1
|
Giannakopoulos A, Chrysis D. Reversibility of disturbed pituitary function in pediatric conditions with psychological stressors: implications for clinical practice. Hormones (Athens) 2024; 23:709-716. [PMID: 38421589 DOI: 10.1007/s42000-024-00536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
The complex communication network between the central nervous system and the hypothalamic-pituitary axis forms the basis of endocrine functional plasticity, which facilitates adaptation to changing internal and external conditions, but also makes it vulnerable to the negative effects of stressful psychological factors. Herein, clinical conditions such as functional hypothalamic amenorrhea, eating disorders, growth faltering, post-traumatic stress disorder, and pubertal disorders that may emerge during childhood or adolescence, their origin possibly including psychological stressors, are analyzed regarding their genetic susceptibility and reversibility of endocrine function. A discussion on the optimization of therapeutic management defined by managing stress and maximizing the degree and rate of reversibility follows.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, 26504, Patras, Greece.
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, Rio, 26504, Patras, Greece
| |
Collapse
|
2
|
Le Ciclé C, Cohen-Tannoudji J, L'Hôte D. Recent Advances in the Understanding of Gonadotrope Lineage Differentiation in the Developing Pituitary. Neuroendocrinology 2024:1-16. [PMID: 39527929 DOI: 10.1159/000542513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The pituitary gland is a vital endocrine organ regulating body homoeostasis through six hormone-secreting cell types. Among these, pituitary gonadotrope cells are essential for reproductive function. Throughout pituitary ontogenesis, gonadotrope cells differentiate in a stepwise process, involving both morphogenic cues and transcription factors, which drives specification of progenitor cells into specialised endocrine cells. It is crucial to understand the mechanisms underlying gonadotrope differentiation, as developmental defects and abnormalities in this process can lead to many reproductive pathologies. SUMMARY This review offers a detailed overview of the latest advances in gonadotrope cell differentiation. We addressed this question with a specific focus on three important aspects of gonadotrope differentiation: the identification of the progenitor population giving rise to gonadotrope cells, the early mechanisms that initiate Nr5a1 expression and thus gonadotrope fate commitment, and finally, the mechanisms driving the formation of physical and functional gonadotrope networks. KEY MESSAGES Overall, this review aimed to provide new insights into three aspects of the gonadotrope differentiation process by reconsidering pioneering studies in the light of data gained from latest technological developments. Firstly, we re-investigated the long debated developmental trajectory of pituitary gonadotrope cells. Secondly, we reported new regulatory mechanisms of Nr5a1 expression, focusing on the involvement of ERα. Finally, we highlighted the molecular and cellular mechanisms driving gonadotrope network formation during embryogenesis, a process that seems essential for regulation of gonadotrope activity.
Collapse
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - David L'Hôte
- Université Paris Cité, CNRS, Inserm, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| |
Collapse
|
3
|
Le Ciclé C, Pacini V, Rama N, Tauszig-Delamasure S, Airaud É, Petit F, de Beco S, Cohen-Tannoudji J, L'Hôte D. [Transcription factors NEUROD1 and NEUROD4 in the migration of gonadotrope cells during pituitary embryogenesis]. Med Sci (Paris) 2024; 40:810-812. [PMID: 39656974 DOI: 10.1051/medsci/2024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Affiliation(s)
- Charles Le Ciclé
- Université Paris Cité, CNRS UMR 8251, Inserm ERL U1133, Unité de biologie fonctionnelle et adaptative, Paris, France
| | - Vincent Pacini
- Université Paris Cité, CNRS UMR 8251, Inserm ERL U1133, Unité de biologie fonctionnelle et adaptative, Paris, France - Université Paris Cité, CNRS, UMR7592 Institut Jacques Monod, Paris, France
| | - Nicolas Rama
- Centre de recherche en cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université Lyon1, Lyon, France
| | - Servane Tauszig-Delamasure
- Institut NeuroMyoGène, CNRS UMR 5310, Inserm U1217, UCBL Lyon 1, Faculté de médecine et de pharmacie, Lyon, France
| | - Éloïse Airaud
- Université Paris Cité, CNRS UMR 8251, Inserm ERL U1133, Unité de biologie fonctionnelle et adaptative, Paris, France
| | - Florence Petit
- Université Paris Cité, CNRS UMR 8251, Inserm ERL U1133, Unité de biologie fonctionnelle et adaptative, Paris, France
| | - Simon de Beco
- Université Paris Cité, CNRS, UMR7592 Institut Jacques Monod, Paris, France
| | - Joëlle Cohen-Tannoudji
- Université Paris Cité, CNRS UMR 8251, Inserm ERL U1133, Unité de biologie fonctionnelle et adaptative, Paris, France
| | - David L'Hôte
- Université Paris Cité, CNRS UMR 8251, Inserm ERL U1133, Unité de biologie fonctionnelle et adaptative, Paris, France
| |
Collapse
|
4
|
Leng D, Zeng B, Wang T, Chen BL, Li DY, Li ZJ. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool Res 2024; 45:1088-1107. [PMID: 39245652 PMCID: PMC11491784 DOI: 10.24272/j.issn.2095-8137.2024.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis represents a central neuroendocrine network essential for reproductive function. Despite its critical role, the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined. This study provides the first comprehensive, unbiased, cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens. Within the hypothalamus, pituitary, and ovary, seven, 12, and 13 distinct cell types were identified, respectively. Results indicated that the pituitary adenylate cyclase activating polypeptide (PACAP), follicle-stimulating hormone (FSH), and prolactin (PRL) signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone (GnRH), FSH, and luteinizing hormone (LH) within the hypothalamus and pituitary. In the ovary, interactions between granulosa cells and oocytes involved the KIT, CD99, LIFR, FN1, and ANGPTL signaling pathways, which collectively regulate follicular maturation. The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis. Additionally, gene expression analysis revealed that relaxin 3 (RLN3), gastrin-releasing peptide (GRP), and cocaine- and amphetamine regulated transcripts (CART, also known as CARTPT) may function as novel endocrine hormones, influencing the HPO axis through autocrine, paracrine, and endocrine pathways. Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP, RLN3, CARTPT, LHCGR, FSHR, and GRPR in the ovaries of Lohmann layers, potentially contributing to their superior reproductive performance. In conclusion, this study provides a detailed molecular characterization of the HPO axis, offering novel insights into the regulatory mechanisms underlying reproductive biology.
Collapse
Affiliation(s)
- Dong Leng
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Bin-Long Chen
- College of Animal Science, Xichang University, Xichang, Sichuan 615000, China. E-mail:
| | - Di-Yan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China. E-mail:
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China. E-mail:
| |
Collapse
|
5
|
Urban-Sosa VA, Ávila-Mendoza J, Carranza M, Martínez-Moreno CG, Luna M, Arámburo C. Differential peptide-dependent regulation of growth hormone (GH): A comparative analysis in pituitary cultures of reptiles, birds, and mammals. Heliyon 2024; 10:e33060. [PMID: 38994081 PMCID: PMC11238054 DOI: 10.1016/j.heliyon.2024.e33060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Growth hormone (GH) is a pituitary protein that exerts pleiotropic roles in vertebrates. The mechanisms regulating GH synthesis and secretion are finely controlled by hypothalamic neuropeptides and other factors. These processes have been considerably studied in mammals but are still poorly understood in other groups. To better understand the pituitary GH regulation during vertebrate phylogeny, we compared the effects of incubating several peptides on cultures of ex-vivo pituitary fragments obtained from representative specimens of reptiles (iguana), birds (chicken) and mammals (rat). The peptides used were: growth hormone-releasing hormone (GHRH), thyrotropin-releasing hormone (TRH), pituitary adenylate cyclase-activating polypeptide (PACAP), ghrelin, gonadotropin-releasing hormone (GnRH), and somatostatin (SST). In rat pituitary cultures, GH secretion was stimulated by GHRH and TRH, while gh mRNA expression was increased by GHRH and PACAP. In the case of chicken pituitaries, GH release was promoted by GHRH, ghrelin, PACAP, and GnRH, although the latter two had a dual effect since at a shorter incubation time they decreased GH secretion; in turn, gh mRNA expression was significantly stimulated by TRH, PACAP, and GnRH. The most intense effects were observed in iguana pituitary cultures, where GH secretion was significantly augmented by GHRH, PACAP, TRH, ghrelin, and GnRH; while gh mRNA expression was stimulated by GHRH, TRH, and PACAP, but inhibited by ghrelin and SST. Also, in the three species, SST was able to block the GHRH-stimulated GH release. Furthermore, it was found that the expression of Pou1f1 mRNA was increased with greater potency by GHRH and PACAP in the iguana, than in chicken or rat pituitary cultures. Additionally, in-silico analysis of the gh gene promoter structures in the three species showed that the reptilian promoter has more Pit-1 consensus binding sites than their avian and mammalian counterparts. Taken together, results demonstrate that pituitary peptide-mediated GH regulatory mechanisms are differentially controlled along vertebrate evolution.
Collapse
Affiliation(s)
- Valeria A Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro., 76230, Mexico
| |
Collapse
|
6
|
Szabó F, Köves K, Gál L. History of the Development of Knowledge about the Neuroendocrine Control of Ovulation-Recent Knowledge on the Molecular Background. Int J Mol Sci 2024; 25:6531. [PMID: 38928237 PMCID: PMC11203711 DOI: 10.3390/ijms25126531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The physiology of reproduction has been of interest to researchers for centuries. The purpose of this work is to review the development of our knowledge on the neuroendocrine background of the regulation of ovulation. We first describe the development of the pituitary gland, the structure of the median eminence (ME), the connection between the hypothalamus and the pituitary gland, the ovarian and pituitary hormones involved in ovulation, and the pituitary cell composition. We recall the pioneer physiological and morphological investigations that drove development forward. The description of the supraoptic-paraventricular magnocellular and tuberoinfundibular parvocellular systems and recognizing the role of the hypophysiotropic area were major milestones in understanding the anatomical and physiological basis of reproduction. The discovery of releasing and inhibiting hormones, the significance of pulse and surge generators, the pulsatile secretion of the gonadotropin-releasing hormone (GnRH), and the subsequent pulsatility of luteinizing (LH) and follicle-stimulating hormones (FSH) in the human reproductive physiology were truly transformative. The roles of three critical neuropeptides, kisspeptin (KP), neurokinin B (NKB), and dynorphin (Dy), were also identified. This review also touches on the endocrine background of human infertility and assisted fertilization.
Collapse
Affiliation(s)
- Flóra Szabó
- Division of Gastroenterology and Nutrition, Children’s Hospital of Richmond, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Levente Gál
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA;
| |
Collapse
|
7
|
Yamaguchi A. Evaluation of fish pituitary spheroids to study annual endocrine reproductive control. Gen Comp Endocrinol 2024; 351:114481. [PMID: 38408711 DOI: 10.1016/j.ygcen.2024.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
The pituitary gland is a small endocrine gland located below the hypothalamus. This gland releases several important hormones and controls the function of many other endocrine system glands to release hormones. Fish pituitary hormonal cells are controlled by neuroendocrine and sex steroid feedback. To study the complex pituitary function in vivo, we established an in vitro pituitary spheroid assay and evaluated its suitability for monitoring the annual reproductive physiological conditions in Takifugu rubripes, also known as torafugu, is one of the most economically important species distributed in the northwestern part of the Pacific Ocean, in the western part of the East China Sea, and in more northern areas near Hokkaido, Japan. Fish pituitary spheroids can be easily constructed in liquid or solid plates. The culture medium (L-15) made the aggregation faster than MEM (Hank's). A Rho-kinase inhibitor (Y-27632, 10 μM) and/or fish serum (2.5 %) also promoted spheroid formation. Laser confocal microscopy analysis of spheroids cultured with annual serum of both sexes revealed that luteinizing hormone (LH) synthesis has the highest peak in the final maturation stage (3 years old, May) in accordance with the highest serum sex steroid levels; in contrast, follicle stimulating hormone (FSH) synthesis has no correlation with the dose of serum or nutrients. Similarly, 3D cell propagation assays using female serum showed that total pituitary cells displayed the highest proliferation at puberty onset (2 years old, October) before half a year of the spawning season. These results indicate that pituitary spheroids are useful in vitro models for monitoring the reproductive physiological status of fish in vivo and may be applicable to the in vitro screening of environmental chemicals and bioactive compounds affecting reproductive efficiency in aquaculture.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Laboratory of Marine Biology, Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
8
|
Santiago-Andres Y, Aquiles A, Taniguchi-Ponciano K, Salame L, Guinto G, Mercado M, Fiordelisio T. Association between Intracellular Calcium Signaling and Tumor Recurrence in Human Non-Functioning Pituitary Adenomas. Int J Mol Sci 2024; 25:3968. [PMID: 38612778 PMCID: PMC11011867 DOI: 10.3390/ijms25073968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Clinically non-functioning pituitary adenomas (CNFPAs) are the second most frequent sellar tumor among studies on community-dwelling adults. They are characterized by the absence of hormonal hypersecretion syndrome, and patients present with compressive symptoms, such as a headache and visual field defects. Immunohistochemically, most CNFPAs are of gonadotrope differentiation, with only a few of them being truly null cell adenomas. Although these tumors express receptors for one or more hypothalamic releasing hormones, to what extent this has an impact on the biological and clinical behavior of these neoplasms remains to be defined. In this research, we evaluated the basal and hypothalamic secretagogue-stimulated intracellular calcium mobilization in 13 CNFPAs, trying to correlate this response to the phenotypic features of the patients. Our results indicate that the recurrence of a CNFPA correlates positively with cellular responsiveness, as measured by spontaneous intracellular calcium activity and the ability to respond to multiple hypothalamic secretagogues. We conclude that this finding may be a useful tool for predicting the clinicopathologic behavior of CNFPAs, by testing the variation of cellular responsiveness to hypothalamic secretagogues.
Collapse
Affiliation(s)
- Yorgui Santiago-Andres
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico
| | - Ana Aquiles
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro 76230, Mexico;
| | - Keiko Taniguchi-Ponciano
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (K.T.-P.); (L.S.)
| | - Latife Salame
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (K.T.-P.); (L.S.)
| | - Gerardo Guinto
- Centro Neurológico, Centro Médico ABC, Ciudad de México 05370, Mexico;
| | - Moises Mercado
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico 06720, Mexico; (K.T.-P.); (L.S.)
| | - Tatiana Fiordelisio
- Laboratorio de Neuroendocrinología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico;
| |
Collapse
|
9
|
Porceddu R, Porcu C, Mulas G, Spiga S, Follesa MC. Ontogenetic changes in the tyrosine hydroxylase immunoreactive preoptic area in the small-spotted catshark Scyliorhinus canicula (L., 1758) females: catecholaminergic involvement in sexual maturation. Front Neuroanat 2024; 17:1301651. [PMID: 38239387 PMCID: PMC10794776 DOI: 10.3389/fnana.2023.1301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024] Open
Abstract
Introduction The catecholaminergic component of the brain-pituitary-gonadal axis, which mediates the influence of external and internal stimuli on the central nervous system and gonad development in vertebrates, is largely unexplored in Chondrichthyes. We considered Scyliorhinus canicula (L., 1758) females as a model for this vertebrate's class, to assess the involvement of the catecholaminergic system of the brain in its reproduction. Along the S. canicula reproductive cycle, we characterized and evaluated differences in somata morphometry and the number of putative catecholaminergic neurons in two brain nuclei: the periventricular preoptic nucleus, hypothesized to be a positive control for ovarian development, and the suprachiasmatic nucleus, examined as a negative control. Materials and methods 16 S. canicula wild females were sampled and grouped in maturity stages (immature, maturing, mature, and mature egg-laying). The ovary was histologically processed for the qualitative description of maturity stages. Anti-tyrosine hydroxylase immunofluorescence was performed on the diencephalic brain sections. The immunoreactive somata were investigated for morphometry and counted using the optical fractionator method, throughout the confocal microscopy. Results and discussions Qualitative and quantitative research confirmed two separate populations of immunoreactive neurons. The modifications detected in the preoptic nucleus revealed that somata were more numerous, significantly smaller in size, and more excitable during the maturing phase but decreased, becoming slightly bigger and less excitable in the egg-laying stage. This may indicate that the catecholaminergic preoptic nucleus is involved in the control of reproduction, regulating both the onset of puberty and the imminent spawning. In contrast, somata in the suprachiasmatic nucleus grew in size and underwent turnover in morphometry, increasing the total number from the immature-virgin to maturing stage, with similar values in the more advanced maturity stages. These changes were not linked to a reproductive role. These findings provide new valuable information on Chondrichthyes, suggesting the existence of an additional brain system implicated in the integration of internal and environmental cues for reproduction.
Collapse
Affiliation(s)
- Riccardo Porceddu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Cristina Porcu
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| | - Giovanna Mulas
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Saturnino Spiga
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Maria Cristina Follesa
- Sezione di Biologia Animale ed Ecologia, Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
- CoNISMa Consorzio Nazionale Interuniversitario per le Scienze Mare, Rome, Italy
| |
Collapse
|
10
|
Szymanska K, Zaobidna E, Rytelewska E, Mlyczynska E, Kurowska P, Dobrzyn K, Kiezun M, Kaminska B, Smolinska N, Rak A, Kaminski T. Visfatin in the porcine pituitary gland: expression and regulation of secretion during the oestrous cycle and early pregnancy. Sci Rep 2023; 13:18253. [PMID: 37880346 PMCID: PMC10600231 DOI: 10.1038/s41598-023-45255-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Visfatin is a multifunctional protein which, besides the control of energy homeostasis, seems to be also involved in the regulation of female fertility through the influence on the endocrine hypothalamus-pituitary-gonadal axis, including the pituitary. The aim of this study was to investigate the expression of visfatin mRNA and protein in the anterior (AP) and posterior pituitary lobes of the pig during the oestrous cycle and early pregnancy. In AP, we also examined colocalisation of visfatin with pituitary tropic hormones. Moreover, we aimed to evaluate the in vitro effects of GnRH, FSH, LH, and insulin on visfatin protein concentration and secretion in AP cells during the cycle. The study showed that visfatin is present in all types of porcine pituitary endocrine cells and its expression is reliant on stage of the cycle or pregnancy. GnRH, FSH, LH and insulin stimulated visfatin secretion by AP cells on days 17 to 19 of the cycle, while on days 2 to 3 visfatin release was enhanced only by LH. Summarising, visfatin is locally produced in the pituitary in a way dependent on hormonal milieu typical for reproductive status of pigs. Further research is required to clarify the role of visfatin in the pituitary gland.
Collapse
Affiliation(s)
- Karolina Szymanska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Ewa Mlyczynska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Kamil Dobrzyn
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Barbara Kaminska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719, Olsztyn, Poland.
| |
Collapse
|
11
|
Khazaal NM, Alghetaa HF, Al-Shuhaib MBS, Al-Thuwaini TM, Alkhammas AH. The relationship between OXT gene polymorphisms and reproductive hormones in pregnant and lactating Awassi Ewes. Mol Biol Rep 2023; 50:8763-8769. [PMID: 37542686 DOI: 10.1007/s11033-023-08686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Numerous genetic loci interact intricately to control reproduction in mammals. The oxytocin gene (OXT) is a promising candidate for reproductive traits in mammals. Previously, sheep and goats have been studied for the presence of the OXT polymorphism. As of yet, no polymorphisms have been identified in the OXT gene of Awassi sheep. Thus, this study was conducted to determine the effects of OXT polymorphism and litter size on reproductive hormones in pregnant and lactating Awassi ewes. METHODS AND RESULTS This study evaluated 232 ewes aged 3 and 4 years (123 single-progeny ewes and 109 twin-producing ewes). Serum was collected to measure reproductive hormones using ELISA kits manufactured by ELK Biotechnology. DNA was extracted from sheep blood for genotyping and sequencing to identify variations in OXT gene (exon 2, 266 bp). Genotyping analysis revealed three genotypes within 266 bp: CC, CA, and AA. Sequence analysis revealed a novel mutation in exon 2: 188 C > A. Statistical analysis showed significant associations between the 188 C > A SNP and phenotypic traits. Twin-pregnant ewes carrying CC genotypes had higher estrogen, progesterone, and follicle-stimulating hormone/luteinizing hormone levels (65.86 ± 3.87) (pg/mL), (6.51 ± 0.39) (ng/mL), and (20.22 ± 1.27) (ng/mL)/( 23.37 ± 2.14) (ng/mL) respectively, compared to CA and AA genotypes in the fourth month of twin-pregnant ewes compared to single-pregnant ewes. CONCLUSIONS This study found that the 188 C > A SNP negatively affected reproductive hormone levels in Awassi sheep. These findings provide breeders with a new insight into the sheep OXT gene, useful for future breeding.
Collapse
Affiliation(s)
- Neam M Khazaal
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Hasan F Alghetaa
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 51001, Al-Qasim, Babil, Iraq
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 51001, Al-Qasim, Babil, Iraq.
| | - Ahmed H Alkhammas
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 51001, Al-Qasim, Babil, Iraq
| |
Collapse
|
12
|
Maita F, Maiolo L, Lucarini I, Del Rio De Vicente JI, Sciortino A, Ledda M, Mussi V, Lisi A, Convertino A. Revealing Low Amplitude Signals of Neuroendocrine Cells through Disordered Silicon Nanowires-Based Microelectrode Array. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301925. [PMID: 37357140 PMCID: PMC10460871 DOI: 10.1002/advs.202301925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Today, the key methodology to study in vitro or in vivo electrical activity in a population of electrogenic cells, under physiological or pathological conditions, is by using microelectrode array (MEA). While significant efforts have been devoted to develop nanostructured MEAs for improving the electrophysiological investigation in neurons and cardiomyocytes, data on the recording of the electrical activity from neuroendocrine cells with MEA technology are scarce owing to their weaker electrical signals. Disordered silicon nanowires (SiNWs) for developing a MEA that, combined with a customized acquisition board, successfully capture the electrical signals generated by the corticotrope AtT-20 cells as a function of the extracellular calcium (Ca2+ ) concentration are reported. The recorded signals show a shape that clearly resembles the action potential waveform by suggesting a natural membrane penetration of the SiNWs. Additionally, the generation of synchronous signals observed under high Ca2+ content indicates the occurrence of a collective behavior in the AtT-20 cell population. This study extends the usefulness of MEA technology to the investigation of the electrical communication in cells of the pituitary gland, crucial in controlling several essential human functions, and provides new perspectives in recording with MEA the electrical activity of excitable cells.
Collapse
Affiliation(s)
- Francesco Maita
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Luca Maiolo
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Ivano Lucarini
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | | | - Antonio Sciortino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Mario Ledda
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Valentina Mussi
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Antonella Lisi
- Institute of Translational PharmacologyNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| | - Annalisa Convertino
- Institute for Microelectronics and MicrosystemsNational Research CouncilVia Fosso del Cavaliere 100Rome00133Italy
| |
Collapse
|
13
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
14
|
Gómez-Domínguez EG, Toriz CG, González-Pozos S, González-Del-Pliego M, Aguirre-Benítez EL, Pérez-Torres A, Flores-Martinez YM, Solano-Agama C, Rodríguez-Mata V, García-Godínez A, Martínez-Fong D, Mendoza-Garrido ME. Characterization of the rat pituitary capsule: Evidence that the cerebrospinal fluid filled the pituitary cleft and the inner side of the capsule. PLoS One 2023; 18:e0286399. [PMID: 37235567 DOI: 10.1371/journal.pone.0286399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In humans, the pituitary gland is covered by a fibrous capsule and is considered a continuation of the meningeal sheath. However, in rodents some studies concluded that only the pars tuberalis (PT) and pars nervosa (PN) are enwrapped by the pia mater, while others showed that the whole gland is covered by this sheath. At PT the median eminence subarachnoid drains cerebrospinal fluid (CSF) to its cisternal system representing a pathway to the hypothalamus. In the present study we examined the rat pituitary capsule to elucidate its configuration, its physical interaction with the pituitary border and its relationship with the CSF. Furthermore, we also revisited the histology of the pituitary cleft and looked whether CSF drained in it. To answer such questions, we used scanning and transmission electron microscopy, intracerebroventricular infusion of Evan´s blue, fluorescent beads, and sodium fluorescein. The latter was measured in the pars distalis (PD) and various intracranial tissues. We found a pituitary capsule resembling leptomeninges, thick at the dorsal side of the pars intermedia (PI) and PD, thicker at the level of PI in contiguity with the PN and thinner at the rostro-ventral side as a thin membrane of fibroblast-like cells embedded in a fibrous layer. The capsule has abundant capillaries on all sides. Our results showed that the CSFs bathe between the capsule and the surface of the whole gland, and ciliate cells are present in the pituitary border. Our data suggest that the pituitary gland intercommunicates with the central nervous system (CNS) through the CSF.
Collapse
Affiliation(s)
- Edgar Giovanhi Gómez-Domínguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - César Gabriel Toriz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Sirenia González-Pozos
- Coordinación General de Servicios Experimentales, Microscopía Electrónica, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Margarita González-Del-Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Yazmin Monserrat Flores-Martinez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Carmen Solano-Agama
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Verónica Rodríguez-Mata
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alejandro García-Godínez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| | - María Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
15
|
Alkhammas AH, Al-Thuwaini TM. Association of birth type and LHX4 gene polymorphism with reproductive hormones, growth hormone, and prolactin in Awassi ewes. Mol Biol Rep 2023; 50:3951-3956. [PMID: 36787052 DOI: 10.1007/s11033-023-08285-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND LIM homeobox transcription factor 4 (LHX4) is a promising candidate gene for mammalian reproductive traits. LHX4 polymorphism has previously been associated with phenotypic traits in goats and cattle. However, there have been no LHX4 gene polymorphisms identified in Awassi sheep. Therefore, this study investigated the effects of the LHX4 polymorphism on reproductive hormones, growth hormones, and prolactin in Awassi ewes. METHODS AND RESULTS A total of 232 ewes between the ages of 3 and 4 years were selected for this study (123 single-progeny ewes and 109 twin-producing ewes). Serum was collected to measure reproductive hormones, growth hormone, and prolactin using ELISA kits made by ELK Biotechnology. Genomic DNA was extracted from sheep blood, genotyped, and sequenced to confirm variations in LHX4 (exon 1, 207 bp). Genotyping revealed three genotypes in 207 bp: AA, AG, and GG. Sequence analysis detected a novel mutation in exon 1: 160 A > G. Statistically, the 160 A > G SNP was significantly associated with the phenotypic traits. Ewes carrying AA genotypes had higher estrogen, progesterone, follicle-stimulating hormones/luteinizing hormones, and growth hormone, and lower prolactin levels (65.63 ± 3.84) (pg/mL), (6.67 ± 0.38) (ng/mL), (22.34 ± 1.27) (ng/mL)/(23.89 ± 2.13) (ng/mL), (1.30 ± 0.05) (ng/mL), and (13.16 ± 0.75) (pg/mL), respectively, compared to AG and GG genotypes in the fourth month of twin-pregnant ewes compared to single-pregnant ewes. CONCLUSION This study suggests that the 160 A > G SNP negatively affects the Awassi sheep's hormone levels. It provides valuable insight into the sheep LHX4 gene, which could be an effective marker in marker-assisted selection.
Collapse
Affiliation(s)
- Ahmed H Alkhammas
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq.
| | - Tahreer M Al-Thuwaini
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, Babil, Iraq.
| |
Collapse
|
16
|
Evidence that the pituitary gland connects type 2 diabetes mellitus and schizophrenia based on large-scale trans-ethnic genetic analyses. J Transl Med 2022; 20:501. [PMID: 36329495 PMCID: PMC9632150 DOI: 10.1186/s12967-022-03704-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Previous studies on European (EUR) samples have obtained inconsistent results regarding the genetic correlation between type 2 diabetes mellitus (T2DM) and Schizophrenia (SCZ). A large-scale trans-ethnic genetic analysis may provide additional evidence with enhanced power. OBJECTIVE We aimed to explore the genetic basis for both T2DM and SCZ based on large-scale genetic analyses of genome-wide association study (GWAS) data from both East Asian (EAS) and EUR subjects. METHODS A range of complementary approaches were employed to cross-validate the genetic correlation between T2DM and SCZ at the whole genome, autosomes (linkage disequilibrium score regression, LDSC), loci (Heritability Estimation from Summary Statistics, HESS), and causal variants (MiXeR and Mendelian randomization, MR) levels. Then, genome-wide and transcriptome-wide cross-trait/ethnic meta-analyses were performed separately to explore the effective shared organs, cells and molecular pathways. RESULTS A weak genome-wide negative genetic correlation between SCZ and T2DM was found for the EUR (rg = - 0.098, P = 0.009) and EAS (rg =- 0.053 and P = 0.032) populations, which showed no significant difference between the EUR and EAS populations (P = 0.22). After Bonferroni correction, the rg remained significant only in the EUR population. Similar results were obtained from analyses at the levels of autosomes, loci and causal variants. 25 independent variants were firstly identified as being responsible for both SCZ and T2DM. The variants associated with the two disorders were significantly correlated to the gene expression profiles in the brain (P = 1.1E-9) and pituitary gland (P = 1.9E-6). Then, 61 protein-coding and non-coding genes were identified as effective genes in the pituitary gland (P < 9.23E-6) and were enriched in metabolic pathways related to glutathione mediated arsenate detoxification and to D-myo-inositol-trisphosphate. CONCLUSION Here, we show that a negative genetic correlation exists between SCZ and T2DM at the whole genome, autosome, locus and causal variant levels. We identify pituitary gland as a common effective organ for both diseases, in which non-protein-coding effective genes, such as lncRNAs, may be responsible for the negative genetic correlation. This highlights the importance of molecular metabolism and neuroendocrine modulation in the pituitary gland, which may be responsible for the initiation of T2DM in SCZ patients.
Collapse
|
17
|
Nyuji M, Hamaguchi M, Shimizu A, Isu S, Yoneda M, Matsuyama M. Development of sandwich enzyme-linked immunosorbent assays for chub mackerel Scomber japonicus gonadotropins and regulation of their secretion in female reproduction. Gen Comp Endocrinol 2022; 328:114103. [PMID: 35940318 DOI: 10.1016/j.ygcen.2022.114103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022]
Abstract
The pituitary gonadotropins (Gths), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play critical roles in regulating gonadal development and sexual maturation in vertebrates. We developed non-competitive enzyme-linked immunosorbent assays (ELISAs) to measure Fsh and Lh in chub mackerel Scomber japonicus, which is a commercially important scombrid species. Mouse monoclonal antibodies specific for Fsh and Lh, and a rabbit polyclonal antibody against both Gths were produced by immunization with hormones purified from chub mackerel pituitaries. These monoclonal and polyclonal antibodies were used as capture and detection antibodies in the developed sandwich ELISAs. The ELISAs were reproducible, sensitive, and specific for chub mackerel Fsh and Lh. Parallelism between the standard curve and serial dilutions of chub mackerel serum and pituitary extract was observed for both Fsh and Lh ELISAs. Comparison between vitellogenic and immature females revealed that Fsh is secreted during vitellogenesis and Lh is barely released during immaturity. After gonadotropin-releasing hormone analog (GnRHa) injection, vitellogenic females showed increases in serum Lh, whereas serum levels of Fsh did not vary. Moreover, the serum steroid profiles revealed that estradiol-17β was continuously produced after GnRHa treatment, whereas 17,20β-dihydroxy-4-pregnen-3-one secretion was transiently induced. These results indicate that, in vitellogenic females, GnRHa stimulates the release of Lh, but not Fsh, which results in acceleration of vitellogenesis and induction of oocyte maturation via steroid production.
Collapse
Affiliation(s)
- Mitsuo Nyuji
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki 851-2213, Japan.
| | - Masami Hamaguchi
- Fisheries Technology Institute, Hatsukaichi Field Station, Japan Fisheries Research and Education Agency, Hiroshima 739-0452, Japan
| | - Akio Shimizu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Sayoko Isu
- Fisheries Resources Institute, Japan Fisheries Research and Education Agency, Yokohama 236-8648, Japan
| | - Michio Yoneda
- Fisheries Technology Institute, Hakatajima Field Station, Japan Fisheries Research and Education Agency, Imabari 794-2305, Japan
| | - Michiya Matsuyama
- Aqua-Bioresource Innovation Center, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
18
|
Ethanolamine plasmalogens derived from scallops stimulate both follicle-stimulating hormone and luteinizing hormone secretion by bovine gonadotrophs. Sci Rep 2022; 12:16789. [PMID: 36202862 PMCID: PMC9537335 DOI: 10.1038/s41598-022-20794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/19/2022] [Indexed: 11/08/2022] Open
Abstract
Brain ethanolamine plasmalogens (EPls) are the only known ligands of G-protein-coupled receptor 61, a novel receptor that stimulates follicle-stimulating hormone (FSH), but not luteinizing hormone (LH), secretion by bovine gonadotrophs. We hypothesized that the recently developed neuroprotective EPls extracted from scallop (Pecten yessoensis) (scallop EPls) could stimulate FSH secretion by gonadotrophs. To test this hypothesis, bovine gonadotrophs were cultured for 3.5 days and treated with increasing concentrations of scallop EPls. FSH secretion was stimulated by all tested concentrations of scallop EPls (P < 0.05). Surprisingly, LH secretion was stimulated by both 0.5 (P < 0.05) and 5 (P < 0.01) ng/mL of scallop EPls. To clarify the important differences between bovine brain and scallop EPls, we utilized two-dimensional liquid chromatography–mass spectrometry, which revealed 44 peaks, including 10 large peaks. Among them, eight were scallop-specific EPl molecular species, occupying approximately 58% of the total area percentage of scallop EPls. Almost all large peaks contained 4, 5, or 6 unsaturated double bonds in the carbon chain at the sn-2 position of the glycerol backbone. Our results showed that EPls from scallops, lacking pituitary glands, stimulated both FSH and LH secretion by bovine gonadotrophs.
Collapse
|
19
|
Fontaine R, Rahmad Royan M, Henkel C, Hodne K, Ager-Wick E, Weltzien FA. Pituitary multi-hormone cells in mammals and fish: history, origin, and roles. Front Neuroendocrinol 2022; 67:101018. [PMID: 35870647 DOI: 10.1016/j.yfrne.2022.101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
The vertebrate pituitary is a dynamic organ, capable of adapting its hormone secretion to different physiological demands. In this context, endocrinologists have debated for the past 40 years if endocrine cells are mono- or multi-hormonal. Since its establishment, the dominant "one cell, one hormone" model has been continuously challenged. In mammals, the use of advanced multi-staining approaches, sensitive gene expression techniques, and the analysis of tumor tissues have helped to quickly demonstrate the existence of pituitary multi-hormone cells. In fishes however, only recent advances in imaging and transcriptomics have enabled the identification of such cells. In this review, we first describe the history of the discovery of cells producing multiple hormones in mammals and fishes. We discuss the technical limitations that have led to uncertainties and debates. Then, we present the current knowledge and hypotheses regarding their origin and biological role, which provides a comprehensive review of pituitary plasticity.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| | - Muhammad Rahmad Royan
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Christiaan Henkel
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kjetil Hodne
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Eirill Ager-Wick
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Finn-Arne Weltzien
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
20
|
Liu Y, Wang P, Zhou Z, He X, Tao L, Jiang Y, Lan R, Hong Q, Chu M. Expression Profile Analysis to Identify Circular RNA Expression Signatures in the Prolificacy Trait of Yunshang Black Goat Pituitary in the Estrus Cycle. Front Genet 2022; 12:801357. [PMID: 35140742 PMCID: PMC8820483 DOI: 10.3389/fgene.2021.801357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The pituitary gland is an important organ. It is a complex area of the brain involved in endocrine function and reproductive regulation. However, the function of the pituitary in goat reproduction is still unclear. Herein, RNA sequencing was used to explore the expression patterns of circle RNAs (circRNAs) in the pituitary of Yunshang black goats during the various estrus phases. Then the host genes of the circRNAs were predicted, and a competing endogenous RNA (ceRNA) network was constructed. The results showed a total of 6,705 circRNAs in the pituitary of Yunshang black goats, among which 388 differentially expressed (DE) circRNAs (214 were upregulated, while 174 were downregulated) were identified between high- and low-yield Yunshang black goats in the follicular phase (HF vs. LF); moreover, 361 DE circRNAs (136 were upregulated, while 225 were downregulated) were identified between high- and low-yield Yunshang black goats in the luteal phase (HL vs. LL). There were 65 DE circRNAs targeting 40 miRNAs in the HF vs. LF comparison and 46 DE circRNAs targeting 31 miRNAs in the HL vs. LL comparison. We identified chi_circ_0030920, chi_circ_0043017, chi_circ_0008353, chi_circ_0041580, and chi_circ_0016478 as the key circRNAs through functional enrichment analysis. The ceRNA network analysis showed that chi_circ_0031209 and chi_circ_0019448 might play an important role in reproduction by influencing the expression of prolactin receptor (PRLR) in high- and low-yielding goats during the luteal phase, whereas chi_circ_0014542 regulates the expression of WNT5A during the follicular phase. Our study provided the overall expression profiles of circRNAs in the goat pituitary during the estrus phase, which provides new insight into the mechanism of high-yield goats, which can be helpful to guide goat breeding.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zuyang Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Qionghua Hong, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qionghua Hong, ; Mingxing Chu,
| |
Collapse
|
21
|
Ribeiro DLS, Ribeiro LSS, Bezerra NPC, Silva JM, Noleto KS, Souza FA, Carvalho-Neta AV, Almeida ZS, Chaves DP, Torres Junior JRS. Differential gene expression pattern and plasma sex steroids during testicular development in Genyatremus luteus (Perciforme: Haemulidae) (Bloch, 1790). BRAZ J BIOL 2022; 82:e262017. [DOI: 10.1590/1519-6984.262017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract The aim of the current study is to evaluate gene expression patterns of LH (lhr) and estrogen (er) receptors and plasma steroid levels during testicular development in Genyatremus luteus. Males were histologically classified as immature (n=7), maturing (n=7) and mature (n=7), based on the cellular structure of their testes. Plasma 11-KT concentration recorded peak at the final maturation stage. The highest plasma 17α-OHP concentrations were observed at the immature stage; they decreased at the maturation and mature stages. On the other hand, 17β-estradiol (E2) recorded higher concentrations at the maturation stage. Er expression has significantly increased along the maturational development of animals’ testes. The mRNA observed for the LH receptor has decreased from immature to maturing stage; it presented expression peak at the mature stage. There was high association between receptor gene expression and plasma steroid levels, mainly E2. The current study was the first to feature different reproductive maturation stages in male G. luteus specimens, based on cellular, endocrine and molecular aspects. In addition, it has shown that the gene expression profile for er and lhr receptors, as well as plasma 11-KT and E2 concentrations, are directly linked to testicular maturation, although they are not necessarily associated with the gonadosomatic index.
Collapse
|