1
|
Shi Y, Gilkes DM. HIF-1 and HIF-2 in cancer: structure, regulation, and therapeutic prospects. Cell Mol Life Sci 2025; 82:44. [PMID: 39825916 PMCID: PMC11741981 DOI: 10.1007/s00018-024-05537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 12/01/2024] [Indexed: 01/20/2025]
Abstract
Hypoxia, or a state of low tissue oxygenation, has been characterized as an important feature of solid tumors that is related to aggressive phenotypes. The cellular response to hypoxia is controlled by Hypoxia-inducible factors (HIFs), a family of transcription factors. HIFs promote the transcription of gene products that play a role in tumor progression including proliferation, angiogenesis, metastasis, and drug resistance. HIF-1 and HIF-2 are well known and widely described. Although these proteins share a high degree of homology, HIF-1 and HIF-2 have non-redundant roles in cancer. In this review, we summarize the similarities and differences between HIF-1α and HIF-2α in their structure, expression, and DNA binding. We also discuss the canonical and non-canonical regulation of HIF-1α and HIF-2α under hypoxic and normal conditions. Finally, we outline recent strategies aimed at targeting HIF-1α and/or HIF-2α.
Collapse
Affiliation(s)
- Yi Shi
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniele M Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Wang Y, Song J, Zheng S, Wang S. Advancements in understanding the molecular mechanisms and clinical implications of Von Hippel-Lindau syndrome: A comprehensive review. Transl Oncol 2025; 51:102193. [PMID: 39571489 PMCID: PMC11617254 DOI: 10.1016/j.tranon.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/06/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024] Open
Abstract
Von Hippel-Lindau Syndrome (VHL) is a rare genetic disorder characterized by tumors in multiple organs, including the kidneys, pancreas, and central nervous system. This comprehensive review discusses the genetic basis and clinical manifestations of VHL, as well as recent advancements in understanding the molecular mechanisms that lead to tumor formation. The authors highlight the role of hypoxia-inducible factors and the ubiquitin-proteasome system in VHL-associated cancer development .The review also discusses the potential clinical implications of these findings, such as the development of targeted therapies for VHL-associated cancers. However, the authors note the challenges associated with developing effective treatments for this complex disease, including limited patient availability for clinical trials due to its rarity .Overall, this review provides valuable insights into our current understanding of VHL and offers important avenues for future research aimed at improving the diagnosis, treatment, and management of VHL patients. By illuminating the molecular underpinnings of VHL-associated cancers, this work may ultimately help to develop more effective treatments and improve outcomes for patients with this challenging disease.
Collapse
Affiliation(s)
- Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Jingzhuo Song
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuxing Zheng
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuhong Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China.
| |
Collapse
|
3
|
Roviello G, De Gennaro I, Vascotto I, Venturi G, D’Angelo A, Winchler C, Guarino A, Cacioppo S, Modesti M, Mela MM, Francini E, Doni L, Rossi V, Gambale E, Giorgione R, Antonuzzo L, Nesi G, Catalano M. Hypoxia-Inducible Factor in Renal Cell Carcinoma: From Molecular Insights to Targeted Therapies. Genes (Basel) 2024; 16:6. [PMID: 39858553 PMCID: PMC11764647 DOI: 10.3390/genes16010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Mutations of the von Hippel-Lindau (VHL) tumor suppressor gene occur frequently in clear cell renal cell carcinoma (RCC), the predominant histology of kidney cancer, and have been associated with its pathogenesis and progression. Alterations of VHL lead to impaired degradation of hypoxia-inducible factor 1α (HIF1α) and HIF2α promoting neoangiogenesis, which is pivotal for cancer growth. As such, targeting the VHL-HIF axis holds relevant potential for therapeutic purposes. Belzutifan, an HIF-2α inhibitor, has been recently indicated for metastatic RCC and other antiangiogenic drugs directed against HIF-2α are currently under investigation. Further, clinical and preclinical studies of combination approaches for metastatic RCC including belzutifan with cyclin-dependent kinase 4-6 inhibitors, tyrosine kinase inhibitors, or immune checkpoint inhibitors achieved promising results or are ongoing. This review aims to summarize the existing evidence regarding the VHL/HIF pathway, and the approved and emerging treatment strategies that target this pivotal molecular axis and their mechanisms of resistance.
Collapse
Affiliation(s)
| | - Irene De Gennaro
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Ismaela Vascotto
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Giulia Venturi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Alberto D’Angelo
- Department of Medicine, Sheffield Teaching Hospital NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Costanza Winchler
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Adriana Guarino
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Salvatore Cacioppo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Mikol Modesti
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Marinella Micol Mela
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Edoardo Francini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Laura Doni
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Virginia Rossi
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Elisabetta Gambale
- Clinical Oncology Unit, Careggi University Hospital, 50234 Florence, Italy; (M.M.M.); (L.D.); (V.R.); (E.G.)
| | - Roberta Giorgione
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Lorenzo Antonuzzo
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (I.D.G.); (I.V.); (G.V.); (C.W.); (A.G.); (S.C.); (M.M.); (E.F.); (R.G.); (L.A.)
| | - Gabriella Nesi
- Department of Health Sciences, Section of Anatomic Pathology, University of Florence, 50139 Florence, Italy;
| | - Martina Catalano
- Department of Health Science, University of Florence, 50134 Florence, Italy;
| |
Collapse
|
4
|
Esteban-Amo MJ, Jiménez-Cuadrado P, Serrano-Lorenzo P, de la Fuente MÁ, Simarro M. Succinate Dehydrogenase and Human Disease: Novel Insights into a Well-Known Enzyme. Biomedicines 2024; 12:2050. [PMID: 39335562 PMCID: PMC11429145 DOI: 10.3390/biomedicines12092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Succinate dehydrogenase (also known as complex II) plays a dual role in respiration by catalyzing the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle and transferring electrons from succinate to ubiquinone in the mitochondrial electron transport chain (ETC). Owing to the privileged position of SDH/CII, its dysfunction leads to TCA cycle arrest and altered respiration. This review aims to elucidate the widely documented profound metabolic effects of SDH/CII deficiency, along with the newly unveiled survival mechanisms in SDH/CII-deficient cells. Such an understanding reveals exploitable vulnerabilities for strategic targeting, which is crucial for the development of novel and more precise therapies for primary mitochondrial diseases, as well as for familial and sporadic cancers associated with SDH/CII mutations.
Collapse
Affiliation(s)
- María J. Esteban-Amo
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| | - Patricia Jiménez-Cuadrado
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| | - Pablo Serrano-Lorenzo
- Mitochondrial Disorders Laboratory, Clinical Biochemistry Department, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain;
- Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel Á. de la Fuente
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| | - María Simarro
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain; (M.J.E.-A.); (P.J.-C.); (M.Á.d.l.F.)
- Unit of Excellence Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
5
|
Gómez-Virgilio L, Velazquez-Paniagua M, Cuazozon-Ferrer L, Silva-Lucero MDC, Gutierrez-Malacara AI, Padilla-Mendoza JR, Borbolla-Vázquez J, Díaz-Hernández JA, Jiménez-Orozco FA, Cardenas-Aguayo MDC. Genetics, Pathophysiology, and Current Challenges in Von Hippel-Lindau Disease Therapeutics. Diagnostics (Basel) 2024; 14:1909. [PMID: 39272694 PMCID: PMC11393980 DOI: 10.3390/diagnostics14171909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This review article focuses on von Hippel-Lindau (VHL) disease, a rare genetic disorder characterized by the development of tumors and cysts throughout the body. It discusses the following aspects of the disease. GENETICS VHL disease is caused by mutations in the VHL tumor suppressor gene located on chromosome 3. These mutations can be inherited or occur spontaneously. This article details the different types of mutations and their associated clinical features. PATHOPHYSIOLOGY The underlying cause of VHL disease is the loss of function of the VHL protein (pVHL). This protein normally regulates hypoxia-inducible factors (HIFs), which are involved in cell growth and survival. When pVHL is dysfunctional, HIF levels become elevated, leading to uncontrolled cell growth and tumor formation. CLINICAL MANIFESTATIONS VHL disease can affect various organs, including the brain, spinal cord, retina, kidneys, pancreas, and adrenal glands. Symptoms depend on the location and size of the tumors. DIAGNOSIS Diagnosis of VHL disease involves a combination of clinical criteria, imaging studies, and genetic testing. TREATMENT Treatment options for VHL disease depend on the type and location of the tumors. Surgery is the mainstay of treatment, but other options like radiation therapy may also be used. CHALLENGES This article highlights the challenges in VHL disease management, including the lack of effective therapies for some tumor types and the need for better methods to monitor disease progression. In conclusion, we emphasize the importance of ongoing research to develop new and improved treatments for VHL disease.
Collapse
Affiliation(s)
- Laura Gómez-Virgilio
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Mireya Velazquez-Paniagua
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Lucero Cuazozon-Ferrer
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Maria-Del-Carmen Silva-Lucero
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Andres-Ivan Gutierrez-Malacara
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Juan-Ramón Padilla-Mendoza
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| | - Jessica Borbolla-Vázquez
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | - Job-Alí Díaz-Hernández
- Ingenieria en Biotecnología, Universidad Politécnica de Quintana Roo, Av. Arco Bicentenario, MZ. 11, Lote 1119-33 SM 255, Cancún Quintana Roo 77500, Mexico
| | | | - Maria-Del-Carmen Cardenas-Aguayo
- Laboratory of Cellular Reprogramming, Department of Physiology, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad No. 3000, Coyoacan CDMX 04510, Mexico
| |
Collapse
|
6
|
Uher O, Hadrava Vanova K, Taïeb D, Calsina B, Robledo M, Clifton-Bligh R, Pacak K. The Immune Landscape of Pheochromocytoma and Paraganglioma: Current Advances and Perspectives. Endocr Rev 2024; 45:521-552. [PMID: 38377172 PMCID: PMC11244254 DOI: 10.1210/endrev/bnae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/22/2024]
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors derived from neural crest cells from adrenal medullary chromaffin tissues and extra-adrenal paraganglia, respectively. Although the current treatment for PPGLs is surgery, optimal treatment options for advanced and metastatic cases have been limited. Hence, understanding the role of the immune system in PPGL tumorigenesis can provide essential knowledge for the development of better therapeutic and tumor management strategies, especially for those with advanced and metastatic PPGLs. The first part of this review outlines the fundamental principles of the immune system and tumor microenvironment, and their role in cancer immunoediting, particularly emphasizing PPGLs. We focus on how the unique pathophysiology of PPGLs, such as their high molecular, biochemical, and imaging heterogeneity and production of several oncometabolites, creates a tumor-specific microenvironment and immunologically "cold" tumors. Thereafter, we discuss recently published studies related to the reclustering of PPGLs based on their immune signature. The second part of this review discusses future perspectives in PPGL management, including immunodiagnostic and promising immunotherapeutic approaches for converting "cold" tumors into immunologically active or "hot" tumors known for their better immunotherapy response and patient outcomes. Special emphasis is placed on potent immune-related imaging strategies and immune signatures that could be used for the reclassification, prognostication, and management of these tumors to improve patient care and prognosis. Furthermore, we introduce currently available immunotherapies and their possible combinations with other available therapies as an emerging treatment for PPGLs that targets hostile tumor environments.
Collapse
Affiliation(s)
- Ondrej Uher
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - Katerina Hadrava Vanova
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | - David Taïeb
- Department of Nuclear Medicine, CHU de La Timone, Marseille 13005, France
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Familiar Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Institute of Health Carlos III (ISCIII), Madrid 28029, Spain
| | - Roderick Clifton-Bligh
- Department of Endocrinology, Royal North Shore Hospital, Sydney 2065, NSW, Australia
- Cancer Genetics Laboratory, Kolling Institute, University of Sydney, Sydney 2065, NSW, Australia
| | - Karel Pacak
- Section of Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| |
Collapse
|
7
|
Zhong W, Ma J, Chen C, Dettman EJ, Cristescu R, Naik GS, Jin F, Shao C. Prevalence and prognosis of hypoxia-inducible factor-2α (HIF-2α) pathway gene mutations across advanced solid tumors. Cancer Med 2024; 13:e7358. [PMID: 38864477 PMCID: PMC11167604 DOI: 10.1002/cam4.7358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024] Open
Abstract
INTRODUCTION Hypoxia-inducible factor-2α (HIF-2α) modulates the hypoxic response pathway in tumors; however, mutations in pathways (including SDHA, SDHB, SDHC, SDHD, FH, and VHL genes) that are suspected to activate HIF-2α are poorly understood, with limited understanding of the prevalence and clinical prognosis. METHODS This retrospective observational study used a de-identified nationwide (US-based) clinico-genomic database (CGDB) across 15 available tumor types. RESULTS Among the 9467 adult patients with advanced/metastatic solid tumors included in the analysis, any mutation at the above-mentioned six genes was observed in 1.8% (95% CI: 1.5-2.1) of patients. The mutation prevalence ranged from 0.05% of SDHD to 0.93% of VHL. When further stratified by tumor type, the prevalence of gene mutation in each tumor type was well below 1%, except for VHL with 44% in renal cell carcinomas (RCC). Excluding RCC, the prevalence of any HIF-2α gene mutations in the study population was 0.9% (95% CI: 0.8-1.2). The median overall survival (OS) from 1 and 2 L therapy among patients with any HIF-2α gene mutation was 14.5 (95% CI: 11.5-24.2) and 9.3 (95% CI: 6.0-18.1) months, respectively, compared with 13.4 (95% CI: 12.9-13.9) and 9.8 (95% CI: 9.3-10.4) months among patients without HIF-2α gene mutations. DISCUSSION AND CONCLUSIONS The prevalence of HIF-2α related gene mutations was generally low (<1%) across the 15 solid tumor types, except for VHL in RCC. No significant association between HIF-2α gene mutation status and OS was identified among patients evaluated in this study.
Collapse
Affiliation(s)
| | - Jiemin Ma
- Merck & Co., Inc.RahwayNew JerseyUSA
| | - Cai Chen
- Merck & Co., Inc.RahwayNew JerseyUSA
| | | | | | | | - Fan Jin
- Merck & Co., Inc.RahwayNew JerseyUSA
| | | |
Collapse
|
8
|
Jeeyavudeen MS, Mathiyalagan N, Fernandez James C, Pappachan JM. Tumor metabolism in pheochromocytomas: clinical and therapeutic implications. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:349-373. [PMID: 38745767 PMCID: PMC11090696 DOI: 10.37349/etat.2024.00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/27/2023] [Indexed: 05/16/2024] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) have emerged as one of the most common endocrine tumors. It epitomizes fascinating crossroads of genetic, metabolic, and endocrine oncology, providing a canvas to explore the molecular intricacies of tumor biology. Predominantly rooted in the aberration of metabolic pathways, particularly the Krebs cycle and related enzymatic functionalities, PPGLs manifest an intriguing metabolic profile, highlighting elevated levels of oncometabolites like succinate and fumarate, and furthering cellular malignancy and genomic instability. This comprehensive review aims to delineate the multifaceted aspects of tumor metabolism in PPGLs, encapsulating genetic factors, oncometabolites, and potential therapeutic avenues, thereby providing a cohesive understanding of metabolic disturbances and their ramifications in tumorigenesis and disease progression. Initial investigations into PPGLs metabolomics unveiled a stark correlation between specific genetic mutations, notably in the succinate dehydrogenase complex (SDHx) genes, and the accumulation of oncometabolites, establishing a pivotal role in epigenetic alterations and hypoxia-inducible pathways. By scrutinizing voluminous metabolic studies and exploiting technologies, novel insights into the metabolic and genetic aspects of PPGLs are perpetually being gathered elucidating complex interactions and molecular machinations. Additionally, the exploration of therapeutic strategies targeting metabolic abnormalities has burgeoned harboring potential for innovative and efficacious treatment modalities. This review encapsulates the profound metabolic complexities of PPGLs, aiming to foster an enriched understanding and pave the way for future investigations and therapeutic innovations in managing these metabolically unique tumors.
Collapse
Affiliation(s)
| | - Navin Mathiyalagan
- Department of Medical Oncology, Nottingham University Hospitals NHS Trust, NG5 1PB Nottingham, UK
| | - Cornelius Fernandez James
- Department of Endocrinology & Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, PE21 9QS Boston, UK
| | - Joseph M. Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, PR2 9HT Preston, UK
- Faculty of Science, Manchester Metropolitan University, M15 6BH Manchester, UK
- Faculty of Biology, Medicine, and Health, The University of Manchester, M13 9PL Manchester, UK
| |
Collapse
|
9
|
Curry L, Soleimani M. Belzutifan: a novel therapeutic for the management of von Hippel-Lindau disease and beyond. Future Oncol 2024; 20:1251-1266. [PMID: 38639572 PMCID: PMC11318713 DOI: 10.2217/fon-2023-0679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
The identification of the VHL gene and its role in regulating the hypoxia-inducible factor signaling pathway has helped to revolutionize the treatment of renal cell carcinoma (RCC). Belzutifan is a novel small-molecule inhibitor of hypoxia-inducible factor 2α which has demonstrated efficacy in treating von Hippel-Lindau (VHL) disease, earning regulatory approvals for this indication. There is also early evidence for efficacy in sporadic RCC. Belzutifan has a favorable safety profile. Several clinical trials are currently ongoing, which should help in identifying this promising drug's role in RCC and beyond. This review summarizes the history, pharmacology and clinical evidence for belzutifan use to date, and also explores unanswered questions as they relate to this novel therapeutic agent.
Collapse
Affiliation(s)
- Lauren Curry
- Division of Medical Oncology; British Columbia Cancer–Vancouver Cancer Centre/University of British Columbia, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| | - Maryam Soleimani
- Division of Medical Oncology; British Columbia Cancer–Vancouver Cancer Centre/University of British Columbia, 600 West 10th Avenue, Vancouver, British Columbia, V5Z 4E6, Canada
| |
Collapse
|
10
|
Малиевский ОА, Малиевская РИ, Малиевский ВА, Тюльпаков АН. [Preclinical diagnostics of von Hippel-Lindau syndrome in a child]. PROBLEMY ENDOKRINOLOGII 2024; 70:100-104. [PMID: 38433546 PMCID: PMC10926248 DOI: 10.14341/probl13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/17/2023] [Accepted: 07/28/2023] [Indexed: 03/05/2024]
Abstract
The description of the child aged 5 months with the von Hippel-Lindau syndrome without any manifestations of this syndrome is presented. The reason for the molecular genetic examination was the presence of cases of this syndrome in the family (mother and sister). The heterozygous variant c.355T>C p.F119L was found in the VHL gene. An objective examination revealed no pathology. A comprehensive laboratory and instrumental examination aimed at searching for components of the von Hippel-Lindau syndrome, including a blood test for metanephrines and normetanephrines, ultrasound of the abdominal organs, examination of the fundus, also did not reveal any abnormalities. Given the results of molecular genetic diagnosis, the child remains under observation and will undergo regular examinations to identify components of the von Hippel-Lindau syndrome, including blood/urine tests for normetanephrines.
Collapse
Affiliation(s)
| | | | | | - А. Н. Тюльпаков
- Медико-генетический научный центр имени академика Н.П. Бочкова; Российская детская клиническая больница
| |
Collapse
|
11
|
Wang Y, Liu B, Li F, Zhang Y, Gao X, Wang Y, Zhou H. The connection between tricarboxylic acid cycle enzyme mutations and pseudohypoxic signaling in pheochromocytoma and paraganglioma. Front Endocrinol (Lausanne) 2023; 14:1274239. [PMID: 37867526 PMCID: PMC10585109 DOI: 10.3389/fendo.2023.1274239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors originating from chromaffin cells, holding significant clinical importance due to their capacity for excessive catecholamine secretion and associated cardiovascular complications. Roughly 80% of cases are associated with genetic mutations. Based on the functionality of these mutated genes, PPGLs can be categorized into distinct molecular clusters: the pseudohypoxia signaling cluster (Cluster-1), the kinase signaling cluster (Cluster-2), and the WNT signaling cluster (Cluster-3). A pivotal factor in the pathogenesis of PPGLs is hypoxia-inducible factor-2α (HIF2α), which becomes upregulated even under normoxic conditions, activating downstream transcriptional processes associated with pseudohypoxia. This adaptation provides tumor cells with a growth advantage and enhances their ability to thrive in adverse microenvironments. Moreover, pseudohypoxia disrupts immune cell communication, leading to the development of an immunosuppressive tumor microenvironment. Within Cluster-1a, metabolic perturbations are particularly pronounced. Mutations in enzymes associated with the tricarboxylic acid (TCA) cycle, such as succinate dehydrogenase (SDHx), fumarate hydratase (FH), isocitrate dehydrogenase (IDH), and malate dehydrogenase type 2 (MDH2), result in the accumulation of critical oncogenic metabolic intermediates. Notable among these intermediates are succinate, fumarate, and 2-hydroxyglutarate (2-HG), which promote activation of the HIFs signaling pathway through various mechanisms, thus inducing pseudohypoxia and facilitating tumorigenesis. SDHx mutations are prevalent in PPGLs, disrupting mitochondrial function and causing succinate accumulation, which competitively inhibits α-ketoglutarate-dependent dioxygenases. Consequently, this leads to global hypermethylation, epigenetic changes, and activation of HIFs. In FH-deficient cells, fumarate accumulation leads to protein succination, impacting cell function. FH mutations also trigger metabolic reprogramming towards glycolysis and lactate synthesis. IDH1/2 mutations generate D-2HG, inhibiting α-ketoglutarate-dependent dioxygenases and stabilizing HIFs. Similarly, MDH2 mutations are associated with HIF stability and pseudohypoxic response. Understanding the intricate relationship between metabolic enzyme mutations in the TCA cycle and pseudohypoxic signaling is crucial for unraveling the pathogenesis of PPGLs and developing targeted therapies. This knowledge enhances our comprehension of the pivotal role of cellular metabolism in PPGLs and holds implications for potential therapeutic advancements.
Collapse
Affiliation(s)
- Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Shi T, Zhu J, Zhang X, Mao X. The Role of Hypoxia and Cancer Stem Cells in Development of Glioblastoma. Cancers (Basel) 2023; 15:cancers15092613. [PMID: 37174078 PMCID: PMC10177528 DOI: 10.3390/cancers15092613] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is recognized as the most malignant brain tumor with a high level of hypoxia, containing a small population of glioblastoma stem like cells (GSCs). These GSCs have the capacity of self-renewal, proliferation, invasion and recapitulating the parent tumor, and are major causes of radio-and chemoresistance of GBM. Upregulated expression of hypoxia inducible factors (HIFs) in hypoxia fundamentally contributes to maintenance and progression of GSCs. Therefore, we thoroughly reviewed the currently acknowledged roles of hypoxia-associated GSCs in development of GBM. In detail, we recapitulated general features of GBM, especially GSC-related features, and delineated essential responses resulted from interactions between GSC and hypoxia, including hypoxia-induced signatures, genes and pathways, and hypoxia-regulated metabolic alterations. Five hypothesized GSC niches are discussed and integrated into one comprehensive concept: hypoxic peri-arteriolar niche of GSCs. Autophagy, another protective mechanism against chemotherapy, is also closely related to hypoxia and is a potential therapeutic target for GBM. In addition, potential causes of therapeutic resistance (chemo-, radio-, surgical-, immuno-), and chemotherapeutic agents which can improve the therapeutic effects of chemo-, radio-, or immunotherapy are introduced and discussed. At last, as a potential approach to reverse the hypoxic microenvironment in GBM, hyperbaric oxygen therapy (HBOT) might be an adjuvant therapy to chemo-and radiotherapy after surgery. In conclusion, we focus on demonstrating the important role of hypoxia on development of GBM, especially by affecting the function of GSCs. Important advantages have been made to understand the complicated responses induced by hypoxia in GBM. Further exploration of targeting hypoxia and GSCs can help to develop novel therapeutic strategies to improve the survival of GBM patients.
Collapse
Affiliation(s)
- Tingyu Shi
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- Tangdu Hospital, Fourth Military Medical University, Xi'an 710024, China
| | - Jun Zhu
- State Key Laboratory of Cancer Biology, Institute of Digestive Diseases, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiang Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinggang Mao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
13
|
Qiao Y, Jiang X, Li Y, Wang K, Chen R, Liu J, Du Y, Sun L, Li J. Identification of a hypoxia-related gene prognostic signature in colorectal cancer based on bulk and single-cell RNA-seq. Sci Rep 2023; 13:2503. [PMID: 36781976 PMCID: PMC9925779 DOI: 10.1038/s41598-023-29718-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is the most common and fatal tumor in the gastrointestinal system. Its incidence and mortality rate have increased in recent years. Hypoxia, a persistent physiological tumor feature, plays a vital role in CRC tumorigenesis, metastasis, and tumor microenvironment (TME). Therefore, we constructed a hypoxia-related gene (HRG) nomogram to predict overall survival (OS) and explored the role of HRGs in the CRC TME. The Cancer Genome Atlas (TCGA) dataset was used as the training set, and two Gene Expression Omnibus datasets (GSE39582 and GSE103479) were used as the testing sets. HRGs were identified using the Gene Set Enrichment Analysis (GSEA) database. An HRG prognostic model was constructed in the training set using the least absolute shrinkage and selection operator regression algorithm and validated in the testing sets. Then, we analyzed tumor-infiltrating cells (TICs) using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. Furthermore, single-cell next-generation RNA sequencing (RNA-seq) was used to investigate HRG expression in different TICs in the GSE139555 dataset. Finally, reverse transcription polymerase chain reactions (RT-PCR) were used to validate HRG mRNA expression in ten pairs of CRC normal and cancer tissue samples. A six HRG prognostic signature was constructed, with a superior OS prediction ability in CRC patients (area under the receiver operating characteristic curve (AUC) at one year: 0.693, AUC at three years: 0.712, and AUC at five years: 0.780). GSEA enrichment analysis identified six pathways enriched in the high-risk group. The TIC analysis indicated that the high-risk group had lower T-cell expression and higher neutrophil expression than the low-risk group. Furthermore, immune-related genes had an inseparable relationship with the HRG prognostic signature. Based on single-cell RNA-seq data, we found elevated hexokinase 1 (HK1) and glucose-6-phosphate isomerase (GPI) gene expression in natural killer (NK) and CD8+ T cells. RT-PCR in ten CRC normal-tumor tissue pairs showed that expression of the signature's six HRGs varied differently in cancerous and paracancerous tissues. The constructed HRG signature successfully predicted the OS of whole-stage CRC patients. In addition, we showed that the signature's six HRGs were closely associated with the TME in CRC, where hypoxia inhibits the antitumor function of T cells.
Collapse
Affiliation(s)
- Yihuan Qiao
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Xunliang Jiang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yaoting Li
- Xi'an Gaoxin No. 1 High School, Xi'an, 710119, Shaanxi, China
| | - Ke Wang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Rujie Chen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jun Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yongtao Du
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
| | - Jipeng Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Todorović L, Stanojević B. VHL tumor suppressor as a novel potential candidate biomarker in papillary thyroid carcinoma. BIOMOLECULES AND BIOMEDICINE 2023; 23:26-36. [PMID: 36036061 PMCID: PMC9901892 DOI: 10.17305/bjbms.2022.7850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/12/2022] [Indexed: 02/03/2023]
Abstract
Papillary thyroid carcinoma (PTC) is the most common type of endocrine cancer, with an increasing incidence worldwide. The treatment of PTC is currently the subject of clinical controversy, making it critically important to identify molecular markers that would help improve the risk stratification of PTC patients and optimize the therapeutic approach. The VHL tumor suppressor gene has been implicated in tumorigenesis of various types of carcinoma and linked with their aggressive biological behavior. The role of VHL in the origin and development of PTC has only recently begun to be revealed. In this narrative review we attempt to summarize the existing knowledge that implicates VHL in PTC pathogenesis and to outline its potential significance as a candidate molecular biomarker for the grouping of PTC patients into high and low risk groups.
Collapse
Affiliation(s)
- Lidija Todorović
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Correspondence to Lidija Todorović:
| | - Boban Stanojević
- Laboratory for Radiobiology and Molecular Genetics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia,Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King’s College London, London, UK,Virocell Biologics, Department of Cell and Gene Therapy, Great Ormond Street Hospital for Children, Zayed Centre for Research into Rare Disease in Children, London, UK
| |
Collapse
|
15
|
RBCK1 regulates the progression of ER-positive breast cancer through the HIF1α signaling. Cell Death Dis 2022; 13:1023. [PMID: 36473847 PMCID: PMC9726878 DOI: 10.1038/s41419-022-05473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignancy in women on a global scale. It can generally be divided into four main categories, of which estrogen receptor ER-positive breast cancer accounts for most breast cancer cases. RBCK1 protein is an E3 ubiquitin ligase containing the UBL, NZF, and RBR domains. It is well known to exhibit abnormal expression in breast tumors, making it a valuable diagnostic marker and drug target. Additionally, studies have confirmed that in breast cancer, about 25 to 40% of tumors appear as visible hypoxic regions, while in hypoxia, tumor cells can activate the hypoxia-inducing factor HIF1 pathway and widely activate the expression of downstream genes. Previous studies have confirmed that in the hypoxic environment of tumors, HIF1α promotes the remodeling of extracellular matrix, induces the recruitment of tumor-associated macrophages (TAM) and immunosuppression of allogeneic tumors, thereby influencing tumor recurrence and metastasis. This research aims to identify RBCK1 as an important regulator of HIF1α signaling pathway. Targeted therapy with RBCK1 could be a promising treatment strategy for ER-positive breast cancer.
Collapse
|
16
|
Hong Z, Tie Q, Zhang L. Targeted inhibition of the GRK2/HIF-1α pathway is an effective strategy to alleviate synovial hypoxia and inflammation. Int Immunopharmacol 2022; 113:109271. [PMID: 36461590 DOI: 10.1016/j.intimp.2022.109271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/11/2022]
Abstract
G-protein coupled receptor (GPCR) kinases (GRKs) and hypoxia-inducible factor-1α (HIF-1α) play key roles in rheumatoid arthritis (RA). Several studies have demonstrated that HIF-1α expression is positively regulated by GRK2, suggesting its posttranscriptional effects on HIF-1α. In this study, we review the role of HIF-1α and GRK2 in RA pathophysiology, focusing on their proinflammatory roles in immune cells and fibroblast-like synoviocytes (FLS).We then introduce several drugs that inhibit GRK2 and HIF-1α, and briefly outline their molecular mechanisms. We conclude by presenting gaps in knowledge and our prospects for the pharmacological potential of targeting these proteins and the relevant downstream signaling pathways.Future research is warranted and paramount for untangling these novel and promising roles for GRK2 and HIF-1α in RA.
Collapse
Affiliation(s)
- Zhongyang Hong
- Department of Pharmacy, Affiliated the Jianhu People's Hospital, Yancheng 224700, China.
| | - Qingsong Tie
- Department of Pharmacy, Affiliated the Jianhu People's Hospital, Yancheng 224700, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
17
|
Wang K, Crona J, Beuschlein F, Grossman AB, Pacak K, Nölting S. Targeted Therapies in Pheochromocytoma and Paraganglioma. J Clin Endocrinol Metab 2022; 107:2963-2972. [PMID: 35973976 PMCID: PMC9923802 DOI: 10.1210/clinem/dgac471] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 11/19/2022]
Abstract
Molecular targeted therapy plays an increasingly important role in the treatment of metastatic pheochromocytomas and paragangliomas (PPGLs), which are rare tumors but remain difficult to treat. This mini-review provides an overview of established molecular targeted therapies in present use, and perspectives on those currently under development and evaluation in clinical trials. Recently published research articles, guidelines, and expert views on molecular targeted therapies in PPGLs are systematically reviewed and summarized. Some tyrosine kinase inhibitors (sunitinib, cabozantinib) are already in clinical use with some promising results, but without formal approval for the treatment of PPGLs. Sunitinib is the only therapeutic option which has been investigated in a randomized placebo-controlled clinical trial. It is clinically used as a first-, second-, or third-line therapeutic option for the treatment of progressive metastatic PPGLs. Some other promising molecular targeted therapies (hypoxia-inducible factor 2 alpha [HIF2α] inhibitors, tumor vaccination together with checkpoint inhibitors, antiangiogenic therapies, kinase signaling inhibitors) are under evaluation in clinical trials. The HIF2α inhibitor belzutifan may prove to be particularly interesting for cluster 1B-/VHL/EPAS1-related PPGLs, whereas antiangiogenic therapies seem to be primarily effective in cluster 1A-/SDHx-related PPGLs. Some combination therapies currently being evaluated in clinical trials, such as temozolomide/olaparib, temozolomide/talazoparib, or cabozantinib/atezolizumab, will provide data for novel therapy for metastatic PPGLs. It is likely that advances in such molecular targeted therapies will play an essential role in the future treatment of these tumors, with more personalized therapy options paving the way towards improved therapeutic outcomes.
Collapse
Affiliation(s)
- Katharina Wang
- Department of Internal Medicine IV, University Hospital, LMU Klinikum, Ludwig Maximilian University of Munich, 80336 Munich, Germany
| | - Joakim Crona
- Department of Medical Sciences, Uppsala University, 75185 Uppsala, Sweden
| | - Felix Beuschlein
- Department of Internal Medicine IV, University Hospital, LMU Klinikum, Ludwig Maximilian University of Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Ashley B Grossman
- Green Templeton College, University of Oxford, Oxford OX2 6HG, United Kingdom
- NET Unit, ENETS Centre of Excellence, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-1109, USA
| | - Svenja Nölting
- Department of Internal Medicine IV, University Hospital, LMU Klinikum, Ludwig Maximilian University of Munich, 80336 Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| |
Collapse
|
18
|
Yamaguchi Y, Yokoyama M, Takemoto A, Nakamura Y, Fukuda S, Uehara S, Tanaka H, Yoshida S, Matsuoka Y, Fujii Y. Succinate dehydrogenase-deficient malignant paraganglioma complicated by succinate dehydrogenase-deficient renal cell carcinoma. IJU Case Rep 2022; 5:480-483. [PMID: 36341179 PMCID: PMC9626355 DOI: 10.1002/iju5.12520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/26/2022] [Indexed: 10/17/2023] Open
Abstract
INTRODUCTION SDH Gene mutation is known to be a common cause of pheochromocytoma/paraganglioma and renal cell carcinoma. Here, we report a case of succinate dehydrogenase B-deficient paraganglioma, which has a high risk of metastasis and recurrence, complicated by succinate dehydrogenase-deficient renal cell carcinoma, which is rare and accounts for approximately 0.1% of all renal cell carcinomas. CASE PRESENTATION A 50-year-old man underwent en bloc resection of a retroperitoneal tumor and the right kidney for retroperitoneal paraganglioma and right renal tumor. Both tumors showed negative expressions of succinate dehydrogenase B in immunostaining. The patient was diagnosed with succinate dehydrogenase-deficient paraganglioma and succinate dehydrogenase-deficient renal cell carcinoma. Seventeen months later, retroperitoneal lymphadenectomy revealed lymph node metastasis of the paraganglioma. Deletion of the SDHB gene was revealed by genome sequencing of the lymph node. CONCLUSION This is the first reported case of synchronously diagnosed succinate dehydrogenase-deficient paraganglioma and succinate dehydrogenase-deficient renal cell carcinoma.
Collapse
Affiliation(s)
| | - Minato Yokoyama
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Akira Takemoto
- Bioresource Research CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Yuki Nakamura
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Shohei Fukuda
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Sho Uehara
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Hajime Tanaka
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Soichiro Yoshida
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Yoh Matsuoka
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| | - Yasuhisa Fujii
- Department of UrologyTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
19
|
Differential Expression of HIF1A, EPAS1, and VEGF Genes in Benign and Malignant Ovarian Neoplasia. Cancers (Basel) 2022; 14:cancers14194899. [PMID: 36230822 PMCID: PMC9563807 DOI: 10.3390/cancers14194899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Ovarian cancer (OC) has the highest mortality rate of all gynecological malignancies. Moreover, at the time of the first clinical manifestation, most patients have an advanced stage of the disease. Our study examined differences in mRNA levels of hypoxia-inducible factor 1-alpha (HIF1A); endothelial PAS domain protein 1, also known as hypoxia-inducible factor 2-alpha (HIF2A/EPAS1); and vascular endothelial growth factor A (VEGFA) between cancerous tissue, benign hyperplastic changes in the ovary, and normal tissue. We found that gene expression changes were visible not only in the case-control study, but also along with changes in severity. We observed disturbances in the expression levels of interdependent genes. Our findings suggest that mutual association in the expression of both HIF1A and HIF2A/EPAS1 with VEGFA has prognostic importance for patients with OC. Our observations may help identify patients for clinical trials aimed at inhibiting the hypoxia-induced neovascularization-dependent pathways. Abstract Ovarian cancer (OC) has the highest mortality rate of all gynecological malignancies. Moreover, at the time of the first clinical manifestation, most patients have an advanced stage of the disease. Our study examined differences in mRNA levels of hypoxia-inducible factor 1-alpha (HIF1A); endothelial PAS domain protein 1, also known as hypoxia-inducible factor 2-alpha (HIF2A/EPAS1); and vascular endothelial growth factor A (VEGFA) between cancerous tissue, benign hyperplastic changes in the ovary, and normal tissue. Our cohorts consisted of 52 patients diagnosed with OC (n = 55), benign non-cancerous changes (n = 21), and normal tissue samples (n = 38). The mRNA expression level was evaluated using RT-qPCR. We found that gene expression changes were visible not only in the case-control study, but also along with changes in severity. Additionally, the gene expression was differentiated in age, BMI, menopausal status, and the number of comorbidy-related groups. Furthermore, our findings demonstrate that analyzing the correlation between genes is essential. In a case-to-case and case-to-control study, we observed disturbances in the expression levels of interdependent genes. Our findings suggest that mutual association in the expression of both HIF1A and HIF2A/EPAS1 with VEGFA has prognostic importance for patients with OC. Our observations may help identify patients for clinical trials aimed at inhibiting the hypoxia-induced neovascularization-dependent pathways.
Collapse
|
20
|
Patil P, Pencheva BB, Patil VM, Fangusaro J. Nervous system (NS) Tumors in Cancer Predisposition Syndromes. Neurotherapeutics 2022; 19:1752-1771. [PMID: 36056180 PMCID: PMC9723057 DOI: 10.1007/s13311-022-01277-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progression, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7-10% of all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identification of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. The treatment paradigm of specific NS tumors may also vary based on the patient's cancer predisposition syndrome and may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaffected and affected patients. Genetic counselors are uniquely trained master's level healthcare providers with a focus on the identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, defined as "the process of helping people understand and adapt to the medical, psychological and familial implications of genetic contributions to disease" plays a vital role in the adaptation to a genetic diagnosis and the overall management of these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include classic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other cancer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recommended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic counseling in these patients and their families.
Collapse
Affiliation(s)
- Prabhumallikarjun Patil
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA.
- Emory University School of Medicine, Atlanta, GA, USA.
| | - Bojana Borislavova Pencheva
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| | - Vinayak Mahesh Patil
- Intensive Care Unit Medical Officer, District Hospital Vijayapura, Karnataka, India
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, Aflac Cancer Center, Atlanta, GA, USA
- Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
21
|
Baechle JJ, Smith PM, Ortega CA, Wang TS, Solórzano CC, Kiernan CM. Clinical Predictors of Pseudohypoxia-Type Pheochromocytomas. Ann Surg Oncol 2022; 29:3536-3546. [PMID: 35233740 DOI: 10.1245/s10434-022-11419-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/16/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Pheochromocytomas (PCCs) are rare tumors of neural crest origin with divergent transcriptional and metabolic profiles associated with mutational cluster types. Pseudohypoxia-type (PHT) PCCs have a poor prognosis; however diagnostic genetic testing is not always available. We aimed to investigate clinical parameters predictive of PHT PCCs. METHODS Patients who underwent resection and genetic testing for PCC at two academic centers from 2006-2020 were retrospectively studied. Patients with PHT mutations (SDH-AF2/B/C/D, VHL) were compared to non-pseudohypoxia-type (nonPHT) PCCs to identify widely available clinical parameters predictive of PHT PCCs. Demographic, clinical, and pathologic characteristics were compared using student's T and ANOVA tests. Operative hemodynamic instability was defined as systolic blood pressure (SBP) > 200 mmHg, SBP increase of > 30% relative to baseline, and/or heart rate (HR) > 110 bpm. Mann-Whitney U test was used to assess area under the curve (AUC), sensitivity, and specificity. Recursive partitioning was used to model predictive thresholds for PHT PCC and develop a predictive score. RESULTS Of the 79 patients included in the cohort, 17 (22%) had PHT and 62 (78%) had nonPHT PCCs. PCC patients with > 2 of the examined predictive clinical parameters (preoperative weight loss [> 10% body weight], elevated preoperative hematocrit [> 50%], normal baseline heart rate [< 100 bpm], and normal plasma metanephrines [< 0.60 nmol/L]) were more likely to have PHT PCCs (AUC = 0.831, sensitivity = 0.882, specificity = 0.694, all p < 0.001). CONCLUSIONS Widely available preoperative clinical parameters including indicators of erythropoiesis (hemoglobin, hematocrit, and red blood cell count), baseline heart rate, plasma metanephrines, and weight loss may be useful predictors of PHT PCCs and may help guide management of PCCs when genetic testing is unavailable/delayed.
Collapse
Affiliation(s)
- J J Baechle
- School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - P Marincola Smith
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C A Ortega
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - T S Wang
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - C C Solórzano
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - C M Kiernan
- Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Sobocki BK, Perdyan A, Szot O, Rutkowski J. Management of Pheochromocytomas and Paragangliomas: A Case-Based Review of Clinical Aspects and Perspectives. J Clin Med 2022; 11:jcm11092591. [PMID: 35566714 PMCID: PMC9103340 DOI: 10.3390/jcm11092591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Paraganglioma and pheochromocytoma are rare medical conditions. Thus, there are still a small number of studies, clinical trials, and evidence-based data in this field. This makes clinical decisions more difficult. In this study, we present a case report enriched with a short review of available essential clinical data, indicating the need for constant metoxycatecholamine level observation and a proper diagnostic imaging approach, especially in terms of ongoing pandemics. Our research also provides a summary of the molecular background of these diseases, indicating their future role in clinical management. We analyzed the ClinicalTrials.gov dataset in order to show future perspectives. In this paper, the use of the PET-CT before MRI or CT is proposed in specific cases during diagnosis processes contrary to the guidelines. PET-CT may be as effective as standard procedures and may provide a faster diagnosis, which is important in periods with more difficult access to health care, such as during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Bartosz Kamil Sobocki
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
- Correspondence: (B.K.S.); (J.R.)
| | - Adrian Perdyan
- International Research Agenda 3P Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Olga Szot
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Jacek Rutkowski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-214 Gdansk, Poland
- Correspondence: (B.K.S.); (J.R.)
| |
Collapse
|
23
|
Davis L, Recktenwald M, Hutt E, Fuller S, Briggs M, Goel A, Daringer N. Targeting HIF-2α in the Tumor Microenvironment: Redefining the Role of HIF-2α for Solid Cancer Therapy. Cancers (Basel) 2022; 14:1259. [PMID: 35267567 PMCID: PMC8909461 DOI: 10.3390/cancers14051259] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 02/06/2023] Open
Abstract
Inadequate oxygen supply, or hypoxia, is characteristic of the tumor microenvironment and correlates with poor prognosis and therapeutic resistance. Hypoxia leads to the activation of the hypoxia-inducible factor (HIF) signaling pathway and stabilization of the HIF-α subunit, driving tumor progression. The homologous alpha subunits, HIF-1α and HIF-2α, are responsible for mediating the transcription of a multitude of critical proteins that control proliferation, angiogenic signaling, metastasis, and other oncogenic factors, both differentially and sequentially regulating the hypoxic response. Post-translational modifications of HIF play a central role in its behavior as a mediator of transcription, as well as the temporal transition from HIF-1α to HIF-2α that occurs in response to chronic hypoxia. While it is evident that HIF-α is highly dynamic, HIF-2α remains vastly under-considered. HIF-2α can intensify the behaviors of the most aggressive tumors by adapting the cell to oxidative stress, thereby promoting metastasis, tissue remodeling, angiogenesis, and upregulating cancer stem cell factors. The structure, function, hypoxic response, spatiotemporal dynamics, and roles in the progression and persistence of cancer of this HIF-2α molecule and its EPAS1 gene are highlighted in this review, alongside a discussion of current therapeutics and future directions.
Collapse
Affiliation(s)
- Leah Davis
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Schuyler Fuller
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Madison Briggs
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Arnav Goel
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Nichole Daringer
- Department of Biomedical Engineering, Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
24
|
Hudler P, Urbancic M. The Role of VHL in the Development of von Hippel-Lindau Disease and Erythrocytosis. Genes (Basel) 2022; 13:genes13020362. [PMID: 35205407 PMCID: PMC8871608 DOI: 10.3390/genes13020362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/20/2022] Open
Abstract
Von Hippel-Lindau disease (VHL disease or VHL syndrome) is a familial multisystem neoplastic syndrome stemming from germline disease-associated variants of the VHL tumor suppressor gene on chromosome 3. VHL is involved, through the EPO-VHL-HIF signaling axis, in oxygen sensing and adaptive response to hypoxia, as well as in numerous HIF-independent pathways. The diverse roles of VHL confirm its implication in several crucial cellular processes. VHL variations have been associated with the development of VHL disease and erythrocytosis. The association between genotypes and phenotypes still remains ambiguous for the majority of mutations. It appears that there is a distinction between erythrocytosis-causing VHL variations and VHL variations causing VHL disease with tumor development. Understanding the pathogenic effects of VHL variants might better predict the prognosis and optimize management of the patient.
Collapse
Affiliation(s)
- Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Mojca Urbancic
- Eye Hospital, University Medical Centre Ljubljana, Grabloviceva ulica 46, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
25
|
Watts D, Jaykar MT, Bechmann N, Wielockx B. Hypoxia signaling pathway: A central mediator in endocrine tumors. Front Endocrinol (Lausanne) 2022; 13:1103075. [PMID: 36699028 PMCID: PMC9868855 DOI: 10.3389/fendo.2022.1103075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Adequate oxygen levels are essential for the functioning and maintenance of biological processes in virtually every cell, albeit based on specific need. Thus, any change in oxygen pressure leads to modulated activation of the hypoxia pathway, which affects numerous physiological and pathological processes, including hematopoiesis, inflammation, and tumor development. The Hypoxia Inducible Factors (HIFs) are essential transcription factors and the driving force of the hypoxia pathway; whereas, their inhibitors, HIF prolyl hydroxylase domain (PHDs) proteins are the true oxygen sensors that critically regulate this response. Recently, we and others have described the central role of the PHD/HIF axis in various compartments of the adrenal gland and its potential influence in associated tumors, including pheochromocytomas and paragangliomas. Here, we provide an overview of the most recent findings on the hypoxia signaling pathway in vivo, including its role in the endocrine system, especially in adrenal tumors.
Collapse
|
26
|
Von Hippel-Lindau Syndrome: Medical Syndrome or Surgical Syndrome? A Surgical Perspective. J Kidney Cancer VHL 2021; 9:27-32. [PMID: 34963877 PMCID: PMC8652351 DOI: 10.15586/jkcvhl.v9i1.206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/24/2021] [Indexed: 01/29/2023] Open
Abstract
Von Hippel-Lindau syndrome (VHL) is an autosomal dominant disease caused by a genetic aberration of the tumor suppressor gene VHL and characterized by multi-organ tumors. The most common neoplasm is retinal or cerebral hemangioblastoma, although spinal hemangioblastomas, Renal Clear Cell Carcinoma (RCCC), pheochromocytomas (Pheo), paragangliomas, Pancreatic Neuroendocrine Tumors (PNETs), cystadenomas of the epididymis, and tumors of the lymphatic sac can also be found. Neurological complications from retinal or CNS hemangioblastoma and metastases of RCCC are the most common causes of death. There is a strong association between pheochromocytoma and VHL syndrome, and pheochromocytoma is often a classic manifestation of the syndrome. RCCCs are often incidental and identified during other tests. Between 35 and 70% of patients with VHL have pancreatic cysts. These can manifest as simple cysts, serous cysto-adenomas, or PNETs with a risk of malignant degeneration or metastasis of no more than 8%. The objective of this retrospective study is to analyze abdominal manifestations of VHL from a surgical point of view.
Collapse
|
27
|
Zhang H, Wang J, Ge Y, Ye M, Jin X. Siah1 in cancer and nervous system diseases (Review). Oncol Rep 2021; 47:35. [PMID: 34958110 DOI: 10.3892/or.2021.8246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/10/2021] [Indexed: 11/06/2022] Open
Abstract
The dysregulation of the ubiquitin‑proteasome system will result in the abnormal accumulation and dysfunction of proteins, thus leading to severe diseases. Seven in absentia homolog 1 (Siah1), an E3 ubiquitin ligase, has attracted wide attention due to its varied functions in physiological and pathological conditions, and the numerous newly discovered Siah1 substrates. In cancer and nervous system diseases, the functions of Siah1 as a promoter or a suppressor of diseases are related to the change in cellular microenvironment and subcellular localization. At the same time, complex upstream regulations make Siah1 different from other E3 ubiquitin ligases. Understanding the molecular mechanism of Siah1 will help the study of various signaling pathways and benefit the therapeutic strategy of human diseases (e.g., cancer and nervous system diseases). In the present review, the functions and regulations of Siah1 are described. Moreover, novel substrates of Siah1 discovered in recent studies will be highlighted in cancer and nervous system diseases, providing ideas for future research and clinical targeted therapies using Siah1.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Jie Wang
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Yidong Ge
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Meng Ye
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| | - Xiaofeng Jin
- Department of Oncology, The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
| |
Collapse
|
28
|
Tong D, Zhang Y, Jiang J, Bi G. Identification of a VHL gene mutation in atypical Von Hippel-Lindau syndrome: genotype-phenotype correlation and gene therapy perspective. Cancer Cell Int 2021; 21:685. [PMID: 34923986 PMCID: PMC8684656 DOI: 10.1186/s12935-021-02386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Classical von Hippel Lindau (VHL) disease/syndrome includes CNS hemangioblastoma, renal or pancreatic cysts, pheochromocytoma, renal carcinoma and exodermic cystadenoma. The syndrome is caused by mutation of VHL tumor suppressor gene. The most prevalent mutations are present in VHL syndrome. To date, > 500 mutations of gene related to the progression of VHL syndrome have been reported. VHL gene mutation presented in single lung or pancreatic tumor has been reported occasionally, but there is no report of both. Methods In this paper, we used CT scan, pathological and genetic examination methods to diagnose a rare atypical VHL syndrome. Results We reported a rare case of atypical VHL syndrome with authenticated VHL mutation at p.Arg167Gln, that was associated with not only bilateral pheochromocytoma but also lung carcinoid and neuroendocrine tumor of pancreas. Based on literature reviews, the patient was recommended to be further subjected to octreotide-based radionuclide therapy. Conclusions Combined with gene detection and clinical diagnosis, we found the inherent relationship between VHL genotype and phenotype, and constructed the standard diagnosis and treatment process of disease with rare VHL mutation from the perspective of gene therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02386-w.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| | - Gang Bi
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
29
|
Special situations in pheochromocytomas and paragangliomas: pregnancy, metastatic disease, and cyanotic congenital heart diseases. Clin Exp Med 2021; 22:359-370. [PMID: 34591219 DOI: 10.1007/s10238-021-00763-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023]
Abstract
The aim of our study was to describe the epidemiology, diagnosis, and treatment of the most complex pheochromocytoma and paraganglioma (PGL) cases, including pheochromocytoma/PGL during pregnancy, in cyanotic congenital heart diseases (CCHDs), and metastatic pheochromocytoma. The English and Spanish literature was thoroughly evaluated searching for articles reporting clinical studies, case reports, or reviews of pheochromocytoma/PGL in pregnancy and in CCHD and metastatic pheochromocytoma/PGL. Particular settings in the diagnosis and management of pheochromocytoma and PGLs remain challenging. Those special situations include the diagnosis during pregnancy or in the context of CCHD since the typical clinical features of pheochromocytoma may be confounded with preeclampsia during pregnancy and with the complications commonly observed in CCHD. In addition, although some clinical and genetic features have been associated with higher risk of metastatic pheochromocytoma, the detection and prediction of the development of metastatic disease involve another complex situation that may require special hormonal determinations as plasmatic 3-methoxytyramine and nuclear medicine studies including 18FDG PET-CT or 18F-FDOPA PET-CT, among others. Furthermore, the selection of the most appropriate treatment in these situations, as well as the moment to carry it out, requires special care as limited evidence is available. This article reviews the epidemiology, diagnosis, and treatment of the pheochromocytoma/PGL during pregnancy, metastatic pheochromocytoma/PGL, and pheochromocytoma/PGL in CCHD. The diagnosis, and especially the treatment, of metastatic pheochromocytomas and pheochromocytoma/PGL during pregnancy and in CCHD is challenging. Thus, these cases should be management in reference centres by multidisciplinary teams specialized in the pheochromocytoma/PGL treatment.
Collapse
|
30
|
Gao S, Liu L, Li Z, Pang Y, Shi J, Zhu F. Seven Novel Genes Related to Cell Proliferation and Migration of VHL-Mutated Pheochromocytoma. Front Endocrinol (Lausanne) 2021; 12:598656. [PMID: 33828526 PMCID: PMC8021008 DOI: 10.3389/fendo.2021.598656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Pheochromocytoma, as a neuroendocrine tumor with the highest genetic correlation in all types of tumors, has attracted extensive attention. Von Hipper Lindau (VHL) has the highest mutation frequency among the genes associated with pheochromocytoma. However, the effect of VHL on the proteome of pheochromocytoma remains to be explored. In this study, the VHL knockdown (VHL-KD) PC12 cell model was established by RNA interference (shRNA). We compared the proteomics of VHL-KD and VHL-WT PC12 cell lines. The results showed that the expression of 434 proteins (VHL shRNA/WT > 1.3) changed significantly in VHL-KD-PC12 cells. Among the 434 kinds of proteins, 83 were involved in cell proliferation, cell cycle and cell migration, and so on. More importantly, among these proteins, we found seven novel key genes, including Connective Tissue Growth Factor (CTGF), Syndecan Binding Protein (SDCBP), Cysteine Rich Protein 61 (CYR61/CCN1), Collagen Type III Alpha 1 Chain (COL3A1), Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type V Alpha 2 Chain (COL5A2), and Serpin Family E Member 1 (SERPINE1), were overexpressed and simultaneously regulated cell proliferation and migration in VHL-KD PC12 cells. Furthermore, the abnormal accumulation of HIF2α caused by VHL-KD significantly increased the expression of these seven genes during hypoxia. Moreover, cell-counting, scratch, and transwell assays demonstrated that VHL-KD could promote cell proliferation and migration, and changed cell morphology. These findings indicated that inhibition of VHL expression could promote the development of pheochromocytoma by activating the expression of cell proliferation and migration associated genes.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuolin Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Yingxian Pang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaqi Shi
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
| | - Feizhou Zhu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, China
- *Correspondence: Feizhou Zhu,
| |
Collapse
|