1
|
Sikder S, Pierce D, Sarkar ER, McHugh C, Quinlan KGR, Giacomin P, Loukas A. Regulation of host metabolic health by parasitic helminths. Trends Parasitol 2024; 40:386-400. [PMID: 38609741 DOI: 10.1016/j.pt.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Obesity is a worldwide pandemic and major risk factor for the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). T2D requires lifelong medical support to limit complications and is defined by impaired glucose tolerance, insulin resistance (IR), and chronic low-level systemic inflammation initiating from adipose tissue. The current preventative strategies include a healthy diet, controlled physical activity, and medication targeting hyperglycemia, with underexplored underlying inflammation. Studies suggest a protective role for helminth infection in the prevention of T2D. The mechanisms may involve induction of modified type 2 and regulatory immune responses that suppress inflammation and promote insulin sensitivity. In this review, the roles of helminths in counteracting MetS, and prospects for harnessing these protective mechanisms for the development of novel anti-diabetes drugs are discussed.
Collapse
Affiliation(s)
- Suchandan Sikder
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia.
| | - Doris Pierce
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia
| | - Eti R Sarkar
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland 4878, Australia
| | - Connor McHugh
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Queensland 4878, Australia
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Paul Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; Macrobiome Therapeutics Pty Ltd, Cairns, Queensland 4878, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; Macrobiome Therapeutics Pty Ltd, Cairns, Queensland 4878, Australia
| |
Collapse
|
2
|
Zhang S, Lv H, Cai X, Tang S, Zhong R, Chen L, Zhang H. Effects of the compound extracts of Caprifoliaceae and Scutellaria baicalensis Georgi on the intestinal microbiota and antioxidant function. Front Microbiol 2024; 14:1289490. [PMID: 38282732 PMCID: PMC10822692 DOI: 10.3389/fmicb.2023.1289490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024] Open
Abstract
According to the Chinese encyclopedia "Ben Cao Gang Mu" (AD 1552-1578), Caprifoliaceae and Scutellaria baicalensis Georgi are used in traditional Chinese medicine to clear heat, detoxify, and treat wind-heat colds, upper respiratory tract infections, and pneumonia. However, the mechanism and the effects of the compound extracts of Caprifoliaceae and Scutellaria baicalensis Georgi on intestinal health remain unclear. From the perspective of intestinal microbes, this study assessed the antioxidant, anti-inflammatory, and intestinal protective properties of Caprifoliaceae and Scutellaria baicalensis Georgi. Mice received diets with or without Caprifoliaceae and Scutellaria baicalensis Georgi extractive (BCA) for 2 weeks in this study. The results showed that BCA increased body weight gain, feed intake, and catalase (CAT) content in the mice but reduced γ-glutamyl transpeptidase (γ-GT) content in the serum (p < 0.05). BCA improved the Sobs, Chao, and Ace indices, as well as the number of Campylobacterota, Patercibacteria, and Desulfobacterota in the colon microbiota, while it decreased the Firmicutes phylum (p < 0.05). At the genus level, BCA increased Candidatus_Saccharimonas, Helicobacter, unclassified_f_Lachnospiraceae, Alistipes, norank_f_norank_o_Clostridia_vadinBB60_group, norank_f_Ruminococcaceae, unclassified_f_Ruminococcaceae, etc. abundance (p < 0.05), but it significantly decreased Lactobacillus and Lachnospiraceae_UCG_001 abundance (p < 0.05). Moreover, BCA improved the concentration of acetic acid, butyric acid, propionic acid, valeric acid, and isovaleric acid and diminished the concentration of isobutyric acid (p < 0.05). Correlation analysis shows that the changes in short-chain fatty acids and antioxidant and inflammatory indices in the serum were significantly correlated with the BCA-enriched microbiota. This study supplemented a database for the application of Caprifoliaceae and Scutellaria baicalensis Georgi in clinical and animal production.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Huiyuan Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Beijing Centre Biology Co., Ltd., Beijing, China
| | - Xueying Cai
- Hangzhou First People's Hospital, Hangzhou, China
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Esperante D, Gutiérrez MIM, Issa ME, Schcolnik-Cabrera A, Mendlovic F. Similarities and divergences in the metabolism of immune cells in cancer and helminthic infections. Front Oncol 2023; 13:1251355. [PMID: 38044996 PMCID: PMC10690632 DOI: 10.3389/fonc.2023.1251355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
Energetic and nutritional requirements play a crucial role in shaping the immune cells that infiltrate tumor and parasite infection sites. The dynamic interaction between immune cells and the microenvironment, whether in the context of tumor or helminth infection, is essential for understanding the mechanisms of immunological polarization and developing strategies to manipulate them in order to promote a functional and efficient immune response that could aid in the treatment of these conditions. In this review, we present an overview of the immune response triggered during tumorigenesis and establishment of helminth infections, highlighting the transition to chronicity in both cases. We discuss the energetic demands of immune cells under normal conditions and in the presence of tumors and helminths. Additionally, we compare the metabolic changes that occur in the tumor microenvironment and the infection site, emphasizing the alterations that are induced to redirect the immune response, thereby promoting the survival of cancer cells or helminths. This emerging discipline provides valuable insights into disease pathogenesis. We also provide examples of novel strategies to enhance immune activity by targeting metabolic pathways that shape immune phenotypes, with the aim of achieving positive outcomes in cancer and helminth infections.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mónica Itzel Martínez Gutiérrez
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Mark E. Issa
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alejandro Schcolnik-Cabrera
- Département de Biochimie et Médicine Moléculaire, Université de Montréal, Succursale Centre-Ville, Montréal, QC, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, Canada
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan, Mexico
| |
Collapse
|
4
|
Mules TC, Inns S, Le Gros G. Helminths' therapeutic potential to treat intestinal barrier dysfunction. Allergy 2023; 78:2892-2905. [PMID: 37449458 DOI: 10.1111/all.15812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 07/18/2023]
Abstract
The intestinal barrier is a dynamic multi-layered structure which can adapt to environmental changes within the intestinal lumen. It has the complex task of allowing nutrient absorption while limiting entry of harmful microbes and microbial antigens present in the intestinal lumen. Excessive entry of microbial antigens via microbial translocation due to 'intestinal barrier dysfunction' is hypothesised to contribute to the increasing incidence of allergic, autoimmune and metabolic diseases, a concept referred to as the 'epithelial barrier theory'. Helminths reside in the intestinal tract are in intimate contact with the mucosal surfaces and induce a range of local immunological changes which affect the layers of the intestinal barrier. Helminths are proposed to prevent, or even treat, many of the diseases implicated in the epithelial barrier theory. This review will focus on the effect of helminths on intestinal barrier function and explore whether this could explain the proposed health benefits delivered by helminths.
Collapse
Affiliation(s)
- Thomas C Mules
- Malaghan Institute of Medical Research, Wellington, New Zealand
- University of Otago, Wellington, New Zealand
| | | | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington, New Zealand
| |
Collapse
|
5
|
Jeerawattanawart S, Hansakon A, Roytrakul S, Angkasekwinai P. Regulation and function of adiponectin in the intestinal epithelial cells in response to Trichinella spiralis infection. Sci Rep 2023; 13:14004. [PMID: 37635188 PMCID: PMC10460792 DOI: 10.1038/s41598-023-41377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023] Open
Abstract
Besides metabolic homeostasis regulation, adipokines are recently emerged as important players in regulating immunity and inflammation. Helminth infection has known to modulate circulating adipokine secretion; however, the regulation and function of adipokines in response to helminth infection is still unclear. Here, we investigated the regulation and function of adiponectin during T. spiralis infection. While there was no change in circulating level of adiponectin, we found an increased adiponectin, but not leptin expression in the small intestine. Interestingly, the intestinal adiponectin expression was strongly associated with the expression of epithelial cell-derived cytokines IL-25, IL-33, and TSLP following infection. Indeed, mice deficiency of IL-25 receptor exhibited no intestinal adiponectin induction upon helminth infection. Interestingly, IL-25-induced adiponectin modulated intestinal epithelial cell responses by enhancing occludin and CCL17 expression. Using LPS-induced intestinal epithelial barrier dysfunctions in a Caco-2 cell monolayer model, adiponectin pretreatment enhanced a Transepithelial electrical resistance (TEER) and occludin expression. More importantly, adiponectin pretreatment of Caco2 cells prevented T. spiralis larval invasion in vitro and its administration during infection enhanced intestinal IL-13 secretion and worm expulsion in vivo. Altogether, our data suggest that intestinal adiponectin expression induced by helminth infection through the regulation of IL-25 promotes worm clearance and intestinal barrier function.
Collapse
Affiliation(s)
- Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
- Graduate Program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Adithap Hansakon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand.
- Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, 12120, Thailand.
| |
Collapse
|
6
|
Camaya I, O’Brien B, Donnelly S. How do parasitic worms prevent diabetes? An exploration of their influence on macrophage and β-cell crosstalk. Front Endocrinol (Lausanne) 2023; 14:1205219. [PMID: 37564976 PMCID: PMC10411736 DOI: 10.3389/fendo.2023.1205219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetes is the fastest growing chronic disease globally, with prevalence increasing at a faster rate than heart disease and cancer. While the disease presents clinically as chronic hyperglycaemia, two distinct subtypes have been recognised. Type 1 diabetes (T1D) is characterised as an autoimmune disease in which the insulin-producing pancreatic β-cells are destroyed, and type 2 diabetes (T2D) arises due to metabolic insufficiency, in which inadequate amounts of insulin are produced, and/or the actions of insulin are diminished. It is now apparent that pro-inflammatory responses cause a loss of functional β-cell mass, and this is the common underlying mechanism of both T1D and T2D. Macrophages are the central immune cells in the pathogenesis of both diseases and play a major role in the initiation and perpetuation of the proinflammatory responses that compromise β-cell function. Furthermore, it is the crosstalk between macrophages and β-cells that orchestrates the inflammatory response and ensuing β-cell dysfunction/destruction. Conversely, this crosstalk can induce immune tolerance and preservation of β-cell mass and function. Thus, specifically targeting the intercellular communication between macrophages and β-cells offers a unique strategy to prevent/halt the islet inflammatory events underpinning T1D and T2D. Due to their potent ability to regulate mammalian immune responses, parasitic worms (helminths), and their excretory/secretory products, have been examined for their potential as therapeutic agents for both T1D and T2D. This research has yielded positive results in disease prevention, both clinically and in animal models. However, the focus of research has been on the modulation of immune cells and their effectors. This approach has ignored the direct effects of helminths and their products on β-cells, and the modulation of signal exchange between macrophages and β-cells. This review explores how the alterations to macrophages induced by helminths, and their products, influence the crosstalk with β-cells to promote their function and survival. In addition, the evidence that parasite-derived products interact directly with endocrine cells to influence their communication with macrophages to prevent β-cell death and enhance function is discussed. This new paradigm of two-way metabolic conversations between endocrine cells and macrophages opens new avenues for the treatment of immune-mediated metabolic disease.
Collapse
Affiliation(s)
| | | | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
7
|
Ray A, Bonorden MJL, Pandit R, Nkhata KJ, Bishayee A. Infections and immunity: associations with obesity and related metabolic disorders. J Pathol Transl Med 2023; 57:28-42. [PMID: 36647284 PMCID: PMC9846011 DOI: 10.4132/jptm.2022.11.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/14/2022] [Indexed: 01/18/2023] Open
Abstract
About one-fourth of the global population is either overweight or obese, both of which increase the risk of insulin resistance, cardiovascular diseases, and infections. In obesity, both immune cells and adipocytes produce an excess of pro-inflammatory cytokines that may play a significant role in disease progression. In the recent coronavirus disease 2019 (COVID-19) pandemic, important pathological characteristics such as involvement of the renin-angiotensin-aldosterone system, endothelial injury, and pro-inflammatory cytokine release have been shown to be connected with obesity and associated sequelae such as insulin resistance/type 2 diabetes and hypertension. This pathological connection may explain the severity of COVID-19 in patients with metabolic disorders. Many studies have also reported an association between type 2 diabetes and persistent viral infections. Similarly, diabetes favors the growth of various microorganisms including protozoal pathogens as well as opportunistic bacteria and fungi. Furthermore, diabetes is a risk factor for a number of prion-like diseases. There is also an interesting relationship between helminths and type 2 diabetes; helminthiasis may reduce the pro-inflammatory state, but is also associated with type 2 diabetes or even neoplastic processes. Several studies have also documented altered circulating levels of neutrophils, lymphocytes, and monocytes in obesity, which likely modifies vaccine effectiveness. Timely monitoring of inflammatory markers (e.g., C-reactive protein) and energy homeostasis markers (e.g., leptin) could be helpful in preventing many obesity-related diseases.
Collapse
Affiliation(s)
- Amitabha Ray
- College of Medical Science, Alderson Broaddus University, Philippi, WV, USA,Corresponding Author: Amitabha Ray, MD, PhD, College of Medical Science, Alderson Broaddus University, 101 College Hill Drive, Philippi, WV 26416, USA Tel: +1-304-457-6587, Fax: +1-304-457-6308, E-mail:
| | | | - Rajashree Pandit
- Division of Medical & Behavioral Health, Pueblo Community College, Pueblo, CO, USA
| | | | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
8
|
Liu X, Jiang Y, Ye J, Wang X. Helminth infection and helminth-derived products: A novel therapeutic option for non-alcoholic fatty liver disease. Front Immunol 2022; 13:999412. [PMID: 36263053 PMCID: PMC9573989 DOI: 10.3389/fimmu.2022.999412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to obesity, diabetes, and metabolic syndrome (MetS), and it has become the most common chronic liver disease. Helminths have co-evolved with humans, inducing multiple immunomodulatory mechanisms to modulate the host's immune system. By using their immunomodulatory ability, helminths and their products exhibit protection against various autoimmune and inflammatory diseases, including obesity, diabetes, and MetS, which are closely associated with NAFLD. Here, we review the pathogenesis of NAFLD from abnormal glycolipid metabolism, inflammation, and gut dysbiosis. Correspondingly, helminths and their products can treat or relieve these NAFLD-related diseases, including obesity, diabetes, and MetS, by promoting glycolipid metabolism homeostasis, regulating inflammation, and restoring the balance of gut microbiota. Considering that a large number of clinical trials have been carried out on helminths and their products for the treatment of inflammatory diseases with promising results, the treatment of NAFLD and obesity-related diseases by helminths is also a novel direction and strategy.
Collapse
Affiliation(s)
- Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Oliveira FMS, Cruz RE, Pinheiro GRG, Caliari MV. Comorbidities involving parasitic diseases: A look at the benefits and complications. Exp Biol Med (Maywood) 2022; 247:1819-1826. [PMID: 35876147 PMCID: PMC9679356 DOI: 10.1177/15353702221108387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parasitic infections acquired by the population cause substantial morbidity worldwide, with individuals from developing countries being most affected. Some parasites remain in the host for long periods, settling in different organs, manipulating the flow of nutrients and metabolites, and influencing the immune response, favoring their adaptation. The host attempts to counteract the metabolic and immunological alterations and the possible damage caused by infection. These metabolic and immunological changes experienced by the host can influence the progression of other existing morbidities or those that will be acquired in the future. Cancer and metabolic diseases are also frequent causes of morbidity in the world population. The large numbers of individuals affected by cancer and metabolic diseases and the high prevalence of morbidity caused by parasitic diseases favor the development of comorbidity involving these pathologies. This review provides an overview of major advances in research on cancer and metabolic diseases associated with parasitic infections. Information about hosts and parasites such as alterations of the immune response, metabolism and adaptation mechanisms of the parasites, and parasitic molecules with therapeutic potential is provided, as well as the beneficial results or complications related to the comorbidities discussed herein. We emphasize the need to conduct additional studies addressing comorbidities associated with parasitic infections to improve the understanding of the impact of this association on the progression of morbidities, as well as the possibility of the therapeutic use of and therapeutic approaches involving parasites.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ruth Elizabeth Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil,Marcelo Vidigal Caliari.
| |
Collapse
|
10
|
Liu S, Luo H, Wang M, Wang Q, Duan L, Han Q, Sun S, Wei C, Jin J. Microbiome analysis reveals the effects of black soldier fly oil on gut microbiota in pigeon. Front Microbiol 2022; 13:998524. [PMID: 36160221 PMCID: PMC9495606 DOI: 10.3389/fmicb.2022.998524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota plays a vital roles in poultry physiology, immunity and metabolism. Black soldier fly oil is known to have a positive effect on the gut microbiota. However, the specific effect of black soldier fly oil on the composition and structure of the gut microbiota of the pigeon is unknown. In this experiment, 16S rDNA high-throughput sequencing was performed to study the effect of different doses of black soldier fly oil on the changes of pigeon intestinal microbes. Results indicated that the different doses of black soldier fly oil had no effect on the gut microbial diversity of the pigeon. Although the dominant phyla (Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria) and genus (uncultured_bacterium_f_Lachnospiraceae and Desulfovibrio) in control group and experimental group with different doses were the same, the abundances of some beneficial bacteria (Megasphaera, Intestinimonas, Prevotella_9, Lachnospiraceae_UCG-001, Faecalibacterium, Coprococcus_2, Parabacteroides, Megasphaera, Leuconostoc, Prevotellaceae_UCG-001, Lactococcus, Ruminococcaceae_UCG-014, and Coprococcus_2) increased significantly as the concentration of black soldier fly oil increased. Taken together, this study indicated that black soldier fly oil supplementation could improve gut microbial composition and structure by increasing the proportions of beneficial bacteria. Notably, this is the first report on the effects of black soldier fly oil on the gut microbiota of pigeon, which contribute to understanding the positive effects of black soldier fly oil from the gut microbial perspective.
Collapse
|
11
|
Cytokines, Chemokines, Insulin and Haematological Indices in Type 2 Diabetic Male Sprague Dawley Rats Infected with Trichinella zimbabwensis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Diabetes mellitus is a chronic metabolic disease induced by the inability to control high blood glucose level. Helminth-induced immunomodulation has been reported to prevent or delay the onset of type 2 diabetes mellitus (T2DM), which, in turn, ameliorates insulin sensitivity. Therefore, there is a need to understand the underlying mechanisms utilized by helminths in metabolism and the induction of immuno-inflammatory responses during helminthic infection and T2DM comorbidity. This study aimed at using a laboratory animal model to determine the cytokines, chemokines and haematological indices in diabetic (T2DM) male Sprague Dawley (SD) rats infected with Trichinella zimbabwensis. One hundred and two male SD rats (160–180 g) were randomly selected into three experimental groups (i. T2DM-induced group (D) ii. T. zimbabwensis infected + T2DM group (TzD) and iii. T. zimbabwensis-infected group (Tz)). Rats selected for the D group and TzD group were injected with 40 mg/kg live weight of streptozotocin (STZ) intraperitoneally to induce T2DM, while animals in the Tz and TzD group were infected with T. zimbabwensis. Results showed that adult T. zimbabwensis worm loads and mean T. zimbabwensis larvae per gram (lpg) of rat muscle were significantly higher (p < 0.001) in the Tz group when compared to the TzD group. Blood glucose levels in the D group were significantly higher (p < 0.001) compared to the TzD group. An increase in insulin concentration was observed among the TzD group when compared to the D group. Liver and muscle glycogen decreased in the D when compared to the TzD group. A significant increase (p < 0.05) in red blood cells (RBCs) was observed in the D group when compared to the TzD and Tz groups. An increase in haematocrit, haemoglobin, white blood cells (WBCs), platelet, neutrophils and monocyte were observed in the D group when compared to the TzD group. TNF-α, IFN-γ, IL-4, IL-10 and IL-13 concentrations were elevated in the TzD group when compared to the D and Tz groups, while IL-6 concentration showed a significant reduction in the Tz when compared to the D and the TzD groups. A significant increase in CCL5 in the D and TzD groups was observed in comparison to the Tz group. CXCL10 and CCL11 concentration also showed an increase in the TzD group in comparison to the Tz and the D groups. Overall, our results confirm that T. zimbabwensis, a parasite which produces tissue-dwelling larvae in the host, regulates T2DM driven inflammation to mediate a positive protective effect against T2DM outcomes.
Collapse
|
12
|
Yingklang M, Chaidee A, Dangtakot R, Jantawong C, Haonon O, Sitthirach C, Hai NT, Cha’on U, Anutrakulchai S, Kamsa-ard S, Pinlaor S. Association of Strongyloides stercoralis infection and type 2 diabetes mellitus in northeastern Thailand: Impact on diabetic complication-related renal biochemical parameters. PLoS One 2022; 17:e0269080. [PMID: 35639713 PMCID: PMC9154194 DOI: 10.1371/journal.pone.0269080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several studies have demonstrated that helminth infections provide a degree of protection against Type 2 diabetes mellitus (T2DM). However, the relationship between Strongyloides stercoralis infection and T2DM has scarcely been investigated and the protective effect of infection against development of diabetic complications is unclear. In this study, we aimed to investigate the relationship between S. stercoralis infection and T2DM in a rural area of Khon Kaen Province, Thailand. The impact of S. stercoralis infection on diabetic complication-related kidney function biochemical parameters and body-mass index (BMI) was also assessed. METHODOLOGY Using a cross-sectional study design, S. stercoralis infection and T2DM assessments were conducted between October 2020 and May 2021. Associations between S. stercoralis infection, T2DM, and socioeconomic factors were analyzed using multivariable logistic regression analyses. Diabetic complication-related biochemical parameters relating largely to kidney function (estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (UACR), serum creatinine, uric acid, alanine transaminase (ALT), and low-density lipoprotein cholesterol (LDL-C)) and BMI of participants with and without T2DM were compared between groups with or without S. stercoralis infection. RESULTS One hundred and seven out of 704 individuals (15.20%) were positive for S. stercoralis, and 283 people were diagnosed with T2DM. Of those with T2DM, 11.31% (32/283) were infected with S. stercoralis and of those without T2DM, 17.82% (75/421) were infected with S. stercoralis. Multivariate analysis revealed that T2DM was inversely correlated with S. stercoralis infection (Adjusted OR = 0.49; 95% CI: 0.30, 0.78; p = 0.003), while male, increasing age, lower education level, and alcohol intake were positively associated with infection. Those infected with S. stercoralis had lower eGFR levels and higher ALT and UACR levels than those in the uninfected group. CONCLUSION This finding indicates that S. stercoralis infection was inversely associated with T2DM in northeastern Thailand, but participants infected with S. stercoralis had lower eGFR levels and higher ALT and UACR levels. Infection with S. stercoralis might lead to worse complication-related renal biochemical parameters.
Collapse
Affiliation(s)
- Manachai Yingklang
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apisit Chaidee
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rungtiwa Dangtakot
- Department of Medical Technology, Faculty of Allied Health Science, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - Chanakan Jantawong
- Department of Medical Technology, Faculty of Allied Health Science, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - Ornuma Haonon
- Department of Medical Technology, Faculty of Allied Health Science, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - Chutima Sitthirach
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nguyen Thi Hai
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
| | - Ubon Cha’on
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirirat Anutrakulchai
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supot Kamsa-ard
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Michla M, Wilhelm C. Food for thought - ILC metabolism in the context of helminth infections. Mucosal Immunol 2022; 15:1234-1242. [PMID: 36045216 PMCID: PMC9705246 DOI: 10.1038/s41385-022-00559-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Helminths are multicellular ancient organisms residing as parasites at mucosal surfaces of their host. Through adaptation and co-evolution with their hosts, helminths have been able to develop tolerance mechanisms to limit inflammation and avoid expulsion. The study of helminth infections as an integral part of tissue immunology allowed us to understand fundamental aspects of mucosal and barrier immunology, which led to the discovery of a new group of tissue-resident immune cells, innate lymphoid cells (ILC), over a decade ago. Here, we review the intricate interplay between helminth infections and type 2 ILC (ILC2) biology, discuss the host metabolic adaptation to helminth infections and the metabolic pathways fueling ILC2 responses. We hypothesize that nutrient competition between host and helminths may have prevented chronic inflammation in the past and argue that a detailed understanding of the metabolic restraints imposed by helminth infections may offer new therapeutic avenues in the future.
Collapse
Affiliation(s)
- Marcel Michla
- grid.10388.320000 0001 2240 3300Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Christoph Wilhelm
- grid.10388.320000 0001 2240 3300Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
14
|
The yin and yang of human soil-transmitted helminth infections. Int J Parasitol 2021; 51:1243-1253. [PMID: 34774540 PMCID: PMC9145206 DOI: 10.1016/j.ijpara.2021.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
The major soil-transmitted helminths that infect humans are the roundworms, whipworms and hookworms. Soil-transmitted helminth infections rank among the most important neglected tropical diseases in terms of morbidity, and almost one billion people are still infected with at least one species. While anthelmintic drugs are available, they do not offer long term protection against reinfection, precipitating the need for vaccines that provide long-term immunologic defense. Vaccine discovery and development is in advanced clinical development for hookworm infection, with a bivalent human hookworm vaccine in clinical trials in Brazil and Africa, but is in its infancy for both roundworm (ascariasis) and whipworm (trichuriasis) infections. One of the greatest hurdles to developing soil-transmitted helminth vaccines is the potent immunoregulatory properties of these helminths, creating a barrier to the induction of meaningful long-term protective immunity. While challenging for vaccinologists, this phenomenon presents unique opportunities to develop an entirely new class of anti-inflammatory drugs that capitalise on these immunomodulatory strategies. Epidemiologic studies and clinical trials employing experimental soil-transmitted helminth challenge models, when coupled with findings from animal models, show that at least some soil-transmitted helminth-derived molecules can protect against the onset of autoimmune, allergic and metabolic disorders, and several natural products with the desired bioactivity have been isolated and tested in pre-clinical settings. The yin and yang of soil-transmitted helminth infections reflect both the urgency for effective vaccines and the potential for new immunoregulatory molecules from parasite products.
Collapse
|
15
|
Gut-microbiota-derived extracellular vesicles: Overlooked mediators in host-helminth interactions? Trends Parasitol 2021; 37:690-693. [PMID: 34154932 DOI: 10.1016/j.pt.2021.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Helminth infections impact the composition of the mammalian gut microbiota; however, the mechanisms underpinning these interactions are, thus far, unknown. In this article, we propose that microbiota-derived extracellular vesicles might represent key players in host-helminth-microbiome crosstalk, and outline future directions to elucidate their role(s) in host-parasite relationships.
Collapse
|
16
|
Sudre C, Duplan H, Bukasakakamba J, Nacher M, Peyre-Costa P, Sabbah N. Diabetes Care in French Guiana: The Gap Between National Guidelines and Reality. Front Endocrinol (Lausanne) 2021; 12:789391. [PMID: 34917037 PMCID: PMC8670498 DOI: 10.3389/fendo.2021.789391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/30/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION French Guiana is a multicultural overseas territory in the Amazon, where precariousness and difficulties in access to care are widespread. The prevalence of diabetes is double that of other French departments, and cardiovascular morbidity and mortality is high. The objective of the study was to analyze the biological, clinical and therapeutic follow-up of patients with diabetes mellitus using exhaustive data and to correlate it with national and European recommendations. MATERIAL AND METHODS Using the national health insurance data, 9079 and 10075 patients with diabetes mellitus were analyzed in 2018 and 2019, respectively. We analyzed antidiabetic treatments, medical, dental, and podiatric consultations, examinations prescribed as part of the annual follow-up, and home nursing care. RESULTS There was a significant increase over one year in the number of patients (+10%) with diabetes, mainly women (60%), and 31% were under 54 years of age, with a disparity depending on the area of the territory, the most isolated having less access to screening. Less than 56% of patients had HbA1c measurements twice a year, less than 43% had an annual renal check-up, only 19% had an ophthalmic check-up at least every two years, less than 25% had an annual dental check-up, and less than 4% had an annual follow-up with the podiatrist. CONCLUSIONS Substandard diabetes monitoring is a major problem likely to increase morbidity and mortality. Adapting health care to the specificities of the territory is crucial, notably by formalizing the delegation of care to advanced practice nurse and non-healthcare professionals in precarious or geographically isolated areas.
Collapse
Affiliation(s)
- Christine Sudre
- Regional Office of the Medical Service and Directorate of Risk Management Coordination of French Guiana, Cayenne, French Guiana
| | - Hélène Duplan
- Regional Office of the Medical Service and Directorate of Risk Management Coordination of French Guiana, Cayenne, French Guiana
| | - John Bukasakakamba
- Department of Endocrinology and Metabolic Diseases, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Mathieu Nacher
- Clinical Investigation Center, West Indies, French Guiana (INSERM CIC 14 24), Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Pascale Peyre-Costa
- Regional Office of the Medical Service and Directorate of Risk Management Coordination of French Guiana, Cayenne, French Guiana
| | - Nadia Sabbah
- Department of Endocrinology and Metabolic Diseases, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Clinical Investigation Center, West Indies, French Guiana (INSERM CIC 14 24), Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- *Correspondence: Nadia Sabbah,
| |
Collapse
|