1
|
Li L, Zhao S, Leng Z, Chen S, Shi Y, Shi L, Li J, Mao K, Tang H, Meng B, Wang Y, Shang G, Liu H. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head. Ann Med 2024; 56:2416070. [PMID: 39529511 PMCID: PMC11559024 DOI: 10.1080/07853890.2024.2416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging. OBJECTIVES The objectives of this review were to examine the pathological mechanisms of SONFH, summarize related markers of SONFH, and identify areas for future studies. METHODS We reviewed studies on pathological mechanisms and related markers of SONFH and discussed the relationship between them, as well as clinical applications and the outlook of potential markers. RESULTS The pathological mechanisms of SONFH included decreased osteogenesis, lipid accumulation, increased intraosseous pressure, and microcirculation disruption. Differential proteomics and genomics play crucial roles in the occurrence, progression, and outcome of SONFH, providing novel insights into SONFH. Additionally, the biological functions of mesenchymal stem cells (MSCs) and exosomes (Exos) in SONFH have attracted increasing attention. CONCLUSIONS The pathological mechanisms of SONFH are complex. The related markers mentioned in the current review can predict the occurrence and progression of SONFH, which will help provide effective early clinical prevention and treatment strategies for SONFH.
Collapse
Affiliation(s)
- Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangkun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keya Mao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Hwang SH, Yang Y, Jung JH, Kim JW, Kim Y. Stearoyl-CoA desaturase in CD4 + T cells suppresses tumor growth through activation of the CXCR3/CXCL11 axis in CD8 + T cells. Cell Biosci 2024; 14:137. [PMID: 39543650 PMCID: PMC11566202 DOI: 10.1186/s13578-024-01308-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Within the tumor microenvironment, altered lipid metabolism promotes cancer cell malignancy by activating oncogenic cascades; however, impact of lipid metabolism in CD4+ tumor-infiltrating lymphocytes (TILs) remains poorly understood. Here, we elucidated that role of stearoyl-CoA desaturase (SCD) increased by treatment with cancer-associated fibroblast (CAF) supernatant in CD4+ T cells on their subset differentiation and activity of CD8+ T cells. RESULTS In our study, we observed that CD4+ TILs had higher lipid droplet content than CD4+ splenic T cells. In tumor tissue, CAF-derived supernatant provided fatty acids to CD4+ TILs, which increased the expression of SCD and oleic acid (OA) content. Increased SCD expression by OA treatment enhanced the levels of Th1 cell markers TBX21, interleukin-2, and interferon-γ. However, SCD inhibition upregulated the expression of regulatory T (Treg) cell markers, FOXP3 and transforming growth factor-β. Comparative fatty acid analysis of genetically engineered Jurkat cells revealed that OA level was significantly higher in SCD-overexpressing cells. Overexpression of SCD increased expression of Th1 cell markers, while treatment with OA enhanced the transcriptional level of TBX21 in Jurkat cells. In contrast, palmitic acid which is higher in SCD-KO cells than other subclones enhanced the expression of Treg cell markers through upregulation of mitochondrial superoxide. Furthermore, SCD increased the secretion of the C-X-C motif chemokine ligand 11 (CXCL11) from CD4+ T cells. The binding of CXCL11 to CXCR3 on CD8+ T cells augmented their cytotoxic activity. In a mouse tumor model, the suppressive effect of CD8+ T cells on tumor growth was dependent on CXCR3 expression. CONCLUSION These findings illustrate that SCD not only orchestrates the differentiation of T helper cells, but also promotes the antitumor activity of CD8+ T cells, suggesting its function in adverse tumor microenvironments.
Collapse
Affiliation(s)
- Sung-Hyun Hwang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- BK21 Future Veterinary Medicine Leading Education and Research Center, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Biomedical Research Institute, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jae-Ha Jung
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, 82, Gumi-Ro 173 Beon-Gil, Bundang-Gu, Seongnam, Gyeonggi-Do, 13620, Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Seo YJ, Park JH, Byun JH. Therapeutic Potential of Stearoyl-CoA Desaturase1 (SCD1) in Modulating the Effects of Fatty Acids on Osteoporosis. Cells 2024; 13:1781. [PMID: 39513888 PMCID: PMC11544805 DOI: 10.3390/cells13211781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Osteoporosis is a common skeletal disease, primarily associated with aging, that results from decreased bone density and bone volume. This reduction significantly increases the risk of fractures in osteoporosis patients compared to individuals with normal bone density. Additionally, the bone regeneration process in these patients is slow, making complete healing difficult. Along with the decline in bone volume and density, osteoporosis is characterized by an increase in marrow adipose tissue (MAT), which is fat within the bone. In this altered bone microenvironment, osteoblasts are influenced by various factors secreted by adipocytes. Notably, saturated fatty acids promote osteoclast activity, inhibit osteoblast differentiation, and induce apoptosis, further reducing osteoblast formation. In contrast, monounsaturated fatty acids inhibit osteoclast formation and mitigate the apoptosis caused by saturated fatty acids. Leveraging these properties, we aimed to investigate the effects of overexpressing stearoyl-CoA desaturase 1 (SCD1), an enzyme that converts saturated fatty acids into monounsaturated fatty acids, on osteogenic differentiation and bone regeneration in both in vivo and in vitro models. Through this novel approach, we seek to develop a stem cell-based therapeutic strategy that harnesses SCD1 to improve bone regeneration in the adipocyte-rich osteoporotic environment.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Jin-Ho Park
- Department of Nutritional Science, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA;
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Medical Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea;
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Republic of Korea
| |
Collapse
|
4
|
Zhu Y, Hu Y, Pan Y, Li M, Niu Y, Zhang T, Sun H, Zhou S, Liu M, Zhang Y, Wu C, Ma Y, Guo Y, Wang L. Fatty infiltration in the musculoskeletal system: pathological mechanisms and clinical implications. Front Endocrinol (Lausanne) 2024; 15:1406046. [PMID: 39006365 PMCID: PMC11241459 DOI: 10.3389/fendo.2024.1406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Fatty infiltration denotes the anomalous accrual of adipocytes in non-adipose tissue, thereby generating toxic substances with the capacity to impede the ordinary physiological functions of various organs. With aging, the musculoskeletal system undergoes pronounced degenerative alterations, prompting heightened scrutiny regarding the contributory role of fatty infiltration in its pathophysiology. Several studies have demonstrated that fatty infiltration affects the normal metabolism of the musculoskeletal system, leading to substantial tissue damage. Nevertheless, a definitive and universally accepted generalization concerning the comprehensive effects of fatty infiltration on the musculoskeletal system remains elusive. As a result, this review summarizes the characteristics of different types of adipose tissue, the pathological mechanisms associated with fatty infiltration in bone, muscle, and the entirety of the musculoskeletal system, examines relevant clinical diseases, and explores potential therapeutic modalities. This review is intended to give researchers a better understanding of fatty infiltration and to contribute new ideas to the prevention and treatment of clinical musculoskeletal diseases.
Collapse
Affiliation(s)
- Yihua Zhu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Hu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yalan Pan
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Traditional Chinese Medicine (TCM) Nursing Intervention Laboratory of Chronic Disease Key Laboratory, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Muzhe Li
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuanyuan Niu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tianchi Zhang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Haitao Sun
- Department of Orthopedic Surgery, Affiliated Huishan Hospital of Xinglin College of Nantong University, Wuxi, Jiangsu, China
| | - Shijie Zhou
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Mengmin Liu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yili Zhang
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chengjie Wu
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng TCM Hospital, Yancheng, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, China
| | - Lining Wang
- Laboratory of New Techniques of Restoration & Reconstruction, Institute of Traumatology & Orthopedics, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Chinese Medicine Centre (International Collaboration between Western Sydney University and Beijing University of Chinese Medicine), Western Sydney University, Sydney, Australia
| |
Collapse
|
5
|
Tibori K, Zámbó V, Orosz G, Szelényi P, Sarnyai F, Tamási V, Rónai Z, Csala M, Kereszturi É. Allele-specific effect of various dietary fatty acids and ETS1 transcription factor on SCD1 expression. Sci Rep 2024; 14:177. [PMID: 38167845 PMCID: PMC10761808 DOI: 10.1038/s41598-023-50700-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024] Open
Abstract
Overnutrition and genetic predisposition are major risk factors for various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) plays a key role in these conditions by synthesizing unsaturated fatty acids (FAs), thereby promoting fat storage and alleviating lipotoxicity. Expression of SCD1 is influenced by various saturated and cis-unsaturated FAs, but the possible role of dietary trans FAs (TFAs) and SCD1 promoter polymorphisms in its regulations has not been addressed. Therefore, we aimed to investigate the impact of the two main TFAs, vaccenate and elaidate, and four common promoter polymorphisms (rs1054411, rs670213, rs2275657, rs2275656) on SCD1 expression in HEK293T and HepG2 cell cultures using luciferase reporter assay, qPCR and immunoblotting. We found that SCD1 protein and mRNA levels as well as SCD1 promoter activity are markedly elevated by elaidate, but not altered by vaccenate. The promoter polymorphisms did not affect the basal transcriptional activity of SCD1. However, the minor allele of rs1054411 increased SCD1 expression in the presence of various FAs. Moreover, this variant was predicted in silico and verified in vitro to reduce the binding of ETS1 transcription factor to SCD1 promoter. Although we could not confirm an association with type 2 diabetes mellitus, the FA-dependent and ETS1-mediated effect of rs1054411 polymorphism deserves further investigation as it may modulate the development of lipid metabolism-related conditions.
Collapse
Affiliation(s)
- Kinga Tibori
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary.
| | - Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary
| | - Péter Szelényi
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary
| | - Farkas Sarnyai
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary
| | - Viola Tamási
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary
| | - Zsolt Rónai
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, 1085, Budapest, Hungary.
| |
Collapse
|
6
|
Crosstalk between fatty acid metabolism and tumour-associated macrophages in cancer progression. Biomedicine (Taipei) 2023; 12:9-19. [PMID: 36816174 PMCID: PMC9910230 DOI: 10.37796/2211-8039.1381] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
Over the last few decades, cancer has been regarded as an independent and self sustaining progression. The earliest hallmarks of cancer comprise of sustaining proliferative signalling, avoiding growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Nonetheless, two emerging hallmarks are being described: aberrant metabolic pathways and evasion of immune destruction. Changes in tumour cell metabolism are not restricted to tumour cells alone; the products of the altered metabolism have a direct impact on the activity of immune cells inside the tumour microenvironment, particularly tumour-associated macrophages (TAMs). The complicated process of cancer growth is orchestrated by metabolic changes dictating the tight mutual connection between these cells. Here, we discuss approaches to exploit the interaction of cancer cells' abnormal metabolic activity and TAMs. We also describe ways to exploit it by reprogramming fatty acid metabolism via TAMs.
Collapse
|
7
|
Ji C, Zhang Z, Xu X, Song D, Zhang D. Hyperlipidemia impacts osteogenesis via lipophagy. Bone 2023; 167:116643. [PMID: 36513279 DOI: 10.1016/j.bone.2022.116643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
The mechanism of the impact of hyperlipidemia on bone tissue homeostasis is unclear, and the role of lipophagy is yet to be investigated. This study investigated changes in lipophagy and osteogenesis levels under hyperlipemic conditions and explored the effects of lipophagy on bone regeneration. In vivo, femurs of mice with diet-induced moderate hyperlipidemia were ground out with a ball drill to create defects. In vitro, mouse osteoblast cell lines were grown in two different concentrations of the high-fat medium. We found that at hyperphysiological of lipid conditions, activation of lipophagy restored osteoblast function in a way, and similar results were observed in mice with diet-induced hyperlipidemia. Still, at suprahyperphysiological concentrations of lipid culture, the activation of lipophagy further inhibited osteogenesis, and inhibition of autophagy instead promoted osteogenesis to a small extent. These results demonstrate that lipophagy functions differently in diverse high-fat environments, suggesting that cellular and organismal changes in response to high-fat stimuli are dynamic. This may provide new ideas for improving bone dysfunction caused by lipid metabolism disorders.
Collapse
Affiliation(s)
- Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China; Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China; Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
8
|
Kruglikov IL, Scherer PE. Pathophysiology of cellulite: Possible involvement of selective endotoxemia. Obes Rev 2023; 24:e13517. [PMID: 36285892 PMCID: PMC9772045 DOI: 10.1111/obr.13517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 12/27/2022]
Abstract
The most relevant hallmarks of cellulite include a massive protrusion of superficial adipose tissue into the dermis, reduced expression of the extracellular glycoprotein fibulin-3, and an unusually high presence of MUSE cells in gluteofemoral white adipose tissue (gfWAT) that displays cellulite. Also typical for this condition is the hypertrophic nature of the underlying adipose tissue, the interaction of adipocytes with sweat glands, and dysfunctional lymph and blood circulation as well as a low-grade inflammation in the areas of gfWAT affected by cellulite. Here, we propose a new pathophysiology of cellulite, which connects this skin condition with selective accumulation of endogenous lipopolysaccharides (LPS) in gfWAT. The accumulation of LPS within a specific WAT depot has so far not been considered as a possible pathophysiological mechanism triggering localized WAT modifications, but may very well be involved in conditions such as cellulite and, secondary to that, lipedema.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, 75390-8549, USA
| |
Collapse
|
9
|
Riester O, Burkhardtsmaier P, Gurung Y, Laufer S, Deigner HP, Schmidt MS. Synergy of R-(-)carvone and cyclohexenone-based carbasugar precursors with antibiotics to enhance antibiotic potency and inhibit biofilm formation. Sci Rep 2022; 12:18019. [PMID: 36289389 PMCID: PMC9606123 DOI: 10.1038/s41598-022-22807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The widespread use of antibiotics in recent decades has been a major factor in the emergence of antibiotic resistances. Antibiotic-resistant pathogens pose increasing challenges to healthcare systems in both developing and developed countries. To counteract this, the development of new antibiotics or adjuvants to combat existing resistance to antibiotics is crucial. Glycomimetics, for example carbasugars, offer high potential as adjuvants, as they can inhibit metabolic pathways or biofilm formation due to their similarity to natural substrates. Here, we demonstrate the synthesis of carbasugar precursors (CSPs) and their application as biofilm inhibitors for E. coli and MRSA, as well as their synergistic effect in combination with antibiotics to circumvent biofilm-induced antibiotic resistances. This results in a biofilm reduction of up to 70% for the CSP rac-7 and a reduction in bacterial viability of MRSA by approximately 45% when combined with the otherwise ineffective antibiotic mixture of penicillin and streptomycin.
Collapse
Affiliation(s)
- Oliver Riester
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pia Burkhardtsmaier
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Yuna Gurung
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Stefan Laufer
- grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,Tuebingen Center for Academic Drug Discovery and Development (TüCAD2), 72076 Tübingen, Germany
| | - Hans-Peter Deigner
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,grid.418008.50000 0004 0494 3022EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
| | - Magnus S. Schmidt
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| |
Collapse
|
10
|
Cao L, Zhou S, Qiu X, Qiu S. Trehalose improves palmitic acid-induced apoptosis of osteoblasts by regulating SIRT3-medicated autophagy via the AMPK/mTOR/ULK1 pathway. FASEB J 2022; 36:e22491. [PMID: 35947089 DOI: 10.1096/fj.202200608rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 12/08/2022]
Abstract
Accumulation of lipid substances decreased the activity of osteoblasts. Trehalose is a typical stress metabolite to form a protective membrane on cell surface which has been demonstrated to regulate lipid metabolism. This activity of Trehalose indicates the potential effect of osteoporosis treatment. Our study aimed to determine the therapeutic effect of Trehalose in high fat-induced osteoporosis. We used palmitic acid (PA) to mimic the state of high fat and observed the apoptosis ratio of osteoblasts increased. After adding Trehalose, the apoptosis ratio decreased obviously. Autophagy is a regulatory means involved in the process of apoptosis. We detected the autophagy protein and found that the expression of Beclin-1, Atg5, and LC3 II increased, and p62 decreased after Trehalose treatment. When adding an autophagy inhibitor (3-MA), the expression of Beclin-1, Atg5, and LC3 II decreased, and p62 increased. These results indicated autophagy was an important factor involved in the preventive effect of Trehalose in PA-induced apoptosis. SIRT3 is a mitochondrial gene that can inhibit apoptosis, which has been reported to promote autophagy. We used SIRT3-siRNA to silence the expression of SIRT3 and found the effect of Trehalose was counteracted. The apoptosis ratio increased and the expression of Beclin-1, Atg5, and LC3 II decreased, p62 increased. Additionally, we also fed the mice with a high-fat diet (HFD) and intragastrical Trehalose. The results showed that Trehalose could inhibit the bone mass loss with HFD. Our study revealed the effect and mechanism of Trehalose in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences, Shenyang, China
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Tibori K, Orosz G, Zámbó V, Szelényi P, Sarnyai F, Tamási V, Rónai Z, Mátyási J, Tóth B, Csala M, Kereszturi É. Molecular Mechanisms Underlying the Elevated Expression of a Potentially Type 2 Diabetes Mellitus Associated SCD1 Variant. Int J Mol Sci 2022; 23:ijms23116221. [PMID: 35682900 PMCID: PMC9181825 DOI: 10.3390/ijms23116221] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/14/2022] Open
Abstract
Disturbances in lipid metabolism related to excessive food intake and sedentary lifestyle are among major risk of various metabolic disorders. Stearoyl-CoA desaturase-1 (SCD1) has an essential role in these diseases, as it catalyzes the synthesis of unsaturated fatty acids, both supplying for fat storage and contributing to cellular defense against saturated fatty acid toxicity. Recent studies show that increased activity or over-expression of SCD1 is one of the contributing factors for type 2 diabetes mellitus (T2DM). We aimed to investigate the impact of the common missense rs2234970 (M224L) polymorphism on SCD1 function in transfected cells. We found a higher expression of the minor Leu224 variant, which can be attributed to a combination of mRNA and protein stabilization. The latter was further enhanced by various fatty acids. The increased level of Leu224 variant resulted in an elevated unsaturated: saturated fatty acid ratio, due to higher oleate and palmitoleate contents. Accumulation of Leu224 variant was found in a T2DM patient group, however, the difference was statistically not significant. In conclusion, the minor variant of rs2234970 polymorphism might contribute to the development of obesity-related metabolic disorders, including T2DM, through an increased intracellular level of SCD1.
Collapse
Affiliation(s)
- Kinga Tibori
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Péter Szelényi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Farkas Sarnyai
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Viola Tamási
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Zsolt Rónai
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
| | - Judit Mátyási
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (J.M.); (B.T.)
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (J.M.); (B.T.)
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
- Correspondence: (M.C.); (É.K.)
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary; (K.T.); (G.O.); (V.Z.); (P.S.); (F.S.); (V.T.); (Z.R.)
- Correspondence: (M.C.); (É.K.)
| |
Collapse
|
12
|
CD4+ and CD8+ T-cell responses in bone marrow to fatty acids in high-fat diets. J Nutr Biochem 2022; 107:109057. [DOI: 10.1016/j.jnutbio.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/23/2022] [Accepted: 04/06/2022] [Indexed: 12/30/2022]
|
13
|
Knuth MM, Stutts WL, Ritter MM, Garrard KP, Kullman SW. Vitamin D deficiency promotes accumulation of bioactive lipids and increased endocannabinoid tone in zebrafish. J Lipid Res 2021; 62:100142. [PMID: 34673019 PMCID: PMC8604674 DOI: 10.1016/j.jlr.2021.100142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
Vitamin D is well known for its traditional role in bone mineral homeostasis; however, recent evidence suggests that vitamin D also plays a significant role in metabolic control. This study served to investigate putative linkages between vitamin D deficiency (VDD) and metabolic disruption of bioactive lipids by MS imaging. Our approach employed infrared-matrix-assisted laser desorption electrospray ionization MS imaging for lipid metabolite profiling in 6-month-old zebrafish fed either a VDD or a vitamin D-sufficient (VDS) diet. Using a lipidomics pipeline, we found that VDD zebrafish had a greater abundance of bioactive lipids (N-acyls, endocannabinoids [ECs], diacylglycerols/triacylglycerols, bile acids/bile alcohols, and vitamin D derivatives) suggestive of increased EC tone compared with VDS zebrafish. Tandem MS was performed on several differentially expressed metabolites with sufficient ion abundances to aid in structural elucidation and provide additional support for MS annotations. To confirm activation of the EC pathways, we subsequently examined expression of genes involved in EC biosynthesis, metabolism, and receptor signaling in adipose tissue and liver from VDD and VDS zebrafish. Gene expression changes were congruent with increased EC tone, with VDD zebrafish demonstrating increased synthesis and metabolism of anandamide compared with VDS zebrafish. Taken together, our data suggest that VDD may promote accumulation of bioactive lipids and increased EC tone in zebrafish.
Collapse
Affiliation(s)
- Megan M Knuth
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Genetics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC 27514, USA; Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| | - Whitney L Stutts
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27606, USA
| | - Morgan M Ritter
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Kenneth P Garrard
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27606, USA; FTMS Laboratory for Human Health Research and Department of Chemistry, North Carolina State University, Raleigh, NC 27607, USA; Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Seth W Kullman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
14
|
Stearoyl-CoA Desaturase (SCD) Induces Cardiac Dysfunction with Cardiac Lipid Overload and Angiotensin II AT1 Receptor Protein Up-Regulation. Int J Mol Sci 2021; 22:ijms22189883. [PMID: 34576047 PMCID: PMC8472087 DOI: 10.3390/ijms22189883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Heart failure is a major cause of death worldwide with insufficient treatment options. In the search for pathomechanisms, we found up-regulation of an enzyme, stearoyl-CoA desaturase 1 (Scd1), in different experimental models of heart failure induced by advanced atherosclerosis, chronic pressure overload, and/or volume overload. Because the pathophysiological role of Scd1/SCD in heart failure is not clear, we investigated the impact of cardiac SCD upregulation through the generation of C57BL/6-Tg(MHCSCD)Sjaa mice with myocardium-specific expression of SCD. Echocardiographic examination showed that 4.9-fold-increased SCD levels triggered cardiac hypertrophy and symptoms of heart failure at an age of eight months. Tg-SCD mice had a significantly reduced left ventricular cardiac ejection fraction of 25.7 ± 2.9% compared to 54.3 ± 4.5% of non-transgenic B6 control mice. Whole-genome gene expression profiling identified up-regulated heart-failure-related genes such as resistin, adiponectin, and fatty acid synthase, and type 1 and 3 collagens. Tg-SCD mice were characterized by cardiac lipid accumulation with 1.6- and 1.7-fold-increased cardiac contents of saturated lipids, palmitate, and stearate, respectively. In contrast, unsaturated lipids were not changed. Together with saturated lipids, apoptosis-enhancing p53 protein contents were elevated. Imaging by autoradiography revealed that the heart-failure-promoting and membrane-spanning angiotensin II AT1 receptor protein of Tg-SCD hearts was significantly up-regulated. In transfected HEK cells, the expression of SCD increased the number of cell-surface angiotensin II AT1 receptor binding sites. In addition, increased AT1 receptor protein levels were detected by fluorescence spectroscopy of fluorescent protein-labeled AT1 receptor-Cerulean. Taken together, we found that SCD promotes cardiac dysfunction with overload of cardiotoxic saturated lipids and up-regulation of the heart-failure-promoting AT1 receptor protein.
Collapse
|
15
|
Sun P, Wang Y, Ding Y, Luo J, Zhong J, Xu N, Zhang Y, Xie W. Canagliflozin attenuates lipotoxicity in cardiomyocytes and protects diabetic mouse hearts by inhibiting the mTOR/HIF-1α pathway. iScience 2021; 24:102521. [PMID: 34142035 PMCID: PMC8188479 DOI: 10.1016/j.isci.2021.102521] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 11/19/2022] Open
Abstract
Lipotoxicity plays an important role in the development of diabetic heart failure (HF). Canagliflozin (CAN), a marketed sodium-glucose co-transporter 2 inhibitor, has significantly beneficial effects on HF. In this study, we evaluated the protective effects and mechanism of CAN in the hearts of C57BL/6J mice induced by high-fat diet/streptozotocin (HFD/STZ) for 12 weeks in vivo and in HL-1 cells (a type of mouse cardiomyocyte line) induced by palmitic acid (PA) in vitro. The results showed that CAN significantly ameliorated heart functions and inflammatory responses in the hearts of the HFD/STZ-induced diabetic mice. CAN significantly attenuated the inflammatory injury induced by PA in the HL-1 cells. Furthermore, CAN seemed to bind to the mammalian target of rapamycin (mTOR) and then inhibit mTOR phosphorylation and hypoxia-inducible factor-1α (HIF-1α) expression. These results indicated that CAN might attenuate lipotoxicity in cardiomyocytes by inhibiting the mTOR/HIF-1α pathway and then show protective effects on diabetic hearts.
Collapse
Affiliation(s)
- Pengbo Sun
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yangyang Wang
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yipei Ding
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jingyi Luo
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhong
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Naihan Xu
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yaou Zhang
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- State Key Laboratory of Chemical Oncogenomic, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Key Lab in Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
16
|
Danchenko OO, Nicolaeva YV, Koshelev OI, Danchenko MM, Yakoviichuk OV, Halko TI. Effect of extract from common oat on the antioxidant activity and fatty acid composition of the muscular tissues of geese. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Among natural antioxidants, increasing attention is being drawn to avenanthramides - phenolic compounds of the common oat Avena sativa (Linnaeus, 1753). Research has shown that avenanthramides have much higher antioxidant activity than well-known bioflavanoids. Currently, a great deal of work is being conducted on the structure of these compounds and mechanisms of their effect on the organism of humans and animals. We explored the specifics of the influence of aqueous extract from A. satíva on the antioxidant activity and fatty acid composition of lipids of histologically similar tissues of geese with different levels of aerobicity (muscles of the stomach and cardiac muscle), dynamics of the birds’ live weight and pterylographic parameters under physiological loading by the development of contour and juvenile feathers. The addition of extract of oat to the diet of geese during growth of feathers was observed to increase the antioxidant activity of their tissues. Physiological loading related to the development of contour feathers in the examined tissues of geese significantly weakens as a result of selective inhibition of synthesis of unsaturated fatty acids, especially oleic acid, the content of which in 28-day old geese of the experimental group decreased by 31.7 in the cardiac muscle and 46.8 times in the stomach, compared with the control. Further changes in fatty acid composition were characterized by lower number of differences between the control and experimental groups. Increase in antioxidant activity in these tissues during development of juvenile feathers (day 49) occurs as a result of activation of alternative mechanisms of antioxidative protection, which take place with no significant changes in fatty acid composition. Furthermore, we determined that in the stomach and cardiac muscles of geese, the action of extract from common oat activated mechanisms of antioxidative protection, which increased the level of correlation between the changes in fatty acid composition. The study confirmed that the extract caused not only significant increase in the weight of geese at the end of the experiment, but also improved their pterylographic parameters. Therefore, it is practical to conduct similar studies on wild species of birds grown for hunting, because this process of development of feathers, particularly for such species of birds, is essential.
Collapse
|
17
|
Wang YN, Jia TT, Feng Y, Liu SY, Zhang WJ, Zhang DJ, Xu X. Hyperlipidemia Impairs Osseointegration via the ROS/Wnt/β-Catenin Pathway. J Dent Res 2021; 100:658-665. [PMID: 33402029 DOI: 10.1177/0022034520983245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The influence of hyperlipidemia on titanium implant osseointegration and the underlying mechanisms is not well understood. This study investigates the changes in osseointegration and explores the potential mechanisms in hyperlipidemia conditions. In vivo, specialized titanium implants were implanted in the femurs of diet-induced or genetic hyperlipidemia mice. In vitro, primary murine osteoblasts were cultured on the titanium surface in high-fat medium. Results showed that hyperlipidemia led to poor osseointegration in both types of mice in vivo, and high-fat medium impaired the osteogenic differentiation of primary osteoblasts on the titanium surface in vitro. In addition, high-fat medium caused significant overproduction of reactive oxygen species (ROS) and inhibition of the Wnt/β-catenin pathway in osteoblasts. Both N-acetyl-L-cysteine (NAC, an ROS antagonist) and Wnt3a (an activator of the Wnt/β-catenin pathway) attenuated the poor osteogenic ability of osteoblasts. In addition, NAC reactivated the Wnt/β-catenin pathway in osteoblasts under high-fat stimulation. These results demonstrate that hyperlipidemia impairs osseointegration via the ROS/Wnt/β-catenin pathway and provide support for the ROS or Wnt/β-catenin pathway as a promising therapeutic target for the development of novel drugs or implant materials to improve the osseointegration of implants in hyperlipidemic patients.
Collapse
Affiliation(s)
- Y N Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - T T Jia
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Y Feng
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - S Y Liu
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.,Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - W J Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - D J Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China.,Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
18
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
19
|
Pariente A, Pérez-Sala Á, Ochoa R, Peláez R, Larráyoz IM. Genome-Wide Transcriptomic Analysis Identifies Pathways Regulated by Sterculic Acid in Retinal Pigmented Epithelium Cells. Cells 2020; 9:cells9051187. [PMID: 32403229 PMCID: PMC7290791 DOI: 10.3390/cells9051187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment of various diseases. Sterculic acid (SA) is a cyclopropene fatty acid with numerous biological activities, generally attributed to its Stearoyl-CoA desaturase (SCD) inhibitory properties. Additional effects exerted by SA, independently of SCD inhibition, may be mediating anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD), but the mechanisms involved are poorly understood. In order to provide insights into those mechanisms, genome-wide transcriptomic analyses were carried out in mRPE cells exposed to SA for 24 h. Integrative functional enrichment analysis of genome-wide expression data provided biological insight about the protective mechanisms induced by SA. On the one hand, pivotal genes related to fatty acid biosynthesis, steroid biosynthesis, cell death, actin-cytoskeleton reorganization and extracellular matrix-receptor interaction were significantly downregulated by exposition to SA. On the other hand, genes related to fatty acid degradation and beta-oxidation were significantly upregulated. In conclusion, SA administration to RPE cells regulates crucial pathways related to cell proliferation, inflammation and cell death that may be of interest for the treatment of ocular diseases.
Collapse
|
20
|
Sarnyai F, Somogyi A, Gór-Nagy Z, Zámbó V, Szelényi P, Mátyási J, Simon-Szabó L, Kereszturi É, Tóth B, Csala M. Effect of cis- and trans-Monounsaturated Fatty Acids on Palmitate Toxicity and on Palmitate-induced Accumulation of Ceramides and Diglycerides. Int J Mol Sci 2020; 21:ijms21072626. [PMID: 32283839 PMCID: PMC7178055 DOI: 10.3390/ijms21072626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 01/22/2023] Open
Abstract
Dietary trans fatty acids (TFAs) have been implicated in serious health risks, yet little is known about their cellular effects and metabolism. We aim to undertake an in vitro comparison of two representative TFAs (elaidate and vaccenate) to the best-characterized endogenous cis-unsaturated FA (oleate). The present study addresses the possible protective action of TFAs on palmitate-treated RINm5F insulinoma cells with special regards to apoptosis, endoplasmic reticulum stress and the underlying ceramide and diglyceride (DG) accumulation. Both TFAs significantly improved cell viability and reduced apoptosis in palmitate-treated cells. They mildly attenuated palmitate-induced XBP-1 mRNA cleavage and phosphorylation of eukaryotic initiation factor 2α (eIF2α) and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), but they were markedly less potent than oleate. Accordingly, all the three unsaturated FAs markedly reduced cellular palmitate incorporation and prevented harmful ceramide and DG accumulation. However, more elaidate or vaccenate than oleate was inserted into ceramides and DGs. Our results revealed a protective effect of TFAs in short-term palmitate toxicity, yet they also provide important in vitro evidence and even a potential mechanism for unfavorable long-term health effects of TFAs compared to oleate.
Collapse
Affiliation(s)
- Farkas Sarnyai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H-1085 Budapest, Hungary
| | - Anna Somogyi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H-1085 Budapest, Hungary
| | - Zsófia Gór-Nagy
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Veronika Zámbó
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H-1085 Budapest, Hungary
| | - Péter Szelényi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H-1085 Budapest, Hungary
| | - Judit Mátyási
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
| | - Laura Simon-Szabó
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H-1085 Budapest, Hungary
| | - Éva Kereszturi
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H-1085 Budapest, Hungary
| | - Blanka Tóth
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, H-1111 Budapest, Hungary
- Correspondence: (B.T.); (M.C.)
| | - Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, H-1085 Budapest, Hungary
- Correspondence: (B.T.); (M.C.)
| |
Collapse
|
21
|
Sterculic Acid: The Mechanisms of Action beyond Stearoyl-CoA Desaturase Inhibition and Therapeutic Opportunities in Human Diseases. Cells 2020; 9:cells9010140. [PMID: 31936134 PMCID: PMC7016617 DOI: 10.3390/cells9010140] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/04/2020] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
In many tissues, stearoyl-CoA desaturase 1 (SCD1) catalyzes the biosynthesis of monounsaturated fatty acids (MUFAS), (i.e., palmitoleate and oleate) from their saturated fatty acid (SFA) precursors (i.e., palmitate and stearate), influencing cellular membrane physiology and signaling, leading to broad effects on human physiology. In addition to its predominant role in lipid metabolism and body weight control, SCD1 has emerged recently as a potential new target for the treatment for various diseases, such as nonalcoholic steatohepatitis, Alzheimer’s disease, cancer, and skin disorders. Sterculic acid (SA) is a cyclopropene fatty acid originally found in the seeds of the plant Sterculia foetida with numerous biological activities. On the one hand, its ability to inhibit stearoyl-CoA desaturase (SCD) allows its use as a coadjuvant of several pathologies where this enzyme has been associated. On the other hand, additional effects independently of its SCD inhibitory properties, involve anti-inflammatory and protective roles in retinal diseases such as age-related macular degeneration (AMD). This review aims to summarize the mechanisms by which SA exerts its actions and to highlight the emerging areas where this natural compound may be of help for the development of new therapies for human diseases.
Collapse
|