1
|
Shen Z, Wang J, Chen Y, Fang P, Yuan A, Chen AF, Yan X, Lyu Y, Pu J. Activation of nuclear receptor pregnane-X-receptor protects against abdominal aortic aneurysm by inhibiting oxidative stress. Redox Biol 2024; 77:103397. [PMID: 39427444 DOI: 10.1016/j.redox.2024.103397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening condition, but effective medications to prevent its progression and rupture are currently lacking. The nuclear receptor pregnane-X-receptor (PXR) plays a crucial role in vascular homeostasis. However, the role of PXR in AAA development remains unknown. We first detected the PXR expression in human and murine AAA tissues by RT-qPCR and Western blot. To investigate the potential role of PXR in the development of AAA, we used adeno-associated virus-mediated overexpression of PXR and pharmacological activation of PXR by ginkgolide A (GA) in mouse AAA models induced by both angiotensin II (AngII) and calcium phosphate [Ca3(PO4)2]. The underlying mechanism was further explored using RNA-sequencing and molecular biological analyses. We found a significant decrease in both mRNA and protein levels of PXR in both human and murine aortic smooth muscle cells from AAA tissues, accompanied with phenotypic switching of vascular smooth muscle cell and increased oxidative stress. PXR overexpression in abdominal aortas and GA treatment successfully suppressed AAA formation in both mouse AAA models. RNA-sequencing data revealed that PXR activation inhibited gamma-aminobutyric acid type A receptor subunit alpha3 (GABRA3) expression. Additional mechanistic studies identified that PXR suppressed AAA through mitigating GABRA3-induced reactive oxygen species (ROS) generation and subsequent phosphorylation of c-Jun N-terminal kinase (JNK). Interestingly, p-JNK was found to induce ubiquitin-proteasome degradation of PXR. In summary, our data unveiled, for the first time, the protective role of PXR against AAA pathogenesis by inhibiting oxidative stress. These findings suggested PXR as a promising therapeutic target for AAA.
Collapse
Affiliation(s)
- Zhi Shen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Jinxi Wang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yifei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Peiliang Fang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ancai Yuan
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xiaoxiang Yan
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuyan Lyu
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory for Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
2
|
Ginzburg D, Nowak S, Attenberger U, Luetkens J, Sprinkart AM, Kuetting D. Computer tomography-based assessment of perivascular adipose tissue in patients with abdominal aortic aneurysms. Sci Rep 2024; 14:20512. [PMID: 39227666 PMCID: PMC11372190 DOI: 10.1038/s41598-024-71283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
This retrospective study investigates perivascular adipose tissue (PVAT) alterations in CT as a marker of inflammation in patients with abdominal aortic aneurysms (AAA). 100 abdominal CT scans of patients with abdominal aortic aneurysms and 100 age and sex matched controls without underlying aortic disease were included. Artificial Intelligence (AI) assisted segmentation of the aorta and the surrounding adipose tissue was performed. Adipose tissue density was measured in Hounsfield units (HU) close (2-5mm, HUclose) and distant (10-12mm, HUdistant) to the aortic wall. To investigate alterations in adipose tissue density close to the aorta (HUclose) as a potential marker of inflammation, we calculated the difference HUΔ = HUclose-HUdistant and the fat attenuation ratio HUratio = HUclose/HUdistant as normalized attenuation measures. These two markers were compared i) inter-individually between AAA patients and controls and ii) intra-individually between the aneurysmal and non-aneurysmal segments in AAA patients. Since most AAAs are generally observed infrarenal, the aneurysmal section of the AAA patients was compared with the infrarenal section of the aorta of the control patients. In inter-individual comparisons, higher HUΔ and a lower HUratio were observed (aneurysmal: 8.9 ± 5.1 HU vs. control: 6.9 ± 4.8 HU, p-value = 0.006; aneurysmal: 89.8 ± 5.7% vs. control: 92.1 ± 5.5% p-value = 0.004). In intra-individual comparisons, higher HUΔ and lower HUratio were observed (aneurysmal: 8.9 ± 5.1 HU vs. non-aneurysmal: 5.5 ± 4.1 HU, p-value < 0.001; aneurysmal: 89.8 ± 5.7% vs. non-aneurysmal 93.3 ± 4.9%, p-value < 0.001). The results indicate PVAT density alterations in AAA patients. This motivates further research to establish non-invasive imaging markers for vascular and perivascular inflammation in AAA.
Collapse
Affiliation(s)
- Daniel Ginzburg
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Sebastian Nowak
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ulrike Attenberger
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Julian Luetkens
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Alois Martin Sprinkart
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Daniel Kuetting
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
3
|
Rodrigues-Diez R, Ballesteros-Martinez C, Moreno-Carriles RM, Nistal F, Díaz Del Campo LS, Cachofeiro V, Dalli J, García-Redondo AB, Redondo JM, Salaices M, Briones AM. Resolvin D2 prevents vascular remodeling, hypercontractility and endothelial dysfunction in obese hypertensive mice through modulation of vascular and proinflammatory factors. Biomed Pharmacother 2024; 174:116564. [PMID: 38608525 DOI: 10.1016/j.biopha.2024.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.
Collapse
MESH Headings
- Animals
- Male
- Humans
- Docosahexaenoic Acids/pharmacology
- Hypertension/metabolism
- Hypertension/drug therapy
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/metabolism
- Vascular Remodeling/drug effects
- Mice
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Diet, High-Fat/adverse effects
- Angiotensin II
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/drug therapy
- Inflammation Mediators/metabolism
- Mice, Obese
- Vasoconstriction/drug effects
- Inflammation/pathology
- Inflammation/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - Constanza Ballesteros-Martinez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | | | - Francisco Nistal
- CIBER de Enfermedades Cardiovasculares, Spain; Cirugía Cardiovascular. Hospital Universitario "Marqués de Valdecilla", IDIVAL, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Lucía S Díaz Del Campo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Victoria Cachofeiro
- CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Ana B García-Redondo
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Juan M Redondo
- CIBER de Enfermedades Cardiovasculares, Spain; Grupo de Regulación Génica en remodelado cardiovascular e inflamación, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Cell-cell communication & inflammation unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain
| | - Ana M Briones
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid. Instituto de Investigación Hospital Universitario La Paz (IdiPaz), Madrid, Spain; CIBER de Enfermedades Cardiovasculares, Spain.
| |
Collapse
|
4
|
Zhang Y, Li G. Predicting feature genes correlated with immune infiltration in patients with abdominal aortic aneurysm based on machine learning algorithms. Sci Rep 2024; 14:5157. [PMID: 38431726 PMCID: PMC10908806 DOI: 10.1038/s41598-024-55941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a condition characterized by a pathological and progressive dilatation of the infrarenal abdominal aorta. The exploration of AAA feature genes is crucial for enhancing the prognosis of AAA patients. Microarray datasets of AAA were downloaded from the Gene Expression Omnibus database. A total of 43 upregulated differentially expressed genes (DEGs) and 32 downregulated DEGs were obtained. Function, pathway, disease, and gene set enrichment analyses were performed, in which enrichments were related to inflammation and immune response. AHR, APLNR, ITGA10 and NR2F6 were defined as feature genes via machine learning algorithms and a validation cohort, which indicated high diagnostic abilities by the receiver operating characteristic curves. The cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) method was used to quantify the proportions of immune infiltration in samples of AAA and normal tissues. We have predicted AHR, APLNR, ITGA10 and NR2F6 as feature genes of AAA. CD8 + T cells and M2 macrophages correlated with these genes may be involved in the development of AAA, which have the potential to be developed as risk predictors and immune interventions.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, Shandong, China
- Postdoctoral Workstation, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250021, Shandong, China
- Department of Pulmonary and Critical Care Medicine, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, 214400, Jiangsu, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
5
|
Shu T, Zhou Y, Yan C. The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection. Vascul Pharmacol 2024; 154:107278. [PMID: 38262506 PMCID: PMC10939884 DOI: 10.1016/j.vph.2024.107278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Aortic aneurysm (AA) and dissection (AD) are aortic diseases caused primarily by medial layer degeneration and perivascular inflammation. They are lethal when the rupture happens. Vascular smooth muscle cells (SMCs) play critical roles in the pathogenesis of medial degeneration, characterized by SMC loss and elastin fiber degradation. Many molecular pathways, including cyclic nucleotide signaling, have been reported in regulating vascular SMC functions, matrix remodeling, and vascular structure integrity. Intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are second messengers that mediate intracellular signaling transduction through activating effectors, such as protein kinase A (PKA) and PKG, respectively. cAMP and cGMP are synthesized by adenylyl cyclase (AC) and guanylyl cyclase (GC), respectively, and degraded by cyclic nucleotide phosphodiesterases (PDEs). In this review, we will discuss the roles and mechanisms of cAMP/cGMP signaling and PDEs in AA/AD formation and progression and the potential of PDE inhibitors in AA/AD, whether they are beneficial or detrimental. We also performed database analysis and summarized the results showing PDEs with significant expression changes under AA/AD, which should provide rationales for future research on PDEs in AA/AD.
Collapse
Affiliation(s)
- Ting Shu
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States
| | - Yitian Zhou
- Peking Union Medical College, MD Program, Beijing, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, New York, United States.
| |
Collapse
|
6
|
Wu Y, Zhang H, Jiang D, Yin F, Guo P, Zhang X, Zhang J, Han Y. Body mass index and the risk of abdominal aortic aneurysm presence and post-operative mortality: a systematic review and dose-response meta-analysis. Int J Surg 2024; 110:01279778-990000000-01023. [PMID: 38320094 PMCID: PMC11020033 DOI: 10.1097/js9.0000000000001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND The clinical data regarding the relationships between body mass index (BMI) and abdominal aortic aneurysm (AAA) are inconsistent, especially for the obese and overweight patients. The aims of this study were to determine whether obesity is associated with the presence of AAA and to investigate the quantitative relationship between BMI and the risk of AAA presence and post-operative mortality. MATERIALS AND METHODS PubMed, Web of Science and Embase databases were used to search for pertinent studies updated to December 2023. The pooled relative risk (RR) with 95% confidence interval (CI) was estimated by conventional meta-analysis based on random effects model. Dose-response meta-analyses using robust-error meta-regression (REMR) model were conducted to quantify the associations between BMI and AAA outcome variables. Subgroup analysis, sensitivity analysis and publication bias analysis were performed according to the characteristics of participants. RESULTS 18 studies were included in our study. The meta-analysis showed a higher prevalence of AAA with a RR of 1.07 in patients with obesity. The dose-response meta-analysis revealed a non-linear relationship between BMI and the risk of AAA presence. A "U" shape curve reflecting the correlation between BMI and the risk of post-operative mortality in AAA patients was also uncovered, suggesting the "safest" BMI interval [28.55, 31.05] with the minimal RR. CONCLUSIONS Obesity is positively but nonlinearly correlated with the increased risk of AAA presence. BMI is related to AAA post-operative mortality in a "U" shaped curve, with the lowest RR observed among patients suffering from overweight and obesity. These findings offer a preventive strategy for AAA morbidity and provide guidance for improving the prognosis in patients undergone AAA surgical repair.
Collapse
Affiliation(s)
- Yihao Wu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin
| | - Hao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin
| | - Deying Jiang
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology Dalian
| | - Fanxing Yin
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin
| | - Panpan Guo
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin
| | - Xiaoxu Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin
| | - Jian Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yanshuo Han
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin
- Department of Vascular Surgery, Central Hospital of Dalian University of Technology Dalian
| |
Collapse
|
7
|
Yang C, Yang X, Harrington A, Potts C, Kaija A, Ryzhova L, Liaw L. Notch Signaling Regulates Mouse Perivascular Adipose Tissue Function via Mitochondrial Pathways. Genes (Basel) 2023; 14:1964. [PMID: 37895313 PMCID: PMC10606454 DOI: 10.3390/genes14101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Perivascular adipose tissue (PVAT) regulates vascular function by secreting vasoactive substances. In mice, Notch signaling is activated in the PVAT during diet-induced obesity, and leads to the loss of the thermogenic phenotype and adipocyte whitening due to increased lipid accumulation. We used the Adiponectin-Cre (Adipoq-Cre) strain to activate a ligand-independent Notch1 intracellular domain transgene (N1ICD) to drive constitutive Notch signaling in the adipose tissues (N1ICD;Adipoq-Cre). We previously found that constitutive activation of Notch1 signaling in the PVAT phenocopied the effects of diet-induced obesity. To understand the downstream pathways activated by Notch signaling, we performed a proteomic analysis of the PVAT from control versus N1ICD;Adipoq-Cre mice. This comparison identified prominent changes in the protein signatures related to metabolism, adipocyte homeostasis, mitochondrial function, and ferroptosis. PVAT-derived stromal vascular fraction cells were derived from our mouse strains to study the cellular and molecular phenotypes during adipogenic induction. We found that cells with activated Notch signaling displayed decreased mitochondrial respiration despite similar levels of adipogenesis and mitochondrial number. We observed variable regulation of the proteins related to mitochondrial dynamics and ferroptosis, including PHB3, PINK1, pDRP1, and the phospholipid hydroperoxidase GPX4. Mitochondria regulate some forms of ferroptosis, which is a regulated process of cell death driven by lipid peroxidation. Accordingly, we found that Notch activation promoted lipid peroxidation and ferroptosis in PVAT-derived adipocytes. Because the PVAT phenotype is a regulator of vascular reactivity, we tested the effect of Notch activation in PVAT on vasoreactivity using wire myography. The aortae from the N1ICD;Adipoq-Cre mice had increased vasocontraction and decreased vasorelaxation in a PVAT-dependent and age-dependent manner. Our data provide support for the novel concept that increased Notch signaling in the adipose tissue leads to PVAT whitening, impaired mitochondrial function, increased ferroptosis, and loss of a protective vasodilatory signal. Our study advances our understanding of how Notch signaling in adipocytes affects mitochondrial dynamics, which impacts vascular physiology.
Collapse
Affiliation(s)
- Chenhao Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| | - Xuehui Yang
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Anne Harrington
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Christian Potts
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Abigail Kaija
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Larisa Ryzhova
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
| | - Lucy Liaw
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME 04074, USA; (C.Y.); (X.Y.); (A.H.); (C.P.); (A.K.); (L.R.)
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
8
|
Zhang S, Gu H, Chang N, Li S, Xu T, Liu M, Wang X. Assessing Abdominal Aortic Aneurysm Progression by Using Perivascular Adipose Tissue Attenuation on Computed Tomography Angiography. Korean J Radiol 2023; 24:974-982. [PMID: 37724591 PMCID: PMC10550735 DOI: 10.3348/kjr.2023.0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 09/21/2023] Open
Abstract
OBJECTIVE Recent studies have highlighted the active and potential role of perivascular adipose tissue (PVAT) in atherosclerosis and aneurysm progression, respectively. This study explored the link between PVAT attenuation and abdominal aortic aneurysm (AAA) progression using computed tomography angiography (CTA). MATERIALS AND METHODS This multicenter retrospective study analyzed patients with AAA who underwent CTA at baseline and follow-up between March 2015 and July 2022. The following parameters were obtained: maximum diameter and total volume of the AAA, presence or absence of intraluminal thrombus (ILT), maximum diameter and volume of the ILT, and PVAT attenuation of the aortic aneurysm at baseline CTA. PVAT attenuation was divided into high (> -73.4 Hounsfield units [HU]) and low (≤ -73.4 HU). Patients who had or did not have AAA progression during the follow-up, defined as an increase in the aneurysm volume > 10 mL from baseline, were identified. Kaplan-Meier and multivariable Cox regression analyses were used to investigate the association between PVAT attenuation and AAA progression. RESULTS Our study included 167 participants (148 males; median age: 70.0 years; interquartile range: 63.0-76.0 years), of which 145 (86.8%) were diagnosed with AAA accompanied by ILT. Over a median period of 11.3 months (range: 6.0-85.0 months), AAA progression was observed in 67 patients (40.1%). Multivariable Cox regression analysis indicated that high baseline PVAT attenuation (adjusted hazard ratio [aHR] = 2.23; 95% confidence interval [CI], 1.16-4.32; P = 0.017) was independently associated with AAA progression. This association was demonstrated within the patients of AAA with ILT subcohort, where a high baseline PVAT attenuation (aHR = 2.23; 95% CI, 1.08-4.60; P = 0.030) was consistently independently associated with AAA progression. CONCLUSION Elevated PVAT attenuation is independently associated with AAA progression, including patients of AAA with ILT, suggesting the potential of PVAT attenuation as a predictive imaging marker for AAA expansion.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China
| | - Hui Gu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China
| | - Na Chang
- Department of Medical Technology, Jinan Nursing Vocational College, Jinan, Shandong, China
| | - Sha Li
- Department of Clinical Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Tianqi Xu
- Department of Clinical Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Menghan Liu
- Depertment of Health Management, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China.
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Zhang K, Zhang J, Kan C, Tian H, Ma Y, Huang N, Han F, Hou N, Sun X. Role of dysfunctional peri-organ adipose tissue in metabolic disease. Biochimie 2023; 212:12-20. [PMID: 37019205 DOI: 10.1016/j.biochi.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Metabolic disease is a complex disorder defined by a group with interrelated factors. There is growing evidence that obesity can lead to a variety of metabolic diseases, including diabetes and cardiovascular disease. Excessive adipose tissue (AT) deposition and ectopic accumulation can lead to increased peri-organ AT thickness. Dysregulation of peri-organ (perivascular, perirenal, and epicardial) AT is strongly associated with metabolic disease and its complications. The mechanisms include secretion of cytokines, activation of immunocytes, infiltration of inflammatory cells, involvement of stromal cells, and abnormal miRNA expression. This review discusses the associations and mechanisms by which various types of peri-organ AT affect metabolic diseases while addressing it as a potential future treatment strategy.
Collapse
Affiliation(s)
- Kexin Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Jingwen Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongzhan Tian
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yanhui Ma
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China; Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China; Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| |
Collapse
|
10
|
Pulgar VM, Guibert C, Faissal Ahmed AS, Trask AJ. Editorial: Model organisms and experimental models: opportunities and challenges in vascular physiology research. Front Physiol 2023; 14:1271220. [PMID: 37675279 PMCID: PMC10478243 DOI: 10.3389/fphys.2023.1271220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Affiliation(s)
- Victor M. Pulgar
- Department of Pharmaceutical and Clinical Sciences, Campbell University, Buies-Creek, NC, United States
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christelle Guibert
- Université de Bordeaux, Institut National de la Santé et de la Recherche Médicale (INSERM) and Centre de Recherche Cardio-Thoracique de Bordeaux (CRCTB), U1045, Pessac, France
| | | | - Aaron J. Trask
- Center for Cardiovascular Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
11
|
Li Y, Tao L, Xu Y, Guo R. Taxifolin ameliorates abdominal aortic aneurysm by preventing inflammation and apoptosis and extracellular matrix degradation via inactivating TLR4/NF-κB axis. Int Immunopharmacol 2023; 119:110197. [PMID: 37098322 DOI: 10.1016/j.intimp.2023.110197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a serious aortic disease with high mortality. Vascular smooth muscle cells (VSMCs) loss is a prominent feature of AAA. Taxifolin (TXL) is a natural antioxidant polyphenol and possesses therapeutic functions in numerous human diseases. This study aimed to investigate TXL's impact on VSMC phenotype in AAA. METHODS In vitro and in vivo of VSMC injury model was induced by angiotensin II (Ang II). The potential function of TXL on AAA was determined using Cell Counting Kit-8, flow cytometry, Western blot, quantitative reverse transcription-PCR, and enzyme-linked immunosorbent assay. Meanwhile, TXL mechanism on AAA was checked by a series of molecular experiments. Also, TXL function on AAA in vivo was further evaluated using hematoxylin-eosin staining, TUNEL assay, Picric acid-Sirius red staining and immunofluorescence assay in C57BL/6 mice. RESULTS TXL alleviated Ang II-induced VSMC injury mainly by enhancing VSMC proliferation and weakening cell apoptosis, alleviating VSMC inflammation, and reducing extracellular matrix (ECM) degradation of VSMCs. Furthermore, mechanistic studies corroborated that TXL reversed the high levels of Toll-like receptor 4 (TLR4) and p-p65/p65 induced by Ang II. Also, TXL facilitated VSMC proliferation and reduced cell apoptosis, repressed inflammation, and ECM degradation of VSMCs, while these effects were reversed by TLR4 overexpression. In vivo studies further confirmed that TXL owned the function of alleviating AAA, such as alleviating collagen fiber hyperplasia and inflammatory cell infiltration in AAA mice, and repressing inflammation and ECM degradation. CONCLUSION TXL protected VSMCs against Ang II-induced injury through activating TLR4/noncanonical nuclear factor-kappaB(NF-κB).
Collapse
Affiliation(s)
- Yuanmin Li
- Department of Cardio-Thoracic Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China
| | - Lingyun Tao
- Shanghai Laboratory Animal Research Center, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, China.
| |
Collapse
|
12
|
Costa D, Andreucci M, Ielapi N, Serraino GF, Mastroroberto P, Bracale UM, Serra R. Vascular Biology of arterial aneurysms. Ann Vasc Surg 2023:S0890-5096(23)00225-X. [PMID: 37068624 DOI: 10.1016/j.avsg.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/19/2023]
Abstract
OBJECTIVE This review aims to analyze biomolecular and cellular events responsible for arterial aneurysm formation with particular attention to vascular remodeling that determines the initiation and the progression of arterial aneurysm, till rupture. METHODS This review was conducted searching libraries such as Web of Science, Scopus, ScienceDirect and Medline. Used keywords with various combinations were: "arterial aneurysms", "biology", "genetics", "proteomics", "molecular", "pathophysiology" and extracellular matrix" RESULTS: There are several genetic alterations responsible of syndromic and non-syndromic disease that predispose to aneurysm formation. ECM imbalance, mainly due to the alteration of vascular smooth muscle cells (VSMCs) homeostasis, overexpression of metalloproteinases (MPs) and cytokines activation, determines weakness of the arterial wall that dilates thus causing aneurysmal disease. Altered mechanotransduction in the ECM may also trigger and sustain anomalous cellular and biochemical signaling. Different cell population such as VSMCs, macrophages, perivascular adipose tissue (PVAT) cells, vascular wall resident stem cells (VWRSCs) are all involved at different levels CONCLUSIONS: Improving knowledge in vascular biology may help researchers and physicians in better targeting aneurysmal disease in order to better prevent and better treat such important disease.
Collapse
Affiliation(s)
- Davide Costa
- Department of Law, Economics and Sociology, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology. University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences. University "Magna Graecia" of Catanzaro. 88100, Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, "Sapienza" University of Rome, 00185, Rome, Italy
| | - Giuseppe Filiberto Serraino
- Department of Experimental and Clinical Medicine. University "Magna Graecia" of Catanzaro. 88100, Catanzaro, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine. University "Magna Graecia" of Catanzaro. 88100, Catanzaro, Italy
| | | | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology. University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Department of Medical and Surgical Sciences. University "Magna Graecia" of Catanzaro. 88100, Catanzaro, Italy.
| |
Collapse
|
13
|
Abstract
ABSTRACT The incidence of abdominal aortic aneurysm (AAA) in the elderly is increasing year by year with high mortality. Current treatment is mainly through surgery or endovascular intervention, which is not sufficient to reduce future risk. Therefore, we still need to find an effective conservative measure as an adjunct therapy or early intervention to prevent AAA progression. Traditional therapeutic agents, such as β-receptor blockers, calcium channel blockers, and statins, have been shown to have limited effects on the growth of AAA. Recently, sodium-glucose cotransport proteins inhibitors (SGLT2is), a new class hypoglycemic drug, have shown outstanding beneficiary effects on cardiovascular diseases by plasma volume reduction, vascular tone regulation, and various unidentified mechanisms. It has been demonstrated that SGLT2i is abundantly expressed in the aorta, and some studies also showed promising results of SGLT2i in treating animal AAA models. This article aims to summarize the recent progress of AAA studies and look forward to the application of SGLT2i in AAA treatment for early intervention or adjunct therapy after surgical repair or stent graft.
Collapse
Affiliation(s)
- Zhongtiao Jin
- Master of Medicine, Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China; and
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, 430060, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, 430060, China.
| | - Ling Gao
- Master of Medicine, Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China; and
| |
Collapse
|
14
|
Sheng C, Liu T, Chen S, Liao M, Yang P. The neglected association between central obesity markers and abdominal aortic aneurysm presence: A systematic review and meta-analysis. Front Cardiovasc Med 2023; 10:1044560. [PMID: 36844737 PMCID: PMC9947524 DOI: 10.3389/fcvm.2023.1044560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Purpose To review the association between central obesity and abdominal aortic aneurysm (AAA). Materials and methods The PubMed, Web of Sciences, Embase, The China national knowledge infrastructure (CNKI), and Cochrane Library were searched up to April 30, 2022. Researches includes investigation of the relationship between central obesity markers and AAA. Included studies must use recognized measures of central obesity, i.e., waist circumference (WC) and waist-to-hip ratio (WHR), or use imaging techniques to calculate abdominal fat distribution, such as computed tomography (CT) imaging. Results Eleven clinical researches were identified of which eight discussed the association between physical examination and AAA, and three studies mainly focused on abdominal fat volume (AFV). Seven researches concluded that there was a positive correlation between markers of central obesity and AAA. Three studies found no significant link between markers of central obesity and AAA. One of the remaining studies reported different results for each sex. Three studies pooled in a meta-analysis identified correlation between central obesity and AAA presence (RR = 1.29; 95% confidence interval, 1.14-1.46). Conclusion Central obesity plays a role in the risk of AAA. Standardized central obesity markers may be predictors of AAA. However, there was no association between abdominal fat volume and AAA. Additional relevant evidence and specific mechanisms warrant further study. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?IDCRD42022332519, identifier CRD42022332519.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tinghua Liu
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shen Chen
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingmei Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Mingmei Liao,
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Pu Yang,
| |
Collapse
|
15
|
Wang X, He B, Deng Y, Liu J, Zhang Z, Sun W, Gao Y, Liu X, Zhen Y, Ye Z, Liu P, Wen J. Identification of a biomarker and immune infiltration in perivascular adipose tissue of abdominal aortic aneurysm. Front Physiol 2022; 13:977910. [PMID: 36187757 PMCID: PMC9523244 DOI: 10.3389/fphys.2022.977910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Objective: Abdominal aortic aneurysm (AAA) refers to unusual permanent dilation of the abdominal aorta, and gradual AAA expansion can lead to fatal rupture. However, we lack clear understanding of the pathogenesis of this disease. The effect of perivascular adipose tissue (PVAT) on vascular functional status has attracted increasing attention. Here, we try to identify the potential mechanisms linking AAA and PVAT. Methods: We downloaded dataset GSE119717, including 30 dilated AAA PVAT samples and 30 non-dilated aorta PVAT samples from AAA cases, from Gene Expression Omnibus to identify differentially expressed genes (DEGs). We performed pathway enrichment analysis by Metascape, ClueGo and DAVID to annotate PVAT functional status according to the DEGs. A protein-protein interaction network, the support vector machine (SVM)-recursive feature elimination and the least absolute shrinkage and selection operator regression model were constructed to identify feature genes. Immune infiltration analysis was explored by CIBERSORT. And the correlation between feature gene and immune cells was also calculated. Finally, we used the angiotensin II (Ang II)-ApoE−/− mouse model of AAA to verify the effect of feature gene expression by confirming protein expression using immunohistochemistry and western blot. Results: We identified 22 DEGs, including 21 upregulated genes and 1 downregulated gene. The DEGs were mainly enriched in neutrophil chemotaxis and IL-17 signaling pathway. FOS was identified as a good diagnostic feature gene (AUC = 0.964). Immune infiltration analysis showed a higher level of T cells follicular helper, activated NK cells, Monocytes, activated Mast cells in AAA group. And FOS was correlated with immune cells. Immunohistochemistry and western blot confirmed higher FOS expression in PVAT of the AAA mouse model compared to control group. Conclusion: The differentially expressed genes and pathways identified in this study provide further understanding of how PVAT affects AAA development. FOS was identified as the diagnostic gene. There was an obvious difference in immune cells infiltration between normal and AAA groups.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Bin He
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yisen Deng
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jingwen Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Zhaohua Zhang
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| | - Jianyan Wen
- Department of Cardiovascular Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Jianyan Wen, ; Peng Liu,
| |
Collapse
|
16
|
Guo C, Liu Z, Yu Y, Zhou Z, Ma K, Zhang L, Dang Q, Liu L, Wang L, Zhang S, Hua Z, Han X, Li Z. EGR1 and KLF4 as Diagnostic Markers for Abdominal Aortic Aneurysm and Associated With Immune Infiltration. Front Cardiovasc Med 2022; 9:781207. [PMID: 35224035 PMCID: PMC8863960 DOI: 10.3389/fcvm.2022.781207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Background Formation and rupture of abdominal aortic aneurysm (AAA) is fatal, and the pathological processes and molecular mechanisms underlying its formation and development are unclear. Perivascular adipose tissue (PVAT) has attracted extensive attention as a newly defined secretory organ, and we aim to explore the potential association between PVAT and AAA. Methods We analyzed gene expression and clinical data of 30 PVAT around AAA and 30 PVAT around normal abdominal aorta (NAA). The diagnostic markers and immune cell infiltration of PVAT were further investigated by WGCNA, CIBERSORT, PPI, and multiple machine learning algorisms (including LASSO, RF, and SVM). Subsequently, eight-week-old C57BL/6 male mice (n = 10) were used to construct AAA models, and aorta samples were collected for molecular validation. Meanwhile, fifty-five peripheral venous blood samples from patients (AAA vs. normal: 40:15) in our hospital were used as an inhouse cohort to validate the diagnostic markers by qRT-PCR. The diagnostic efficacy of biomarkers was assessed by receiver operating characteristic (ROC) curve, area under the ROC (AUC), and concordance index (C-index). Results A total of 75 genes in the Grey60 module were identified by WGCNA. To select the genes most associated with PVAT in the grey60 module, three algorithms (including LASSO, RF, and SVM) and PPI were applied. EGR1 and KLF4 were identified as diagnostic markers of PVAT, with high accurate AUCs of 0.916, 0.926, and 0.948 (combined two markers). Additionally, the two biomarkers also displayed accurate diagnostic efficacy in the mice and inhouse cohorts, with AUCs and C-indexes all >0.8. Compared with the NAA group, PVAT around AAA was more abundant in multiple immune cell infiltration. Ultimately, the immune-related analysis revealed that EGR1 and KLF4 were associated with mast cells, T cells, and plasma cells. Conclusion EGR1 and KLF4 were diagnostic markers of PVAT around AAA and associated with multiple immune cells.
Collapse
Affiliation(s)
- Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yin Yu
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Zhibin Zhou
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Ma
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linfeng Zhang
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuai Zhang
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Hua
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|