1
|
Penco A, Bossini B, Giangreco M, Vidonis V, Vittori G, Grassi N, Pellegrin MC, Faleschini E, Barbi E, Tornese G. Should Pediatric Endocrinologists Consider More Carefully When to Perform a Stimulation Test? Front Endocrinol (Lausanne) 2021; 12:660692. [PMID: 33828534 PMCID: PMC8021019 DOI: 10.3389/fendo.2021.660692] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Pediatric endocrinology rely greatly on hormone stimulation tests which demand time, money and effort. The knowledge of the pattern of pediatric endocrinology stimulation tests is therefore crucial to optimize resources and guide public health interventions. Aim of the study was to investigate the distribution of endocrine stimulation tests and the prevalence of pathological findings over a year and to explore whether single basal hormone concentrations could have saved unnecessary stimulation tests. METHODS Retrospective study with data collection for pediatric endocrine stimulation tests performed in 2019 in a tertiary center. RESULTS Overall, 278 tests were performed on 206 patients. The most performed test was arginine tolerance test (34%), followed by LHRH test (24%) and standard dose Synachthen test (19%), while the higher rate of pathological response was found in insulin tolerance test to detect growth hormone deficiency (81%), LHRH test to detect central precocious puberty (50%) and arginine tolerance test (41%). No cases of non-classical-congenital adrenal hyperplasia were diagnosed. While 29% of growth hormone deficient children who performed an insulin tolerance test had a pathological peak cortisol, none of them had central adrenal insufficiency confirmed at low dose Synacthen test. The use of basal hormone determinations could save up to 88% of standard dose Synachthen tests, 82% of arginine tolerance + GHRH test, 61% of LHRH test, 12% of tests for adrenal secretion. CONCLUSION The use of single basal hormone concentrations could spare up to half of the tests, saving from 32,000 to 79,000 euros in 1 year. Apart from basal cortisol level <108 nmol/L to detect adrenal insufficiency and IGF-1 <-1.5 SDS to detect growth hormone deficiency, all the other cut-off for basal hormone determinations were found valid in order to spare unnecessary stimulation tests.
Collapse
Affiliation(s)
| | - Benedetta Bossini
- University of Trieste, Trieste, Italy
- *Correspondence: Benedetta Bossini, ; Gianluca Tornese,
| | - Manuela Giangreco
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Viviana Vidonis
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Giada Vittori
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Nicoletta Grassi
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | | | - Elena Faleschini
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Egidio Barbi
- University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Gianluca Tornese
- Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, Italy
- *Correspondence: Benedetta Bossini, ; Gianluca Tornese,
| |
Collapse
|
2
|
Yu C, Xie B, Zhao Z, Zhao S, Liu L, Cheng X, Li X, Cao B, Shao J, Chen J, Zhao H, Yan Z, Su C, Niu Y, Song Y, Wei L, Wang Y, Ren X, Fan L, Zhang B, Li C, Gui B, Zhang Y, Wang L, Chen S, Zhang J, Wu Z, Gong C, Fan X, Wu N. Whole Exome Sequencing Uncovered the Genetic Architecture of Growth Hormone Deficiency Patients. Front Endocrinol (Lausanne) 2021; 12:711991. [PMID: 34589056 PMCID: PMC8475633 DOI: 10.3389/fendo.2021.711991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/01/2023] Open
Abstract
PURPOSE Congenital growth hormone deficiency (GHD) is a rare and etiologically heterogeneous disease. We aim to screen disease-causing mutations of GHD in a relatively sizable cohort and discover underlying mechanisms via a candidate gene-based mutational burden analysis. METHODS We retrospectively analyzed 109 short stature patients associated with hormone deficiency. All patients were classified into two groups: Group I (n=45) with definitive GHD and Group II (n=64) with possible GHD. We analyzed correlation consistency between clinical criteria and molecular findings by whole exome sequencing (WES) in two groups. The patients without a molecular diagnosis (n=90) were compared with 942 in-house controls for the mutational burden of rare mutations in 259 genes biologically related with the GH axis. RESULTS In 19 patients with molecular diagnosis, we found 5 possible GHD patients received known molecular diagnosis associated with GHD (NF1 [c.2329T>A, c.7131C>G], GHRHR [c.731G>A], STAT5B [c.1102delC], HRAS [c.187_207dup]). By mutational burden analysis of predicted deleterious variants in 90 patients without molecular diagnosis, we found that POLR3A (p = 0.005), SUFU (p = 0.006), LHX3 (p = 0.021) and CREB3L4 (p = 0.040) represented top genes enriched in GHD patients. CONCLUSION Our study revealed the discrepancies between the laboratory testing and molecular diagnosis of GHD. These differences should be considered when for an accurate diagnosis of GHD. We also identified four candidate genes that might be associated with GHD.
Collapse
Affiliation(s)
- Chenxi Yu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bobo Xie
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Zhengye Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Sen Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Lian Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xi Cheng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bingyan Cao
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Jiashen Shao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Jiajia Chen
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Zihui Yan
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
| | - Chang Su
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yanning Song
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Liya Wei
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yi Wang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xiaoya Ren
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Lijun Fan
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Beibei Zhang
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Chuan Li
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Baoheng Gui
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Yuanqiang Zhang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lianlei Wang
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shaoke Chen
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
| | - Jianguo Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Chunxiu Gong
- Department of Endocrinology, Genetics and Metabolism, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Xin Fan
- Department of Pediatrics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Department of Pediatric Endocrine and Metabolism, Maternal and Child Health Hospital of Guangxi, Nanning, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| | - Nan Wu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Nan Wu, ; Xin Fan, ; Chunxiu Gong, ; Zhihong Wu,
| |
Collapse
|