanced tissue engineering strategies and perspectives for cartilage and bone regenerative medicine applications and a platform to study processes linked to disease progression. In this review, a brief introduction of the growth plates and their role in skeletal development is first provided. Injuries and diseases of the growth plates as well as physiological and pathological mechanisms associated with remodeling and disease progression are discussed. Growth plate biology, namely, its architecture and extracellular matrix organization, resident cell types, and growth factor signaling are then focused. Next, opportunities and challenges for developing 3D biomaterial models to study aspects of growth plate biology and disease in vitro are discussed. Finally, opportunities for increasingly sophisticated in vitro biomaterial models of the growth plate to study spatiotemporal aspects of growth plate remodeling, to investigate multicellular signaling underlying growth plate biology, and to develop platforms that address key roadblocks to in vivo musculoskeletal tissue engineering applications are described.
Collapse
Affiliation(s)
- Aleczandria S. Tiffany
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Brendan A. C. Harley
- Department of Chemical and Biomolecular EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
8
|
Hietamäki J, Kärkinen J, Iivonen AP, Vaaralahti K, Tarkkanen A, Almusa H, Huopio H, Hero M, Miettinen PJ, Raivio T. Presentation and diagnosis of childhood-onset combined pituitary hormone deficiency: A single center experience from over 30 years. EClinicalMedicine 2022; 51:101556. [PMID: 35875813 PMCID: PMC9304914 DOI: 10.1016/j.eclinm.2022.101556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Childhood-onset combined pituitary hormone deficiency (CPHD) has a wide spectrum of etiologies and genetic causes for congenital disease. We aimed to describe the clinical spectrum and genetic etiologies of CPHD in a single tertiary center and estimate the population-level incidence of congenital CPHD. METHODS The retrospective clinical cohort comprised 124 CPHD patients (48 with congenital CPHD) treated at the Helsinki University Hospital (HUH) Children's Hospital between 1985 and 2018. Clinical data were collected from the patient charts. Whole exome sequencing was performed in 21 patients with congenital CPHD of unknown etiology. FINDINGS The majority (61%;76/124) of the patients had acquired CPHD, most frequently due to craniopharyngiomas and gliomas. The estimated incidence of congenital CPHD was 1/16 000 (95%CI, 1/11 000-1/24 000). The clinical presentation of congenital CPHD in infancy included prolonged/severe neonatal hypoglycaemia, prolonged jaundice, and/or micropenis/bilateral cryptorchidism in 23 (66%) patients; despite these clinical cues, only 76% of them were referred to endocrine investigations during the first year of life. The median delay between the first violation of the growth screening rules and the initiation of GH Rx treatment among all congenital CPHD patients was 2·2 years, interquartile range 1·2-3·7 years. Seven patients harbored pathogenic variants in PROP1, SOX3, TBC1D32, OTX2, and SOX2, and one patient carried a likely pathogenic variant in SHH (c.676G>A, p.(Ala226Thr)). INTERPRETATION Our study suggests that congenital CPHD can occur in 1/16 000 children, and that patients frequently exhibit neonatal cues of hypopituitarism and early height growth deflection. These results need to be corroborated in future studies and might inform clinical practice. FUNDING Päivikki and Sakari Sohlberg Foundation, Biomedicum Helsinki Foundation, and Emil Aaltonen Foundation research grants.
Collapse
Affiliation(s)
- Johanna Hietamäki
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Juho Kärkinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Anna-Pauliina Iivonen
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Kirsi Vaaralahti
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Annika Tarkkanen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
| | - Henrikki Almusa
- Institute for Molecular Medicine Finland, FIMM, University of Helsinki, Helsinki, Finland
| | - Hanna Huopio
- Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - Matti Hero
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Päivi J. Miettinen
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
| | - Taneli Raivio
- Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki 00014, Finland
- Department of Physiology, Medicum Unit, Faculty of Medicine, and Stem Cells and Metabolism Research Program, Research Programs Unit, University of Helsinki, Helsinki 00014, Finland
- Corresponding author at: Faculty of Medicine University of Helsinki, Medicum/Physiology, P.O. Box 63 (Haartmaninkatu 8), FI-00014 Helsinki, Finland.
| |
Collapse
|
9
|
Savage MO, Fernandez-Luque L, Graham S, van Dommelen P, Araujo M, de Arriba A, Koledova E. Adherence to r-hGH Therapy in Pediatric Growth Hormone Deficiency: Current Perspectives on How Patient-Generated Data Will Transform r-hGH Treatment Towards Integrated Care. Patient Prefer Adherence 2022; 16:1663-1671. [PMID: 35846871 PMCID: PMC9285863 DOI: 10.2147/ppa.s271453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/08/2022] [Indexed: 01/17/2023] Open
Abstract
Pediatric growth hormone (GH) deficiency is a licensed indication for replacement therapy with recombinant human growth hormone (r-hGH). Treatment, consisting of daily subcutaneous injections, extends from the time of diagnosis until cessation of linear growth at completion of puberty. Suboptimal adherence to r-hGH therapy is common and has been well documented to substantially impair the growth response and achievement of the optimal goal which is attainment of adult height within the genetic target range. The causes of poor adherence are complex and include disease-, patient-, doctor-, and treatment-related factors. Interventions for suboptimal adherence are important for a long-term successful outcome and can include both face-to-face and digital strategies. Face-to-face interventions include behavioral change approaches such as motivational interviewing and non-judgmental assessment. Medical and nursing staff require training in these techniques. Digital solutions are rapidly advancing as evidenced by the electronic digital auto-injector device, easypod® (Merck Healthcare KGaA, Darmstadt, Germany), which uses the web-based easypod® connect platform allowing adherence data to be transmitted electronically to healthcare professionals (HCPs), who can then access GH treatment history, enhancing clinical decisions. Over the past 10 years, the multi-national Easypod® Connect Observational Study has reported high levels of adherence (>85%) from up to 40 countries. The easypod® connect system can be supported by a smartphone app, growlink™, which facilitates the interactions between the patients, their care team, and patient support services. HCPs are empowered by new digital techniques, however, the human-digital partnership remains essential for optimal growth management. The pediatric patient on r-hGH therapy will benefit from these innovations to enhance adherence and optimize long-term response.
Collapse
Affiliation(s)
- Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, UK
| | | | | | - Paula van Dommelen
- The Netherlands Organization for Applied Scientific Research TNO, Leiden, the Netherlands
| | - Matheus Araujo
- Neurological Institute; Cleveland Clinic, Cleveland, OH, USA
| | - Antonio de Arriba
- Paediatric Endocrinology, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Ekaterina Koledova
- Global Medical Affairs Cardiometabolic & Endocrinology, Merck Healthcare KGaA, Darmstadt, Germany
| |
Collapse
|
10
|
Ongoing Challenges in the Diagnosis of 11p15.5-Associated Imprinting Disorders. Mol Diagn Ther 2022; 26:263-272. [PMID: 35522427 DOI: 10.1007/s40291-022-00587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
The overgrowth disorder Beckwith-Wiedemann syndrome and the growth restriction disorder Silver-Russell syndrome have been described as 'mirror' syndromes, in both their clinical features and molecular causes. Clinically, their nonspecific features, focused around continuous variables of atypical growth, make it hard to set diagnostic thresholds that are pragmatic without potentially excluding some cases. Molecularly, both are imprinting disorders, classically associated with 'opposite' genetic and epigenetic changes to genes on chromosome 11p15, but both are associated with somatic mosaicism as well as an increasing range of alternative (epi)genetic changes to other genes, which make molecular diagnosis an increasingly complex process. In this Current Opinion, we explore how the understanding of Beckwith-Wiedemann syndrome and Silver-Russell syndrome has evolved in recent years, stretching the canonical 'mirror' designations in different ways for the two disorders and how this is changing clinical and molecular diagnosis. We suggest some possible directions of travel toward more timely and stratified diagnosis, so that patients can access the early interventions that are so critical for good outcome.
Collapse
|
11
|
Mastromauro C, Chiarelli F. Novel Insights Into the Genetic Causes of Short Stature in Children. Endocrinology 2022; 18:49-57. [PMID: 35949366 PMCID: PMC9354945 DOI: 10.17925/ee.2022.18.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022]
Abstract
Short stature is a common reason for consulting a growth specialist during childhood. Normal height is a polygenic trait involving a complex interaction between hormonal, nutritional and psychosocial components. Genetic factors are becoming very important in the understanding of short stature. After exclusion of the most frequent causes of growth failure, clinicians need to evaluate whether a genetic cause might be taken into consideration. In fact, genetic causes of short stature are probably misdiagnosed during clinical practice and the underlying cause of short stature frequently remains unknown, thus classifying children as having idiopathic short stature (ISS). However, over the past decade, novel genetic techniques have led to the discovery of novel genes associated with linear growth and thus to the ability to define new possible aetiologies of short stature. In fact, thanks to the newer genetic advances, it is possible to properly re-classify about 25–40% of children previously diagnosed with ISS. The purpose of this article is to describe the main monogenic causes of short stature, which, thanks to advances in molecular genetics, are assuming an increasingly important role in the clinical approach to short children.
Collapse
|
12
|
Tornincasa V, Dixon D, Le Masne Q, Martin B, Arnaud L, van Dommelen P, Koledova E. Integrated Digital Health Solutions in the Management of Growth Disorders in Pediatric Patients Receiving Growth Hormone Therapy: A Retrospective Analysis. Front Endocrinol (Lausanne) 2022; 13:882192. [PMID: 35846336 PMCID: PMC9281444 DOI: 10.3389/fendo.2022.882192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 01/31/2023] Open
Abstract
Digital health has seen rapid advancements over the last few years in helping patients and their healthcare professionals better manage treatment for a variety of illnesses, including growth hormone (GH) therapy for growth disorders in children and adolescents. For children and adolescents requiring such therapy, as well as for their parents, the treatment is longitudinal and often involves daily injections plus close progress monitoring; a sometimes daunting task when young children are involved. Here, we describe our experience in offering devices and digital health tools to support GH therapy across some 40 countries. We also discuss how this ecosystem of care has evolved over the years based on learnings and advances in technology. Finally, we offer a glimpse of future planned enhancements and directions for digital health to play a bigger role in better managing conditions treated with GH therapy, as well as model development for adherence prediction. The continued aim of these technologies is to improve clinical decision making and support for GH-treated patients, leading to better outcomes.
Collapse
Affiliation(s)
| | - David Dixon
- Ares Trading S.A. (an affiliate of Merck KGaA), Eysins, Switzerland
| | - Quentin Le Masne
- Ares Trading S.A. (an affiliate of Merck KGaA), Eysins, Switzerland
| | - Blaine Martin
- Ares Trading S.A. (an affiliate of Merck KGaA), Eysins, Switzerland
| | - Lilian Arnaud
- Ares Trading S.A. (an affiliate of Merck KGaA), Eysins, Switzerland
| | - Paula van Dommelen
- Department of Child Health, The Netherlands Organization for Applied Scientific Research TNO, Leiden, Netherlands
| | - Ekaterina Koledova
- Global Medical Affairs Cardiometabolic & Endocrinology, Merck Healthcare KGaA, Darmstadt, Germany
- *Correspondence: Ekaterina Koledova,
| |
Collapse
|
13
|
Pregnancy-Associated Plasma Protein (PAPP)-A2 in Physiology and Disease. Cells 2021; 10:cells10123576. [PMID: 34944082 PMCID: PMC8700087 DOI: 10.3390/cells10123576] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/25/2022] Open
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF) axis plays fundamental roles during development, maturation, and aging. Members of this axis, composed of various ligands, receptors, and binding proteins, are regulated in a tissue- and time-specific manner that requires precise control that is not completely understood. Some of the most recent advances in understanding the implications of this axis in human growth are derived from the identifications of new mutations in the gene encoding the pregnancy-associated plasma protein PAPP-A2 protease that liberates IGFs from their carrier proteins in a selective manner to allow binding to the IGF receptor 1. The identification of three nonrelated families with mutations in the PAPP-A2 gene has shed light on how this protease affects human physiology. This review summarizes our understanding of the implications of PAPP-A2 in growth physiology, obtained from studies in genetically modified animal models and the PAPP-A2 deficient patients known to date.
Collapse
|
14
|
Savage MO, Storr HL. Balanced assessment of growth disorders using clinical, endocrinological, and genetic approaches. Ann Pediatr Endocrinol Metab 2021; 26:218-226. [PMID: 34991299 PMCID: PMC8749028 DOI: 10.6065/apem.2142208.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Determining the pathogenesis of pediatric growth disorders is often challenging. In many cases, no pathogenesis is identified, and a designation of idiopathic short stature is used. The investigation of short stature requires a combination of clinical, endocrinological, and genetic evaluation. The techniques used are described, with equal importance being given to each of the 3 approaches. Clinical skills are essential to elicit an accurate history, family pedigree, and symptoms of body system dysfunction. Endocrine assessment requires hormonal determination for the diagnosis of hormone deficiency and initiation of successful replacement therapy. Genetic analysis has added a new dimension to the investigation of short stature and now uses next-generation sequencing with a candidate gene approach to confirm probable recognizable monogenic disorders and exome sequencing for complex phenotypes of unknown origin. Using the 3 approaches of clinical, endocrine, and genetic probes with equal status in the hierarchy of investigational variables provides the clinician with the highest chance of identifying the correct causative pathogenetic mechanism in a child presenting with short stature of unknown origin.
Collapse
Affiliation(s)
- Martin Oswald Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary, University of London, London, UK,Address for correspondence: Martin Oswald Savage Centre for Endocrinology, William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK
| | - Helen Louise Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary, University of London, London, UK
| |
Collapse
|
15
|
Applying Bioinformatic Platforms, In Vitro, and In Vivo Functional Assays in the Characterization of Genetic Variants in the GH/IGF Pathway Affecting Growth and Development. Cells 2021; 10:cells10082063. [PMID: 34440832 PMCID: PMC8392544 DOI: 10.3390/cells10082063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Heritability accounts for over 80% of adult human height, indicating that genetic variability is the main determinant of stature. The rapid technological development of Next-Generation Sequencing (NGS), particularly Whole Exome Sequencing (WES), has resulted in the characterization of several genetic conditions affecting growth and development. The greatest challenge of NGS remains the high number of candidate variants identified. In silico bioinformatic tools represent the first approach for classifying these variants. However, solving the complicated problem of variant interpretation requires the use of experimental approaches such as in vitro and, when needed, in vivo functional assays. In this review, we will discuss a rational approach to apply to the gene variants identified in children with growth and developmental defects including: (i) bioinformatic tools; (ii) in silico modeling tools; (iii) in vitro functional assays; and (iv) the development of in vivo models. While bioinformatic tools are useful for a preliminary selection of potentially pathogenic variants, in vitro—and sometimes also in vivo—functional assays are further required to unequivocally determine the pathogenicity of a novel genetic variant. This long, time-consuming, and expensive process is the only scientifically proven method to determine causality between a genetic variant and a human genetic disease.
Collapse
|
16
|
Fernandez-Luque L, Al Herbish A, Al Shammari R, Argente J, Bin-Abbas B, Deeb A, Dixon D, Zary N, Koledova E, Savage MO. Digital Health for Supporting Precision Medicine in Pediatric Endocrine Disorders: Opportunities for Improved Patient Care. Front Pediatr 2021; 9:715705. [PMID: 34395347 PMCID: PMC8358399 DOI: 10.3389/fped.2021.715705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Digitalization of healthcare delivery is rapidly fostering development of precision medicine. Multiple digital technologies, known as telehealth or eHealth tools, are guiding individualized diagnosis and treatment for patients, and can contribute significantly to the objectives of precision medicine. From a basis of "one-size-fits-all" healthcare, precision medicine provides a paradigm shift to deliver a more nuanced and personalized approach. Genomic medicine utilizing new technologies can provide precision analysis of causative mutations, with personalized understanding of mechanisms and effective therapy. Education is fundamental to the telehealth process, with artificial intelligence (AI) enhancing learning for healthcare professionals and empowering patients to contribute to their care. The Gulf Cooperation Council (GCC) region is rapidly implementing telehealth strategies at all levels and a workshop was convened to discuss aspirations of precision medicine in the context of pediatric endocrinology, including diabetes and growth disorders, with this paper based on those discussions. GCC regional investment in AI, bioinformatics and genomic medicine, is rapidly providing healthcare benefits. However, embracing precision medicine is presenting some major new design, installation and skills challenges. Genomic medicine is enabling precision and personalization of diagnosis and therapy of endocrine conditions. Digital education and communication tools in the field of endocrinology include chatbots, interactive robots and augmented reality. Obesity and diabetes are a major challenge in the GCC region and eHealth tools are increasingly being used for management of care. With regard to growth failure, digital technologies for growth hormone (GH) administration are being shown to enhance adherence and response outcomes. While technical innovations become more affordable with increasing adoption, we should be aware of sustainability, design and implementation costs, training of HCPs and prediction of overall healthcare benefits, which are essential for precision medicine to develop and for its objectives to be achieved.
Collapse
Affiliation(s)
| | | | - Riyad Al Shammari
- National Center for Artificial Intelligence, Saudi Data and Artificial Intelligence Authority, Riyadh, Saudi Arabia
| | - Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain
| | - Bassam Bin-Abbas
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Asma Deeb
- Paediatric Endocrine Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - David Dixon
- Connected Health and Devices, Merck, Ares Trading SA, Aubonne, Switzerland
| | - Nabil Zary
- Institute for Excellence in Health Professions Education, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Martin O. Savage
- Department of Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, United Kingdom
| |
Collapse
|
17
|
Kamoun C, Hawkes CP, Grimberg A. Provocative growth hormone testing in children: how did we get here and where do we go now? J Pediatr Endocrinol Metab 2021; 34:679-696. [PMID: 33838090 PMCID: PMC8165022 DOI: 10.1515/jpem-2021-0045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Provocative growth hormone (GH) tests are widely used for diagnosing pediatric GH deficiency (GHD). A thorough understanding of the evidence behind commonly used interpretations and the limitations of these tests is important for improving clinical practice. CONTENT To place current practice into a historical context, the supporting evidence behind the use of provocative GH tests is presented. By reviewing GH measurement techniques and examining the early data supporting the most common tests and later studies that compared provocative agents to establish reference ranges, the low sensitivity and specificity of these tests become readily apparent. Studies that assess the effects of patient factors, such as obesity and sex steroids, on GH testing further bring the appropriateness of commonly used cutoffs for diagnosing GHD into question. SUMMARY AND OUTLOOK Despite the widely recognized poor performance of provocative GH tests in distinguishing GH sufficiency from deficiency, limited progress has been made in improving them. New diagnostic modalities are needed, but until they become available, clinicians can improve the clinical application of provocative GH tests by taking into account the multiple factors that influence their results.
Collapse
Affiliation(s)
- Camilia Kamoun
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colin Patrick Hawkes
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adda Grimberg
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Labarta JI, Ranke MB, Maghnie M, Martin D, Guazzarotti L, Pfäffle R, Koledova E, Wit JM. Important Tools for Use by Pediatric Endocrinologists in the Assessment of Short Stature. J Clin Res Pediatr Endocrinol 2021; 13:124-135. [PMID: 33006554 PMCID: PMC8186334 DOI: 10.4274/jcrpe.galenos.2020.2020.0206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Assessment and management of children with growth failure has improved greatly over recent years. However, there remains a strong potential for further improvements by using novel digital techniques. A panel of experts discussed developments in digitalization of a number of important tools used by pediatric endocrinologists at the third 360° European Meeting on Growth and Endocrine Disorders, funded by Merck KGaA, Germany, and this review is based on those discussions. It was reported that electronic monitoring and new algorithms have been devised that are providing more sensitive referral for short stature. In addition, computer programs have improved ways in which diagnoses are coded for use by various groups including healthcare providers and government health systems. Innovative cranial imaging techniques have been devised that are considered safer than using gadolinium contrast agents and are also more sensitive and accurate. Deep-learning neural networks are changing the way that bone age and bone health are assessed, which are more objective than standard methodologies. Models for prediction of growth response to growth hormone (GH) treatment are being improved by applying novel artificial intelligence methods that can identify non-linear and linear factors that relate to response, providing more accurate predictions. Determination and interpretation of insulin-like growth factor-1 (IGF-1) levels are becoming more standardized and consistent, for evaluation across different patient groups, and computer-learning models indicate that baseline IGF-1 standard deviation score is among the most important indicators of GH therapy response. While physicians involved in child growth and treatment of disorders resulting in growth failure need to be aware of, and keep abreast of, these latest developments, treatment decisions and management should continue to be based on clinical decisions. New digital technologies and advancements in the field should be aimed at improving clinical decisions, making greater standardization of assessment and facilitating patient-centered approaches.
Collapse
Affiliation(s)
- José I. Labarta
- University of Zaragoza, Children’s Hospital Miguel Servet, Instituto de Investigación Sanitaria de Aragón, Unit of Endocrinology, Zaragoza, Spain,* Address for Correspondence: University of Zaragoza, Children’s Hospital Miguel Servet, Instituto de Investigación Sanitaria de Aragón, Unit of Endocrinology, Zaragoza, Spain Phone: +34 976 765649 E-mail:
| | - Michael B. Ranke
- University of Tübingen, Children’s Hospital, Clinic of Pediatric Endocrinology, Tübingen, Germany
| | - Mohamad Maghnie
- University of Genova, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Genova, Italy,IRCCS Instituto Giannina Gaslini, Department of Pediatrics, Genova, Italy
| | - David Martin
- University of Witten/Herdecke and Tübingen University, Tübingen, Germany
| | - Laura Guazzarotti
- University of Milan, Luigi Sacco Hospital, Clinic of Pediatric, Milan, Italy
| | - Roland Pfäffle
- University of Leipzig, Department of Pediatrics, Leipzig, Germany
| | | | - Jan M. Wit
- Leiden University Medical Centre, Department of Paediatrics, Leiden, Netherlands
| |
Collapse
|
19
|
Chromosome Abnormalities Related to Reproductive and Sexual Development Disorders: A 5-Year Retrospective Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8893467. [PMID: 34036105 PMCID: PMC8118731 DOI: 10.1155/2021/8893467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Chromosomal abnormalities are the main genetic risk factor associated with reproductive and sexual development disorders (DSD). The goal of this study is to retrospectively evaluate the frequency of chromosomal aberrations in Moroccan subjects with problems of procreation or sexual ambiguity. A total of 1005 individuals, including 170 infertile couples, underwent cytogenetic analysis in the Cytogenetic Laboratory of the Pasteur Institute of Morocco. Heparinized blood samples were processed according to the standard karyotype method. A total (81.5%) of the patients studied had a normal karyotype, while the remaining (18.5%) patients had an abnormal karyotype. Female patients had more chromosomal abnormalities (52%) than male patients (48%). These chromosomal aberrations included 154 cases (83%) of sex chromosomal abnormalities, the most common being Turner's syndrome and Klinefelter's syndrome, and 31 cases (17%) had autosomal aberrations, especially chromosome 9 reversal (inv(9)(p12;q13)). The present data shows that among 170 couples, 10.6% had chromosomal abnormalities mainly involved in the occurrence of recurrent miscarriages. Genotype-phenotype correlations could not be made, and therefore, studies using more resolutive molecular biology techniques would be desirable.
Collapse
|
20
|
Rapaport R, Wit JM, Savage MO. Growth failure: 'idiopathic' only after a detailed diagnostic evaluation. Endocr Connect 2021; 10:R125-R138. [PMID: 33543731 PMCID: PMC8052574 DOI: 10.1530/ec-20-0585] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/02/2023]
Abstract
The terms 'idiopathic short stature' (ISS) and 'small for gestational age' (SGA) were first used in the 1970s and 1980s. ISS described non-syndromic short children with undefined aetiology who did not have growth hormone (GH) deficiency, chromosomal defects, chronic illness, dysmorphic features or low birth weight. Despite originating in the pre-molecular era, ISS is still used as a diagnostic label today. The term 'SGA' was adopted by paediatric endocrinologists to describe children born with low birth weight and/or length, some of whom may experience lack of catch-up growth and present with short stature. GH treatment was approved by the FDA for short children born SGA in 2001, and by the EMA in 2003, and for the treatment of ISS in the US, but not Europe, in 2003. These approvals strengthened the terms 'SGA' and 'ISS' as clinical entities. While clinical and hormonal diagnostic techniques remain important, it is the emergence of genetic investigations that have led to numerous molecular discoveries in both ISS and SGA subjects. The primary message of this article is that the labels ISS and SGA are not definitive diagnoses. We propose that the three disciplines of clinical evaluation, hormonal investigation and genetic sequencing should have equal status in the hierarchy of short stature assessments and should complement each other to identify the true pathogenesis in poorly growing patients.
Collapse
Affiliation(s)
- Robert Rapaport
- Division of Pediatric Endocrinology & Diabetes, Mount Sinai Kravis Children’s Hospital and Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin O Savage
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, London, UK
| |
Collapse
|
21
|
Mattei D, Cavarzere P, Gaudino R, Antoniazzi F, Piacentini G. DYSMORPHIC features and adult short stature: possible clinical markers of KBG syndrome. Ital J Pediatr 2021; 47:15. [PMID: 33494799 PMCID: PMC7830821 DOI: 10.1186/s13052-021-00961-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Growth monitoring is an essential part of primary health care in children and short stature is frequently regarded as a relatively early sign of poor health. The association of short stature and dysmorphic features should always lead to exclude an underlying syndromic disorder. CASE PRESENTATION We report the case of an Indian school-aged boy with dysmorphic features, intellectual disability and a clinical history characterized by seizures and hearing problems. Although his height was always included in the normal range for age and sex throughout childhood, he presented a short near-adult stature in relation to his mid-parent sex-adjusted target height. This is probably due to a rapidly progressive pubertal development. CONCLUSIONS In the presence of characteristic dysmorphic features, intellectual disability, seizures and hearing problems, KBG syndrome should always be considered. This emergent condition presents a wide spectrum of clinical phenotypes and is often associated with adult short stature.
Collapse
Affiliation(s)
- Davide Mattei
- Department of Pediatrics, University Hospital of Verona, Verona, Italy
| | - Paolo Cavarzere
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.
| | - Rossella Gaudino
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Franco Antoniazzi
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy.,Regional Center for the diagnosis and treatment of children and adolescents rare skeletal disorders. Pediatric Clinic, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Giorgio Piacentini
- Department of Pediatrics, University Hospital of Verona, Verona, Italy.,Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| |
Collapse
|
22
|
Gileta AF, Helgeson ML, Leonard JMM, Pyle LC, Subramanian HP, Arndt K, Hawkes CP, Del Gaudio D. Further delineation of a recognizable type of syndromic short stature caused by biallelic SEMA3A loss-of-function variants. Am J Med Genet A 2020; 185:889-893. [PMID: 33369061 DOI: 10.1002/ajmg.a.62023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
Abstract
The semaphorin protein family is a diverse set of extracellular signaling proteins that perform fundamental roles in the development and operation of numerous biological systems, notably the nervous, musculoskeletal, cardiovascular, endocrine, and reproductive systems. Recently, recessive loss-of-function (LoF) variants in SEMA3A (semaphorin 3A) have been shown to result in a recognizable syndrome characterized by short stature, skeletal abnormalities, congenital heart defects, and variable additional anomalies. Here, we describe the clinical and molecular characterization of a female patient presenting with skeletal dysplasia, hypogonadotropic hypogonadism (HH), and anosmia who harbors a nonsense variant c.1633C>T (p.Arg555*) and a deletion of exons 15, 16, and 17 in SEMA3A in the compound heterozygous state. These variants were identified through next-generation sequencing analysis of a panel of 26 genes known to be associated with HH/Kallmann syndrome. Our findings further substantiate the notion that biallelic LoF SEMA3A variants cause a syndromic form of short stature and expand the phenotypic spectrum associated with this condition to include features of Kallmann syndrome.
Collapse
Affiliation(s)
- Alexander F Gileta
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Maria L Helgeson
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Jacqueline M M Leonard
- Division of Human Genetics and Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Louise C Pyle
- Division of Human Genetics and Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hari P Subramanian
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Kelly Arndt
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Colin P Hawkes
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniela Del Gaudio
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
23
|
Fujimoto M, Andrew M, Dauber A. Disorders caused by genetic defects associated with GH-dependent genes: PAPPA2 defects. Mol Cell Endocrinol 2020; 518:110967. [PMID: 32739295 PMCID: PMC7609568 DOI: 10.1016/j.mce.2020.110967] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Growth hormone (GH) and its mediator, insulin-like growth factor-1 (IGF-1), have long been recognized as central to human growth physiology. IGF-1 is known to complex with IGF binding proteins as well as with the acid labile subunit (ALS) in order to prolong its half-life in circulation. Factors regulating the bioavailability of IGF-1 (i.e. the balance between free and bound IGF-1) were less well understood. Recently, pregnancy-associated plasma protein-A2 (PAPP-A2) was discovered as a protease which specifically cleaves IGF-binding protein (IGFBP)-3 and -5. PAPP-A2 deficient patients present with characteristic findings including growth failure, elevated total IGF-1 and -2, IGFBPs, and ALS, but decreased percentage of free to total IGF-1. Additionally, patients with PAPP-A2 deficiency have impairments in glucose metabolism and bone mineral density (BMD). Treatment with recombinant human IGF-1 (rhIGF-1) improved height SD scores, growth velocity, body composition, and dysglycemia. Mouse models recapitulate many of the human findings of PAPP-A2 deficiency. This review summarizes the function of PAPP-A2 and its contribution to the GH-IGF axis through an examination of PAPP-A2 deficient patients and mouse models, thereby emphasizing the importance of the regulation of IGF-1 bioavailability in human growth.
Collapse
Affiliation(s)
- Masanobu Fujimoto
- Division of Pediatrics and Perinatology, Tottori University Faculty of Medicine, Yonago, Tottori, 683-8504, Japan
| | - Melissa Andrew
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA
| | - Andrew Dauber
- Division of Endocrinology, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, 20052, USA.
| |
Collapse
|
24
|
Gutiérrez M. Activating mutations of STAT3: Impact on human growth. Mol Cell Endocrinol 2020; 518:110979. [PMID: 32818584 DOI: 10.1016/j.mce.2020.110979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
The signal transducer and activator of transcription (STAT) 3 is the most ubiquitous member of the STAT family and fulfills fundamental functions in immune and non-immune cells. Mutations in the STAT3 gene lead to different human diseases. Germline STAT3 activating or gain-of-function (GOF) mutations result in early-onset multiorgan autoimmunity, lymphoproliferation, recurrent infections and short stature. Since the first description of the disease, the clinical manifestations of STAT3 GOF mutations have expanded considerably. However, due to the complexity of immunological characteristics in patients carrying STAT3 GOF mutations, most of attention was focused on the immune alterations. This review summarizes current knowledge on STAT3 GOF mutations with special focus on the growth defects, since short stature is a predominant feature in this condition. Underlying mechanisms of STAT3 GOF disease are still poorly understood, and potential effects of STAT3 GOF mutations on the growth hormone signaling pathway are unclear. Functional studies of STAT3 GOF mutations and the broadening of clinical growth-related data in these patients are necessary to better delineate implications of STAT3 GOF mutations on growth.
Collapse
Affiliation(s)
- Mariana Gutiérrez
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE) CONICET - FEI - División de Endocrinología, Hospital de Niños R. Gutiérrez, Gallo 1360, Buenos Aires, CP1425EFD, Argentina.
| |
Collapse
|
25
|
Bernasconi S. Management of the main endocrine and diabetic disorders in children. Minerva Pediatr 2020; 72:237-239. [PMID: 33045801 DOI: 10.23736/s0026-4946.20.05990-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sergio Bernasconi
- Department of Pediatrics, Microbiome Research Hub, University of Parma, Parma, Italy -
| |
Collapse
|
26
|
Woolley SA, Hayes SE, Shariflou MR, Nicholas FW, Willet CE, O'Rourke BA, Tammen I. Molecular basis of a new ovine model for human 3M syndrome-2. BMC Genet 2020; 21:106. [PMID: 32933480 PMCID: PMC7493961 DOI: 10.1186/s12863-020-00913-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Brachygnathia, cardiomegaly and renal hypoplasia syndrome (BCRHS, OMIA 001595–9940) is a previously reported recessively inherited disorder in Australian Poll Merino/Merino sheep. Affected lambs are stillborn with various congenital defects as reflected in the name of the disease, as well as short stature, a short and broad cranium, a small thoracic cavity, thin ribs and brachysternum. The BCRHS phenotype shows similarity to certain human short stature syndromes, in particular the human 3M syndrome-2. Here we report the identification of a likely disease-causing variant and propose an ovine model for human 3M syndrome-2. Results Eight positional candidate genes were identified among the 39 genes in the approximately 1 Mb interval to which the disease was mapped previously. Obscurin like cytoskeletal adaptor 1 (OBSL1) was selected as a strong positional candidate gene based on gene function and the resulting phenotypes observed in humans with mutations in this gene. Whole genome sequencing of an affected lamb (BCRHS3) identified a likely causal variant ENSOARG00000020239:g.220472248delC within OBSL1. Sanger sequencing of seven affected, six obligate carrier, two phenotypically unaffected animals from the original flock and one unrelated control animal validated the variant. A genotyping assay was developed to genotype 583 animals from the original flock, giving an estimated allele frequency of 5%. Conclusions The identification of a likely disease-causing variant resulting in a frameshift (p.(Val573Trpfs*119)) in the OBSL1 protein has enabled improved breeding management of the implicated flock. The opportunity for an ovine model for human 3M syndrome and ensuing therapeutic research is promising given the availability of carrier ram semen for BCRHS.
Collapse
Affiliation(s)
- S A Woolley
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - S E Hayes
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - M R Shariflou
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - F W Nicholas
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia
| | - C E Willet
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW, 2006, Australia
| | - B A O'Rourke
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - I Tammen
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, 2570, Australia.
| |
Collapse
|
27
|
Iio A, Maeda S, Yonezawa T, Momoi Y, Motegi T. Isolated growth hormone deficiency in a Chihuahua with a GH1 mutation. J Vet Diagn Invest 2020; 32:733-736. [PMID: 32646299 DOI: 10.1177/1040638720938671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A 6-mo-old female Chihuahua was presented with recurrent episodes of hypoglycemia and collapse. Physical examination revealed proportionate dwarfism, retained puppy hair coat, retained deciduous teeth, and open fontanelles. Routine blood tests revealed hypoglycemia, thrombocytosis, hypoproteinemia, and elevated alkaline phosphatase activity. The urinalysis, radiographs, and ultrasonographs were unremarkable. Endocrine testing revealed that insulin-like growth factor 1 was below the detection limit; concentrations of total thyroxine, baseline cortisol, and cortisol stimulated by tetracosactide acetate were within their reference intervals. The pituitary gland showed no organic abnormalities on magnetic resonance imaging. For definitive diagnosis, we conducted the stimulation test for growth hormone (GH) release and diagnosed isolated GH deficiency. Genetic investigation revealed that the present case had 4 point mutations in intronic regions and a 6-bp deletion in exon 5 of GH1. The bioinformatics tool PROVEAN algorithm predicted that the deletion in exon 5 could be deleterious to the function of GH1.
Collapse
Affiliation(s)
- Aki Iio
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shingo Maeda
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Yonezawa
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuyuki Momoi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Motegi
- Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
28
|
Root AW. Genetic Regulation of Adult Stature in Humans. J Clin Endocrinol Metab 2020; 105:dgaa210. [PMID: 32300792 PMCID: PMC7229986 DOI: 10.1210/clinem/dgaa210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Allen W Root
- Adjunct Professor of Pediatrics, Johns Hopkins School of Medicine; Professor of Pediatrics Emeritus, University of South Florida Morsani College of Medicine; Division of Pediatric Endocrinology and Diabetes, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| |
Collapse
|