1
|
Chow SKH, Gao Q, Pius A, Morita M, Ergul Y, Murayama M, Shinohara I, Cekuc MS, Ma C, Susuki Y, Goodman SB. The Advantages and Shortcomings of Stem Cell Therapy for Enhanced Bone Healing. Tissue Eng Part C Methods 2024; 30:415-430. [PMID: 39311464 DOI: 10.1089/ten.tec.2024.0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
This review explores the regenerative potential of key progenitor cell types and therapeutic strategies to improve healing of complex fractures and bone defects. We define, summarize, and discuss the differentiation potential of totipotent, pluripotent, and multipotent stem cells, emphasizing the advantages and shortcomings of cell therapy for bone repair and regeneration. The fundamental role of mesenchymal stem cells is highlighted due to their multipotency to differentiate into the key lineage cells including osteoblasts, osteocytes, and chondrocytes, which are crucial for bone formation and remodeling. Hematopoietic stem cells (HSCs) also play a significant role; immune cells such as macrophages and T-cells modulate inflammation and tissue repair. Osteoclasts are multinucleated cells that are important to bone remodeling. Vascular progenitor (VP) cells are critical to oxygen and nutrient supply. The dynamic interplay among these lineages and their microenvironment is essential for effective bone restoration. Therapies involving cells that are more than "minimally manipulated" are controversial and include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). ESCs, derived from early-stage embryos, possess pluripotent capabilities and have shown promise in preclinical studies for bone healing. iPSCs, reprogrammed from somatic cells, offer personalized medicine applications and can differentiate into various tissue-specific cell lines. Minimally manipulative cell therapy approaches such as the use of bone marrow aspirate concentrate (BMAC), exosomes, and various biomaterials for local delivery are explored for their effectiveness in bone regeneration. BMAC, which contains mostly immune cells but few mesenchymal and VPs, probably improves bone healing by facilitating paracrine-mediated intercellular communication. Exosome isolation harnesses the biological signals and cellular by-products that are a primary source for cell crosstalk and activation. Safe, efficacious, and cost-effective strategies to enhance bone healing using novel cellular therapies are part of a changing paradigm to modulate the inflammatory, repair, and regenerative pathways to achieve earlier more robust tissue healing and improved physical function. Impact Statement Stem cell therapy holds immense potential for bone healing due to its ability to regenerate damaged tissue. Nonmanipulated bone marrow aspirate contains mesenchymal stem cells that promote bone repair and reduce healing time. Induced pluripotent stem cells offer the advantage of creating patient-specific cells that can differentiate into osteoblasts, aiding in bone regeneration. Other delivery methods, such as scaffold-based techniques, enhance stem cell integration and function. Collectively, these approaches can improve treatment outcomes, reduce recovery periods, and advance our understanding of bone healing mechanisms, making them pivotal in orthopedic research and regenerative medicine.
Collapse
Affiliation(s)
- Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Qi Gao
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Alexa Pius
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mayu Morita
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yasemin Ergul
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Masatoshi Murayama
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Issei Shinohara
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Mehmet Sertac Cekuc
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Chao Ma
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Yosuke Susuki
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
| | - Stuart B Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA
- Department of Bioengineering, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Lau CS, Park SY, Ethiraj LP, Singh P, Raj G, Quek J, Prasadh S, Choo Y, Goh BT. Role of Adipose-Derived Mesenchymal Stem Cells in Bone Regeneration. Int J Mol Sci 2024; 25:6805. [PMID: 38928517 PMCID: PMC11204188 DOI: 10.3390/ijms25126805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Bone regeneration involves multiple factors such as tissue interactions, an inflammatory response, and vessel formation. In the event of diseases, old age, lifestyle, or trauma, bone regeneration can be impaired which could result in a prolonged healing duration or requiring an external intervention for repair. Currently, bone grafts hold the golden standard for bone regeneration. However, several limitations hinder its clinical applications, e.g., donor site morbidity, an insufficient tissue volume, and uncertain post-operative outcomes. Bone tissue engineering, involving stem cells seeded onto scaffolds, has thus been a promising treatment alternative for bone regeneration. Adipose-derived mesenchymal stem cells (AD-MSCs) are known to hold therapeutic value for the treatment of various clinical conditions and have displayed feasibility and significant effectiveness due to their ease of isolation, non-invasive, abundance in quantity, and osteogenic capacity. Notably, in vitro studies showed AD-MSCs holding a high proliferation capacity, multi-differentiation potential through the release of a variety of factors, and extracellular vesicles, allowing them to repair damaged tissues. In vivo and clinical studies showed AD-MSCs favoring better vascularization and the integration of the scaffolds, while the presence of scaffolds has enhanced the osteogenesis potential of AD-MSCs, thus yielding optimal bone formation outcomes. Effective bone regeneration requires the interplay of both AD-MSCs and scaffolds (material, pore size) to improve the osteogenic and vasculogenic capacity. This review presents the advances and applications of AD-MSCs for bone regeneration and bone tissue engineering, focusing on the in vitro, in vivo, and clinical studies involving AD-MSCs for bone tissue engineering.
Collapse
Affiliation(s)
- Chau Sang Lau
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - So Yeon Park
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Lalith Prabha Ethiraj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Priti Singh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Grace Raj
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
| | - Jolene Quek
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Somasundaram Prasadh
- Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269, USA;
| | - Yen Choo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (Y.C.)
| | - Bee Tin Goh
- National Dental Centre Singapore, National Dental Research Institute Singapore, Singapore 168938, Singapore; (C.S.L.); (S.Y.P.); (L.P.E.); (G.R.)
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Zheng S, Hu G, Zheng J, Li Y, Li J. Osthole accelerates osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/β-catenin pathway. Phytother Res 2024. [PMID: 38873735 DOI: 10.1002/ptr.8267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/12/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Osthole, a natural coumarin derivative, has been shown to have multiple pharmacological activities. However, its effect on osteoporotic fracture has not yet been examined. This research was designed to explore the unknown role and potential mechanism of osthole on osteoporotic fracture healing. We first evaluated the osteogenic and angiogenic abilities of osthole. Then angiogenesis-related assays were conducted to investigate the relationship between osteogenesis and angiogenesis, and further explore its molecular mechanism. After that, we established osteoporotic fracture model in ovariectomy-induced osteoporosis rats and treated the rats with osthole or placebo. Radiography, histomorphometry, histology, and sequential fluorescent labeling were used to evaluate the effect of osthole on osteoporotic fracture healing. In vitro research revealed that osthole promoted osteogenesis and up-regulated the expression of angiogenic-related markers. Further research found that osthole couldn't facilitate the angiogenesis of human umbilical vein endothelial cells in a direct manner, but it possessed the ability to induce the osteogenesis-angiogenesis coupling of bone marrow mesenchymal stem cells (BMSCs). Mechanistically, this was conducted through activating the Wnt/β-catenin pathway. Subsequently, using ovariectomy-induced osteoporosis tibia fracture rat model, we observed that osthole facilitated bone formation and CD31hiEMCNhi type H-positive capillary formation. Sequential fluorescent labeling confirmed that osthole could effectively accelerate bone formation in the fractured region. The data above indicated that osthole could accelerate osteoporotic fracture healing by inducing the osteogenesis-angiogenesis coupling of BMSCs via the Wnt/β-catenin pathway, which implied that osthole may be a potential drug for treating osteoporosis fracture.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Guanyu Hu
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Yikai Li
- Department of Traditional Chinese Orthopedics and Traumatology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
He Y, Chen Y. The Potential of Exosomes for Osteoporosis Treatment: A Review. Drug Des Devel Ther 2024; 18:979-989. [PMID: 38562519 PMCID: PMC10984200 DOI: 10.2147/dddt.s437596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
As a continuous process comprising bone resorption and formation, bone remodeling, plays an essential role in maintaining the balance of bone metabolism. One type of metabolic osteopathy is osteoporosis, which is defined by low bone mass and deteriorating bone microstructure. Osteoporosis patients are more likely to experience frequent osteoporotic fractures, which makes osteoporosis prevention and treatment crucial. A growing body of research has revealed that exosomes, which are homogenous vesicles released by most cell types, play a major role in mediating a number of pathophysiological processes, including osteoporosis. Exosomes may act as a mediator in cell-to-cell communication and offer a fresh perspective on information sharing. This review discusses the characteristics of exosomes and outlines the exosomes' underlying mechanism that contributes to the onset of osteoporosis. Recent years have seen a rise in interest in the role of exosomes in osteoporosis, which has given rise to innovative therapeutic approaches for the disease prevention and management.
Collapse
Affiliation(s)
- Yinxi He
- Department of Orthopaedic Trauma, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yanxia Chen
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| |
Collapse
|
5
|
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther 2024; 9:17. [PMID: 38212307 PMCID: PMC10784577 DOI: 10.1038/s41392-023-01704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/15/2023] [Accepted: 11/12/2023] [Indexed: 01/13/2024] Open
Abstract
Although stem cell-based therapy has demonstrated considerable potential to manage certain diseases more successfully than conventional surgery, it nevertheless comes with inescapable drawbacks that might limit its clinical translation. Compared to stem cells, stem cell-derived exosomes possess numerous advantages, such as non-immunogenicity, non-infusion toxicity, easy access, effortless preservation, and freedom from tumorigenic potential and ethical issues. Exosomes can inherit similar therapeutic effects from their parental cells such as embryonic stem cells and adult stem cells through vertical delivery of their pluripotency or multipotency. After a thorough search and meticulous dissection of relevant literature from the last five years, we present this comprehensive, up-to-date, specialty-specific and disease-oriented review to highlight the surgical application and potential of stem cell-derived exosomes. Exosomes derived from stem cells (e.g., embryonic, induced pluripotent, hematopoietic, mesenchymal, neural, and endothelial stem cells) are capable of treating numerous diseases encountered in orthopedic surgery, neurosurgery, plastic surgery, general surgery, cardiothoracic surgery, urology, head and neck surgery, ophthalmology, and obstetrics and gynecology. The diverse therapeutic effects of stem cells-derived exosomes are a hierarchical translation through tissue-specific responses, and cell-specific molecular signaling pathways. In this review, we highlight stem cell-derived exosomes as a viable and potent alternative to stem cell-based therapy in managing various surgical conditions. We recommend that future research combines wisdoms from surgeons, nanomedicine practitioners, and stem cell researchers in this relevant and intriguing research area.
Collapse
Affiliation(s)
- Fei Tan
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China.
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China.
- The Royal College of Surgeons in Ireland, Dublin, Ireland.
- The Royal College of Surgeons of England, London, UK.
| | - Xuran Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Zhao Wang
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jiaojiao Li
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Khawar Shahzad
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
- Plasma Medicine and Surgical Implants Center, Tongji University, Shanghai, China
| | - Jialin Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Nanocatalytic Medicine, Tongji University, Shanghai, China
| |
Collapse
|
6
|
Lv S, Wang G, Dai L, Wang T, Wang F. Cellular and Molecular Connections Between Bone Fracture Healing and Exosomes. Physiol Res 2023; 72:565-574. [PMID: 38015756 PMCID: PMC10751053 DOI: 10.33549/physiolres.935143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/25/2023] [Indexed: 01/05/2024] Open
Abstract
Fracture healing is a multifaceted process that requires various phases and intercellular interactions. In recent years, investigations have been conducted to assess the feasibility of utilizing exosomes, small extracellular vesicles (EVs), to enhance and accelerate the healing process. Exosomes serve as a cargo transport platform, facilitating intercellular communication, promoting the presentation of antigens to dendritic cells, and stimulating angiogenesis. Exosomes have a special structure that gives them a special function, especially in the healing process of bone injuries. This article provides an overview of cellular and molecular processes associated with bone fracture healing, as well as a survey of existing exosome research in this context. We also discuss the potential use of exosomes in fracture healing, as well as the obstacles that must be overcome to make this a viable clinical practice.
Collapse
Affiliation(s)
- S Lv
- Department of Orthopedics, Sinopharm China Railway Engineering Corporation Central Hospital, Hefei, China.
| | | | | | | | | |
Collapse
|
7
|
Wang B, Sun Y, Shi D, Han X, Liu N, Wang B. Impact of Alendronate Sodium plus Elcatonin on Postoperative Bone Pain in Patients with Osteoporotic Fractures. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1213278. [PMID: 36119926 PMCID: PMC9473873 DOI: 10.1155/2022/1213278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
Objective This research aims to investigate and analyze the impact of alendronate sodium (ALN) plus elcatonin (EC) in treating postoperative bone pain (BP) in patients with osteoporotic fractures (OPFs). Methods One hundred and thirty-eight cases of OPFs admitted between July 2018 and July 2021 were selected, of which 68 cases receiving ALN were set as the control group and 70 cases receiving ALN plus EC were set as the research group. Intercomparisons were performed in terms of BP, curative effect, complication rate, and serum bone metabolism indexes such as bone Gla protein (BGP), parathyroid hormone (PTH), and bone alkaline phosphatase (BALP). Results Better postoperative BP relief, higher overall response rate, and lower complication rate were identified in the research group versus the control group. On the other hand, the research group presented with increased BGP and BALP after treatment, higher than those in the control group, while the posttreament PTH decreased obviously and was lower versus the control group. Conclusions For OPF patients, ALN plus EC contributes to significantly reduced postoperative BP, improved clinical efficacy, higher treatment safety, and better bone metabolism, which has high clinical application value.
Collapse
Affiliation(s)
- Baohui Wang
- Pain Ward of Orthopedics Department of TCM, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000 Shaanxi Province, China
| | - Yindi Sun
- Pain Ward of Orthopedics Department of TCM, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000 Shaanxi Province, China
| | - Da Shi
- Joint Ward of Orthopedics Department of TCM, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000 Shaanxi Province, China
| | - Xiuwei Han
- Joint Ward of Orthopedics Department of TCM, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000 Shaanxi Province, China
| | - Na Liu
- Pain Ward of Orthopedics Department of TCM, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000 Shaanxi Province, China
| | - Bo Wang
- Joint Ward of Orthopedics Department of TCM, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000 Shaanxi Province, China
| |
Collapse
|
8
|
Diagnostic and Therapeutic Roles of Extracellular Vesicles in Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6742792. [PMID: 35979398 PMCID: PMC9377967 DOI: 10.1155/2022/6742792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 01/10/2023]
Abstract
Aging shows a decline in overall physical function, and cellular senescence is the powerful catalyst leading to aging. Considering that aging will be accompanied with the emergence of various aging-related diseases, research on new antiaging drugs is still valuable. Extracellular vesicles (EVs), as tools for intercellular communication, are important components of the senescence-associated secretory phenotype (SASP), and they can play pathological roles in the process of cellular senescence. In addition, EVs are similar to their original cells in functions. Therefore, EVs derived from pathological tissues or body fluids may be closely related to the progression of diseases and become potential biomarkers, while those from healthy cells may have therapeutic effects. Moreover, EVs are satisfactory drug carriers. At present, numerous studies have supported the idea that engineered EVs could improve drug targeting ability and utilization efficiency. Here, we summarize the characteristics of EVs and cellular senescence and focus on the diagnostic and therapeutic potential of EVs in various aging-related diseases, including Alzheimer disease, osteoporosis, cardiovascular disease, diabetes mellitus and its complications, and skin aging.
Collapse
|
9
|
Liang W, Han B, Hai Y, Sun D, Yin P. Mechanism of Action of Mesenchymal Stem Cell-Derived Exosomes in the Intervertebral Disc Degeneration Treatment and Bone Repair and Regeneration. Front Cell Dev Biol 2022; 9:833840. [PMID: 35096846 PMCID: PMC8795890 DOI: 10.3389/fcell.2021.833840] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles formed by various donor cells that regulate gene expression and cellular function in recipient cells. Exosomes derived from mesenchymal stem cells (MSC-Exos) perform the regulatory function of stem cells by transporting proteins, nucleic acids, and lipids. Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, and it is characterized by a decreased number of nucleus pulposus cells, extracellular matrix decomposition, aging of the annulus fibrosus, and cartilage endplate calcification. Besides, nutrient transport and structural repair of intervertebral discs depend on bone and cartilage and are closely related to the state of the bone. Trauma, disease and aging can all cause bone injury. However, there is a lack of effective drugs against IDD and bone injury. Recent MSC-Exos fine tuning has led to significant progress in the IDD treatment and bone repair and regeneration. In this review, we looked at the uniqueness of MSC-Exos, and the potential treatment mechanisms of MSC-Exos with respect to IDD, bone defects and injuries.
Collapse
Affiliation(s)
- Weishi Liang
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bo Han
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Duan Sun
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|