1
|
Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol 2024; 327:H1361-H1375. [PMID: 39453431 PMCID: PMC11588312 DOI: 10.1152/ajpheart.00267.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The global population of individuals with cardiovascular disease is expanding, and a key risk factor for major adverse cardiovascular events is vascular calcification. The pathogenesis of cardiovascular calcification is complex and multifaceted, with external cues driving epigenetic, transcriptional, and metabolic changes that promote vascular calcification. This review provides an overview of some of the lesser understood molecular processes involved in vascular calcification and discusses the links between calcification pathogenesis and aspects of adenosine signaling and the methionine pathway; the latter of which salvages the essential amino acid methionine, but also provides the substrate critical for methylation, a modification that regulates the function and activity of DNA and proteins. We explore the complex and dynamic nature of osteogenic reprogramming underlying intimal atherosclerotic calcification and medial arterial calcification (MAC). Atherosclerotic calcification is more widely studied; however, emerging studies now show that MAC is a significant pathology independent from atherosclerosis. Furthermore, we emphasize metabolite and metabolic-modulating factors that influence vascular calcification pathogenesis. Although the contributions of these mechanisms are more well-define in relation to atherosclerotic intimal calcification, understanding these pathways may provide crucial mechanistic insights into MAC and inform future therapeutic approaches. Herein, we highlight the significance of adenosine and methyltransferase pathways as key regulators of vascular calcification pathogenesis.
Collapse
Affiliation(s)
- Parya Behzadi
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Cynthia St Hilaire
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Chen Y, Ding Y, Jin S, Zhang Y. Association between a body shape index and cognitive impairment among US older adults aged 40 years and above from a cross-sectional survey of the NHANES 2011-2014. Front Endocrinol (Lausanne) 2024; 15:1411701. [PMID: 39377074 PMCID: PMC11456444 DOI: 10.3389/fendo.2024.1411701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/29/2024] [Indexed: 10/09/2024] Open
Abstract
Purpose This research aimed to assess the correlation between the Adjusted Body Shape Index (ABSI) and the presence of abdominal aortic calcification (AAC) among middle-aged and older American adults. Methods Employing a cross-sectional design, this study analyzed data from the 2013-2014 National Health and Nutrition Examination Survey (NHANES), focusing on 3077 participants aged 40 and above. AAC detection was conducted using dual-energy X-ray absorptiometry (DXA). ABSI was determined based on waist circumference (WC), weight, and height data. The association between ABSI and AAC was examined through multiple linear regression, smoothed curve analysis, threshold effect evaluation, subgroup analysis, and interaction testing. Results The study encompassed 3077 individuals aged 40 and above. Findings indicated a noteworthy positive relationship between ABSI and AAC when adjusting various covariates. Analysis of threshold effects identified a K-point at 0.0908, showing no significant effect to its left but a significant effect to its right. Further, subgroup and interaction analyses highlighted the ABSI-AAC connection specifically within different age groups and among individuals with diabetes. Conclusion Higher ABSI was correlated with higher AAC score.
Collapse
Affiliation(s)
| | | | - Shanliang Jin
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanwei Zhang
- Department of Anesthesiology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Zhang YR, Liu SM, Chen Y, Zhang LS, Ji DR, Zhao J, Yu YR, Jia MZ, Tang CS, Huang W, Zhou YB, Chai SB, Qi YF. Intermedin alleviates diabetic vascular calcification by inhibiting GLUT1 through activation of the cAMP/PKA signaling pathway. Atherosclerosis 2023; 385:117342. [PMID: 37879153 DOI: 10.1016/j.atherosclerosis.2023.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND AIMS Vascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. METHODS AND RESULTS It was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. CONCLUSIONS These findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.
Collapse
Affiliation(s)
- Ya-Rong Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Shi-Meng Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Deng-Ren Ji
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Jie Zhao
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Mo-Zhi Jia
- Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China
| | - Chao-Shu Tang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Wei Huang
- StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| | - San-Bao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, 102206, China.
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, 100083, China; StateKey Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100083, China; Department of Pathogen Biology, School of Basic Medical Science, Peking University, Beijing, 100083, China.
| |
Collapse
|
5
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
6
|
Anti-Ischemic Effect of Leptin in the Isolated Rat Heart Subjected to Global Ischemia-Reperfusion: Role of Cardiac-Specific miRNAs. CARDIOGENETICS 2023. [DOI: 10.3390/cardiogenetics13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Leptin is an obesity-associated adipokine that has been implicated in cardiac protection against ischemia-reperfusion injury (IRI). In this study, concentration-dependent effects of leptin on myocardial IRI were investigated in the isolated rat heart. In addition, we analyzed myocardial miRNAs expression in order to investigate their potential involvement in leptin-mediated cardioprotection. Methods: The effect of leptin on IRI was examined in Langendorff-perfused rat hearts preconditioned with two leptin concentrations (1.0 nM and 3.1 nM) for 60 min. The hearts were subjected to 30 min global ischemia and 120 min reperfusion with buffer containing leptin in the respective concentration. Heart function and arrhythmia incidence were analyzed. Infarct size was assessed histochemically. Expression of miRNA-144, -208a, -378, and -499 was analyzed in the ventricular myocardium using RT-PCR. Results: The addition of 1.0 nM leptin to the buffer exerted an infarct-limiting effect, preserved post-ischemic ventricular function, and prevented reperfusion arrhythmia compared to 3.1 nM leptin. Myocardial expression of miRNA-208a was decreased after heart exposure to 1.0 nM leptin and significantly elevated in the hearts perfused with leptin at 3.1 nM. Conclusion: Acute administration of leptin at low dose (1.0 nM) results in cardiac protection against IRI. This effect is associated with reduced myocardial expression of miRNA-208a.
Collapse
|
7
|
Effect of Gender on Serum Leptin in Type 2 Diabetes Mellitus: A System Review and Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4875799. [PMID: 36124171 PMCID: PMC9482490 DOI: 10.1155/2022/4875799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
Abstract
Objective To assess the effect of gender factors on serum leptin levels in patients with diabetes mellitus. Methods To remove any studies that indicated a relationship between leptin-based inflammatory variables and the prevalence of type 2 diabetes in particular patient categories, a comprehensive search of all articles published between July 2019 and June 2021 was performed on PubMed/MEDLINE, Web of Science, Scopus, and EBSCO Host, including Academic Search Premier, Africa-Wide Information, and Cumulative Index to Nursing and Allied Health Literature. A summary description of the combined analysis across multiple centers, regions, and continents will help us better understand the effect of gender on serum leptin levels in patients with diabetes. The meta-analysis was performed using RevMan 5.2 software on the literature that satisfied the inclusion and exclusion criteria. Results Plasma CRP levels in women with type 2 diabetes were found to be no different from those in males with type 2 diabetes, with an OR of 0.12, 95 percent confidence interval (CI) of 0.12 to 0.12, P = 0.01. There was no statistically significant difference in the plasma level of interleukin-6 (IL-6) between women with type 2 diabetes and males with type 2 diabetes However, the “inverted funnel” diagram is asymmetrical, indicating a publication bias in the included studies, despite the fact that there was no statistically significant difference in abnormal leptin levels between men with type 2 diabetes and women patients (OR = −0.69, 95 percent CI (0.88, 1.00), P < 0.05). Conclusion Gender factors did not affect the level of inflammatory factors and leptin level in type 2 diabetes.
Collapse
|
8
|
Guo Y, Liu C, Zhao X, Zhang X, Wu Q, Wang Z, Lu J. Changes in gut microbiota, metabolite SCFAs, and GPR43 expression in obese diabetic mice after sleeve gastrectomy. J Appl Microbiol 2022; 133:555-568. [PMID: 35437874 DOI: 10.1111/jam.15583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate changes in short-chain fatty acid levels and G protein-coupled receptor 43 expression and distribution in gut microbiota and explore their relationships in obese diabetic mice after sleeve gastrectomy. METHODS AND RESULTS Diet-induced obese mice and obese diabetic ob/ob mice were established. Changes in glucose metabolism, lipid metabolism, gut microbiota, metabolite short-chain fatty acids, and G protein-coupled receptor 43 expression were assessed in both models 10 weeks postoperatively. Mice that underwent sleeve gastrectomy exhibited sustained weight loss and reduced glucose, insulin, leptin, and cholesterol levels. Metagenomic sequencing revealed significant characteristic alterations in gut microbiota after sleeve gastrectomy, which were correlated with changes in fecal short-chain fatty acid levels. Postoperatively, G protein-coupled receptor 43 expression in the colon tissue was upregulated in both models, whereas its expression in the adipose tissue was downregulated in the diet-induced obese mouse model. CONCLUSIONS Metabolic improvement in obese and diabetic mice after sleeve gastrectomy is associated with alterations in gut microbiota, short-chain fatty acid levels, and G protein-coupled receptor 43 expression. SIGNIFICANCE AND IMPACT OF STUDY Our findings reveal a possible mechanism through which sleeve gastrectomy improves obesity and diabetes via changes in bacteria producing short-chain fatty acids and G protein-coupled receptor 43.
Collapse
Affiliation(s)
- Yan Guo
- Department of Endocrinology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Chaoqian Liu
- Department of General surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Xiang Zhao
- Department of General surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Xianfang Zhang
- Department of General surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Qingzhi Wu
- Department of General surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Zhijie Wang
- Department of General surgery, Changhai Hospital, the Second Military Medical University, Shanghai, China
| | - Jin Lu
- Department of Endocrinology, Changhai Hospital, the Second Military Medical University, Shanghai, China
| |
Collapse
|