1
|
Liu S, Zhang C, Zhang Y, Wu Z, Wu P, Tian S, Zhang M, Lang L, Li L, Wang R, Liu H, Zhang J, Mao X, Li S. Causal association between blood leukocyte counts and vascular dementia: a two-sample bidirectional Mendelian randomization study. Sci Rep 2024; 14:19582. [PMID: 39179767 PMCID: PMC11344047 DOI: 10.1038/s41598-024-70446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
While previous observational studies have suggested a link between leukocyte counts and vascular dementia (VD), the causal relationship between leukocyte counts and various subtypes of VD remains elusive. This study aimed to investigate the causal relationship between five types of leukocyte counts and VD, with the goal of improving prevention and treatment strategies. In this study, leukocyte counts were used as the exposure variable, with genome-wide association study (GWAS) data sourced from both the UK Biobank and the Blood Cell Consortium. Additionally, GWAS data for five subtypes of vascular dementia were obtained from the FinnGen database. We conducted rigorous statistical analysis and visualization using Mendelian randomization (MR) to elucidate the potential causal relationship between leukocyte counts and vascular dementia. This study, utilizing MR analysis with data from the UK Biobank and Blood Cell Consortium, identified significant causal associations between increased lymphocyte counts and VD. Specifically, lymphocyte counts were found to be causally related to multiple and mixed VD subtypes. Sensitivity analyses, including MR-Egger regression and MR-PRESSO tests, confirmed the robustness of these findings, with no evidence of reverse causality or significant horizontal pleiotropy detected. The results underscore a potential inflammatory or immunological mechanism in the pathogenesis of VD, highlighting lymphocytes as a key component in their etiology. This investigation establishes a robust association between elevated lymphocyte and leukocyte counts and an increased risk of VD, emphasizing the roles of inflammation, immune activation, and hematological factors in disease pathogenesis.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenwei Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yukai Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ping Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shouyuan Tian
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Zhang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limin Lang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruonan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Jingfen Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolu Mao
- Shengjing Hospital of China Medical University, Shenyang , Liaoning, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
2
|
Sigdel S, Udoh G, Albalawy R, Wang J. Perivascular Adipose Tissue and Perivascular Adipose Tissue-Derived Extracellular Vesicles: New Insights in Vascular Disease. Cells 2024; 13:1309. [PMID: 39195199 DOI: 10.3390/cells13161309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Perivascular adipose tissue (PVAT) is a special deposit of fat tissue surrounding the vasculature. Previous studies suggest that PVAT modulates the vasculature function in physiological conditions and is implicated in the pathogenesis of vascular diseases. Understanding how PVAT influences vasculature function and vascular disease progression is important. Extracellular vesicles (EVs) are novel mediators of intercellular communication. EVs encapsulate molecular cargo such as proteins, lipids, and nucleic acids. EVs can influence cellular functions by transferring the carried bioactive molecules. Emerging evidence indicates that PVAT-derived EVs play an important role in vascular functions under health and disease conditions. This review will focus on the roles of PVAT and PVAT-EVs in obesity, diabetic, and metabolic syndrome-related vascular diseases, offering novel insights into therapeutic targets for vascular diseases.
Collapse
Affiliation(s)
- Smara Sigdel
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Gideon Udoh
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Rakan Albalawy
- Department of Internal Medicine, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jinju Wang
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| |
Collapse
|
3
|
Peiu SN, Iosep DG, Danciu M, Scripcaru V, Ianole V, Mocanu V. Ghrelin Expression in Atherosclerotic Plaques and Perivascular Adipose Tissue: Implications for Vascular Inflammation in Peripheral Artery Disease. J Clin Med 2024; 13:3737. [PMID: 38999303 PMCID: PMC11242600 DOI: 10.3390/jcm13133737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Atherosclerosis, a leading cause of peripheral artery disease (PAD), is driven by lipid accumulation and chronic inflammation within arterial walls. Objectives: This study investigates the expression of ghrelin, an anti-inflammatory peptide hormone, in plaque morphology and inflammation in patients with PAD, highlighting its potential role in age-related vascular diseases and metabolic syndrome. Methods: The analysis specifically focused on the immunohistochemical expression of ghrelin in atherosclerotic plaques and perivascular adipose tissue (PVAT) from 28 PAD patients. Detailed immunohistochemical staining was performed to identify ghrelin within these tissues, comparing its presence in various plaque types and assessing its association with markers of inflammation and macrophage polarization. Results: Significant results showed a higher prevalence of calcification in fibro-lipid plaques (63.1%) compared to fibrous plaques, with a notable difference in inflammatory infiltration between the two plaque types (p = 0.027). Complicated plaques exhibited increased ghrelin expression, suggesting a modulatory effect on inflammatory processes, although this did not reach statistical significance. The correlation between ghrelin levels and macrophage presence, especially the pro-inflammatory M1 phenotype, indicates ghrelin's involvement in the inflammatory dynamics of atherosclerosis. Conclusions: The findings propose that ghrelin may influence plaque stability and vascular inflammation, pointing to its therapeutic potential in managing atherosclerosis. The study underlines the necessity for further research to clarify ghrelin's impact on vascular health, particularly in the context of metabolic syndrome and age-related vascular alterations.
Collapse
Affiliation(s)
- Sorin Nicolae Peiu
- Vascular Surgery Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Diana Gabriela Iosep
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Danciu
- Pathology Department, "Sf. Spiridon" Emergency Clinical Hospital, 700111 Iasi, Romania
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Scripcaru
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Victor Ianole
- Morpho-Functional Department-Morphopathology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Veronica Mocanu
- Morpho-Functional Sciences II (Physiopathology) Department, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
4
|
Wang A, Dong S, Liu B, Liu D, Zou M, Han Y, Yang L, Wang Y. The role of RUNX1/NF-κB in regulating PVAT inflammation in aortic dissection. Sci Rep 2024; 14:9960. [PMID: 38693222 PMCID: PMC11063189 DOI: 10.1038/s41598-024-60737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
The pathogenesis of aortic dissection (AD), an aortic disease associated with high mortality, involves significant vascular inflammatory infiltration. However, the precise relationship between perivascular adipose tissue (PVAT) and aortic dissection remains incompletely understood. The objective of this study is to investigate the role of PVAT inflammation in the pathogenesis of aortic dissection and identify novel therapeutic targets for this disease. The mouse model of aortic dissection was established in this study through intraperitoneal injection of Ang II and administration of BAPN in drinking water. Additionally, control groups were established at different time points including the 2-week group, 3-week group, and 4-week group. qPCR and immunohistochemistry techniques were employed to detect the expression of inflammatory markers and RUNX1 in PVAT surrounding the thoracic aorta in mice. Additionally, an aortic dissection model was established using RUNX1 knockout mice, and the aforementioned indicators were assessed. The 3T3-L1 cells were induced to differentiate into mature adipocytes in vitro, followed by lentivirus transfection for the knockdown or overexpression of RUNX1. The study aimed to investigate the potential cell-to-cell interactions by co-culturing 3T3-L1 cells with A7r5 or RAW264.7 cells. Subsequently, human aortic PVAT samples were obtained through clinical surgery and the aforementioned indicators were detected. In comparison to the control group, the aortic dissection model group exhibited decreased expression of MMP-2 and NF-κB in PVAT, while TNF-α and RUNX1 expression increased. Suppression of RUNX1 expression resulted in increased MMP-2 and NF-κB expression in PVAT, along with decreased TNF-α expression. Overexpression of RUNX1 upregulated the expression levels of NF-Κb, MMP-2, and TNF-α in adipocytes, whereas knockdown of RUNX1 exerted an opposite effect. Macrophages co-cultured with adipocytes overexpressing RUNX1 exhibited enhanced CD86 expression, while vascular smooth muscle cells co-cultured with these adipocytes showed reduced α-SMA expression. In human samples, there was an increase in both RUNX1 and MMP-2 expression levels, accompanied by a decrease in TNF-α and NF-Κb expression. The presence of aortic dissection is accompanied by evident inflammatory alterations in the PVAT, and this phenomenon appears to be associated with the involvement of RUNX1. It is plausible that the regulation of PVAT's inflammatory changes by RUNX1/NF-κB signaling pathway plays a role in the pathogenesis of aortic dissection.
Collapse
Affiliation(s)
- Ao Wang
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Shengjun Dong
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Baohui Liu
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Dianxiao Liu
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Mingrui Zou
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Yuexin Han
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China
| | - Lijuan Yang
- Department of Medical Research Center, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China.
| | - Yujiu Wang
- Department of Cardiovascular Surgery, Binzhou Medical University Hospital, Binzhou, 256600, Shandong Province, China.
| |
Collapse
|
5
|
Valentini A, Cardillo C, Della Morte D, Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:3006. [PMID: 38002006 PMCID: PMC10669084 DOI: 10.3390/biomedicines11113006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases (CVDs) and type 2 diabetes mellitus (T2DM) are two of the four major chronic non-communicable diseases (NCDs) representing the leading cause of death worldwide. Several studies demonstrate that endothelial dysfunction (ED) plays a central role in the pathogenesis of these chronic diseases. Although it is well known that systemic chronic inflammation and oxidative stress are primarily involved in the development of ED, recent studies have shown that perivascular adipose tissue (PVAT) is implicated in its pathogenesis, also contributing to the progression of atherosclerosis and to insulin resistance (IR). In this review, we describe the relationship between PVAT and ED, and we also analyse the role of PVAT in the pathogenesis of CVDs and T2DM, further assessing its potential therapeutic target with the aim of restoring normal ED and reducing global cardiovascular risk.
Collapse
Affiliation(s)
- Alessia Valentini
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Carmine Cardillo
- Department of Aging, Policlinico A. Gemelli IRCCS, 00168 Roma, Italy;
- Department of Translational Medicine and Surgery, Catholic University, 00168 Rome, Italy
| | - David Della Morte
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| | - Manfredi Tesauro
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (A.V.); (D.D.M.)
| |
Collapse
|
6
|
Luo J, He Z, Li Q, Lv M, Cai Y, Ke W, Niu X, Zhang Z. Adipokines in atherosclerosis: unraveling complex roles. Front Cardiovasc Med 2023; 10:1235953. [PMID: 37645520 PMCID: PMC10461402 DOI: 10.3389/fcvm.2023.1235953] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Adipokines are biologically active factors secreted by adipose tissue that act on local and distant tissues through autocrine, paracrine, and endocrine mechanisms. However, adipokines are believed to be involved in an increased risk of atherosclerosis. Classical adipokines include leptin, adiponectin, and ceramide, while newly identified adipokines include visceral adipose tissue-derived serpin, omentin, and asprosin. New evidence suggests that adipokines can play an essential role in atherosclerosis progression and regression. Here, we summarize the complex roles of various adipokines in atherosclerosis lesions. Representative protective adipokines include adiponectin and neuregulin 4; deteriorating adipokines include leptin, resistin, thrombospondin-1, and C1q/tumor necrosis factor-related protein 5; and adipokines with dual protective and deteriorating effects include C1q/tumor necrosis factor-related protein 1 and C1q/tumor necrosis factor-related protein 3; and adipose tissue-derived bioactive materials include sphingosine-1-phosphate, ceramide, and adipose tissue-derived exosomes. However, the role of a newly discovered adipokine, asprosin, in atherosclerosis remains unclear. This article reviews progress in the research on the effects of adipokines in atherosclerosis and how they may be regulated to halt its progression.
Collapse
Affiliation(s)
- Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuli Cai
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Nooti S, Rai V, Radwan MM, Thankam FG, Singh H, Chatzizisis YS, Agrawal DK. Oxidized Low-density Lipoproteins and Lipopolysaccharides Augment Carotid Artery Plaque Vulnerability in Hypercholesterolemic Microswine. CARDIOLOGY AND CARDIOVASCULAR MEDICINE 2023; 7:273-294. [PMID: 37577745 PMCID: PMC10421630 DOI: 10.26502/fccm.92920338] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease and hypercholesterolemia is a risk factor. This study aims to compare the potency of lipopolysaccharide (LPS) and oxidized low-density lipoproteins (oxLDL) to induce plaque formation and increase plaque vulnerability in the carotid artery of hypercholesterolemic Yucatan microswine. Atherosclerotic lesions at the common carotid artery junction and ascending pharyngeal artery were induced in hypercholesterolemic Yucatan microswine at 5-6 months of age with balloon angioplasty. LPS or oxLDL were administered intraluminally at the site of injury after occluding the arterial flow temporarily. Pre-intervention ultrasound (US), angiography, and optical coherence tomography (OCT) were done at baseline and just before euthanasia to assess post-op parameters. The images from the US, OCT, and angiography in the LPS and the oxLDL-treated group showed increased plaque formation with features suggestive of unstable plaque, including necrotic core, thin fibrous caps, and a signal poor region more with oxLDL compared to LPS. Histomorphology of the carotid artery tissue near the injury corroborated the presence of severe lesions in both LPS and oxLDL-treated pigs but more in the oxLDL group. Vascular smooth muscle and endothelial cells treated with LPS and oxLDL showed increased folds changes in mRNA transcripts of the biomarkers of inflammation and plaque vulnerability compared to untreated cells. Collectively, the results suggest that angioplasty-mediated intimal injury of the carotid arteries in atherosclerotic swine with local administration of LPS or ox-LDL induces vulnerable plaques compared to angioplasty alone and oxLDL is relatively more potent than LPS in inducing vulnerable plaque.
Collapse
Affiliation(s)
- S Nooti
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - V Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - M M Radwan
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - F G Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - H Singh
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| | - Y S Chatzizisis
- Division of Cardiovascular Medicine, Leonard M. Miller School of Medicine University of Miami, Miami, FL 33136, USA
| | - D K Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, California 91763, USA
| |
Collapse
|
8
|
Abstract
ABSTRACT The incidence of abdominal aortic aneurysm (AAA) in the elderly is increasing year by year with high mortality. Current treatment is mainly through surgery or endovascular intervention, which is not sufficient to reduce future risk. Therefore, we still need to find an effective conservative measure as an adjunct therapy or early intervention to prevent AAA progression. Traditional therapeutic agents, such as β-receptor blockers, calcium channel blockers, and statins, have been shown to have limited effects on the growth of AAA. Recently, sodium-glucose cotransport proteins inhibitors (SGLT2is), a new class hypoglycemic drug, have shown outstanding beneficiary effects on cardiovascular diseases by plasma volume reduction, vascular tone regulation, and various unidentified mechanisms. It has been demonstrated that SGLT2i is abundantly expressed in the aorta, and some studies also showed promising results of SGLT2i in treating animal AAA models. This article aims to summarize the recent progress of AAA studies and look forward to the application of SGLT2i in AAA treatment for early intervention or adjunct therapy after surgical repair or stent graft.
Collapse
Affiliation(s)
- Zhongtiao Jin
- Master of Medicine, Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China; and
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, 430060, China.
| | - Sizheng Xiong
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, 430060, China.
| | - Ling Gao
- Master of Medicine, Department of Endocrinology, Renmin Hospital of Wuhan University, 430060, China; and
| |
Collapse
|
9
|
Meng S, Guo Q, Tong G, Shen Y, Tong X, Gu J, Li X. Development and Validation of a Nomogram for Predicting Radial Artery Spasm During Coronary Angiography. Angiology 2023; 74:242-251. [PMID: 35574924 DOI: 10.1177/00033197221098278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study describes an attempt to develop a user-friendly nomogram incorporating psychological factors to individually predict the risk of radial artery spasm. Patients consecutively recruited between June 2020 and June 2021 constituted the development cohort for retrospective analysis of the development of a prediction model. Least absolute shrinkage and selection operator regression combined with clinical significance was employed to screen out appropriate independent variables. The model's discrimination and calibration were subsequently evaluated and calibrated by using the C-index, receiver operating characteristic (ROC) curve, and calibration plot. Decision curve analysis was also performed to evaluate the net benefit with the nomogram, and internal validation was assessed using bootstrapping validation. The predictors included in the risk nomogram included "body mass index ," "anxiety score," "duration of interventional surgery," "latency time (time spent waiting in the catheterization laboratory)," "vascular circuity (substantial changes in the curvature of vessels)," and "puncture number." The derived model showed good discrimination with an area under the ROC curve of .77, a C-index of .771 (95% CI: .72-.822) and good calibration. Decision curve analysis indicated that the nomogram provided a better net benefit than the alternatives.
Collapse
Affiliation(s)
- Shasha Meng
- Department of Cardiology, 74630Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qixin Guo
- Department of Cardiology, 74630Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Cardiology, 74734The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxin Tong
- Department of Cardiology, 74630Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yun Shen
- Department of Cardiology, 74630Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoshan Tong
- Department of Cardiology, 74630Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junjie Gu
- Department of Cardiology, 74630Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Li
- Department of Cardiology, 74734The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Wang Z, Fu R, Zhu N, Wang J, Zhang X, Huang X, Li Z. Quality marker prediction in Trillium tschonoskii based on UHPLC-MS chemical characterisation and network pharmacology. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:76-91. [PMID: 36285766 DOI: 10.1002/pca.3181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
INTRODUCTION As a folk herbal medicine, Trillium tschonoskii has been used for thousands of years. However, due to the complexity of the chemical constituents of this herb, few investigations have acquired a comprehensive understanding of its quality markers. OBJECTIVE This study was conducted to characterise the chemical composition of T. tschonoskii and identify its potential quality markers. MATERIAL AND METHODS A systematic analytical method based on ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to characterise the constituents of T. tschonoskii. Multivariate statistical analysis was performed to investigate the chemical differences between different tissues, as well as the relationship between chemical compositions and habitats. The potential quality markers were predicted via network pharmacology and molecular docking, then confirmed by cellular assays. RESULTS A total of 77 compounds were co-isolated and identified, and among them, 26 were discovered from the genus Trillium for the first time. Ten batches of roots/rhizomes were explicitly clustered into five groups according to the climate types of the habitats, and the clusters of the fruits and roots/rhizomes from the same plants were independent due to the significant difference in chemical composition. Diosgenin had a good docking affinity with the relevant targets within the IL-17 pathway and cytokine pathway and could significantly inhibit TNF-α expression in hypoxic brain microvascular endothelial cells (BMECs). CONCLUSION This is the first study to establish the chemical composition profile of T. tschonoskii by UHPLC-MS systematically, and diosgenin was confirmed to be a potential quality marker of T. tschonoskii for the treatment of headaches.
Collapse
Affiliation(s)
- Zhixin Wang
- College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Rao Fu
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Na Zhu
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Junqi Wang
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Xiaorui Zhang
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Xiulan Huang
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
| | - Zhiyong Li
- School of Pharmacy, Minzu University of China, Beijing, P. R. China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| |
Collapse
|
11
|
Xiao XT, He SQ, Wu NN, Lin XC, Zhao J, Tian C. Green Tea Polyphenols Prevent Early Vascular Aging Induced by High-Fat Diet via Promoting Autophagy in Young Adult Rats. Curr Med Sci 2022; 42:981-990. [PMID: 35896932 DOI: 10.1007/s11596-022-2604-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Epidemiology studies indicate that green tea polyphenols (GTP) perform a protective effect on cardiovascular diseases, but the underlying mechanisms are complex. The present study aimed to investigate the effect of GTP on high-fat diets (HFD) induced-early vascular aging. METHODS Six-week young adult Wistar rats were fed with standard chow or HFD in the presence and absence of GTP (200 mg/kg body weight) for 18 weeks. In vitro experiment, human umbilical vascular endothelial cells (HUVECs) were treated with palmitic acid (PA) and GTP. RESULTS The results showed that GTP alleviated the disorganized arterial wall and the increased intima-media thickness induced by HFD. In addition, the vascular oxidative injury was suppressed following GTP treatment. Furthermore, GTP elevated the ratio of LC3-II/LC3-I and suppressed expression of p62/SQSTM1, and restored SIRT3 expression in the aorta of HFD rats. Consistently, in cultured HUVECs, GTP inhibited cell senescence indicated by SA-β-gal and promoted endothelial autophagy compared with the PA treatment group. The activity of SIRT3 was specifically inhibited by 3-TYP, and the protective effect of GTP was consequently abolished. CONCLUSION The findings indicated that GTP protected against early vascular senescence in young HFD rats via ameliorating oxidative injury and promoting autophagy which was partially regulated by the SIRT3 pathway.
Collapse
Affiliation(s)
- Xiang-Tian Xiao
- Medical College of Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Shui-Qing He
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Nan-Nan Wu
- School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, 400016, China
| | - Xue-Chun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chong Tian
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
12
|
Liu X, Wang N, Liu X, Deng R, Kang R, Xie L. Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071433. [PMID: 35890328 PMCID: PMC9320478 DOI: 10.3390/pharmaceutics14071433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have attracted much attention in the past few decades because of their unique magnetic responsiveness. Especially in the diagnosis and treatment of diseases, they are mostly involved in non-invasive ways and have achieved good results. The magnetic responsiveness of MNPs is strictly controlled by the size, crystallinity, uniformity, and surface properties of the synthesized particles. In this review, we summarized the classification of MNPs and their application in vascular repair. MNPs mainly use their unique magnetic properties to participate in vascular repair, including magnetic stimulation, magnetic drive, magnetic resonance imaging, magnetic hyperthermia, magnetic assembly scaffolds, and magnetic targeted drug delivery, which can significantly affect scaffold performance, cell behavior, factor secretion, drug release, etc. Although there are still challenges in the large-scale clinical application of MNPs, its good non-invasive way to participate in vascular repair and the establishment of a continuous detection process is still the future development direction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xie
- Correspondence: (R.K.); (L.X.)
| |
Collapse
|
13
|
Clare J, Ganly J, Bursill CA, Sumer H, Kingshott P, de Haan JB. The Mechanisms of Restenosis and Relevance to Next Generation Stent Design. Biomolecules 2022; 12:biom12030430. [PMID: 35327622 PMCID: PMC8945897 DOI: 10.3390/biom12030430] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Stents are lifesaving mechanical devices that re-establish essential blood flow to the coronary circulation after significant vessel occlusion due to coronary vessel disease or thrombolytic blockade. Improvements in stent surface engineering over the last 20 years have seen significant reductions in complications arising due to restenosis and thrombosis. However, under certain conditions such as diabetes mellitus (DM), the incidence of stent-mediated complications remains 2–4-fold higher than seen in non-diabetic patients. The stents with the largest market share are designed to target the mechanisms behind neointimal hyperplasia (NIH) through anti-proliferative drugs that prevent the formation of a neointima by halting the cell cycle of vascular smooth muscle cells (VSMCs). Thrombosis is treated through dual anti-platelet therapy (DAPT), which is the continual use of aspirin and a P2Y12 inhibitor for 6–12 months. While the most common stents currently in use are reasonably effective at treating these complications, there is still significant room for improvement. Recently, inflammation and redox stress have been identified as major contributing factors that increase the risk of stent-related complications following percutaneous coronary intervention (PCI). The aim of this review is to examine the mechanisms behind inflammation and redox stress through the lens of PCI and its complications and to establish whether tailored targeting of these key mechanistic pathways offers improved outcomes for patients, particularly those where stent placement remains vulnerable to complications. In summary, our review highlights the most recent and promising research being undertaken in understanding the mechanisms of redox biology and inflammation in the context of stent design. We emphasize the benefits of a targeted mechanistic approach to decrease all-cause mortality, even in patients with diabetes.
Collapse
Affiliation(s)
- Jessie Clare
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Justin Ganly
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christina A. Bursill
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5000, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Correspondence: (H.S.); (J.B.d.H.)
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Judy B. de Haan
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (H.S.); (J.B.d.H.)
| |
Collapse
|
14
|
Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as A Precursor of Atherothrombosis, Diabetes and Early Vascular Aging. Int J Mol Sci 2022; 23:963. [PMID: 35055149 PMCID: PMC8778078 DOI: 10.3390/ijms23020963] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Vascular disease was for a long time considered a disease of the old age, but it is becoming increasingly clear that a cumulus of factors can cause early vascular aging (EVA). Inflammation plays a key role in vascular stiffening and also in other pathologies that induce vascular damage. There is a known and confirmed connection between inflammation and atherosclerosis. However, it has taken a long time to prove the beneficial effects of anti-inflammatory drugs on cardiovascular events. Diabetes can be both a product of inflammation and a cofactor implicated in the progression of vascular disease. When diabetes and inflammation are accompanied by obesity, this ominous trifecta leads to an increased incidence of atherothrombotic events. Research into earlier stages of vascular disease, and documentation of vulnerability to premature vascular disease, might be the key to success in preventing clinical events. Modulation of inflammation, combined with strict control of classical cardiovascular risk factors, seems to be the winning recipe. Identification of population subsets with a successful vascular aging (supernormal vascular aging-SUPERNOVA) pattern could also bring forth novel therapeutic interventions.
Collapse
Affiliation(s)
| | - Mihaela-Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | - Andreea-Catarina Popescu
- Department of Cardiology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, 011461 Bucharest, Romania; (E.B.); (S.-M.B.)
| | | |
Collapse
|
15
|
Fernandes Silva L, Vangipurapu J, Laakso M. The "Common Soil Hypothesis" Revisited-Risk Factors for Type 2 Diabetes and Cardiovascular Disease. Metabolites 2021; 11:metabo11100691. [PMID: 34677406 PMCID: PMC8540397 DOI: 10.3390/metabo11100691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/21/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
The prevalence and the incidence of type 2 diabetes (T2D), representing >90% of all cases of diabetes, are increasing rapidly worldwide. Identification of individuals at high risk of developing diabetes is of great importance, as early interventions might delay or even prevent full-blown disease. T2D is a complex disease caused by multiple genetic variants in interaction with lifestyle and environmental factors. Cardiovascular disease (CVD) is the major cause of morbidity and mortality. Detailed understanding of molecular mechanisms underlying in CVD events is still largely missing. Several risk factors are shared between T2D and CVD, including obesity, insulin resistance, dyslipidemia, and hyperglycemia. CVD can precede the development of T2D, and T2D is a major risk factor for CVD, suggesting that both conditions have common genetic and environmental antecedents and that they share “common soil”. We analyzed the relationship between the risk factors for T2D and CVD based on genetics and population-based studies with emphasis on Mendelian randomization studies.
Collapse
|