1
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Wei B, Gao T, Li M, Tian X, Wang J. A real-world observational study on the effect of Qingre Lishi decoction on glycemic profile using continuous glucose monitoring in obese type 2 diabetes adults. Front Endocrinol (Lausanne) 2024; 15:1372593. [PMID: 39109082 PMCID: PMC11300197 DOI: 10.3389/fendo.2024.1372593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Objective To observe the clinical efficacy and safety of the Qingre Lishi decoction in treating of newly diagnosed overweight and obese patients with type 2 diabetes mellitus (T2DM) from an evidence-based medical perspective. Methods 70 cases of overweight and obese patients with newly diagnosed T2DM treated in the outpatient clinic of the Department of Endocrinology of the Affiliated Hospital of Liaoning University of Traditional Chinese Medicine from December 2021 to November 2022 were selected, of which 35 cases were in the observation group and 35 cases were in the control group. The observation group was treated with the Qingre Lishi decoction add lifestyle intervention, and the control group was treated with lifestyle intervention only. We compared and analyzed the fasting blood glucose (FPG), 2-hour postprandial glucose (2hPG), the occurrence of adverse reactions, and the related indexes provided by wearing the CGM device during the observation period of the patients in the two groups. Results 53 participants completed the clinical trial. In relation of glycemic control, a decreasing trend has shown in both groups, with the decreases in FPG, 2hPG, eHbA1c, and MG in the observation group being higher than those in the control group (P<0.05). In regard to blood glucose attainment, at the 28d, the attainment rate of patients in the observation group with TIR>80% was 87.10%, and the magnitude of changes in the rise of TIR and the fall of TAR was significantly better than that in the control group (P<0.01). In terms of blood glucose fluctuation, CV and SD of the patients in the observation group decreased compared with the 0d; the magnitude of daytime blood glucose fluctuation was significantly alleviated compared with that of the control group. The degree of decrease in LAGE, MAGE, and MODD was significantly lower than that of the control group (P<0.01). Conclusion The Qingre Lishi decoction can effectively improve the hyperglycemic condition of overweight and obese patients with newly diagnosed T2DM. It can reduce blood glucose, alleviate blood glucose fluctuations, reduce the incidence of hypoglycemia, and improve patients' adherence and self-confidence in controlling blood glucose. Clinical Trial Registration https://itmctr.ccebtcm.org.cn/, identifier ITMCTR2024000006.
Collapse
Affiliation(s)
- Bingchen Wei
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tianshu Gao
- Endocrinology Department, the First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mingzhe Li
- Internal Medicine Department, the Third Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaojun Tian
- The Fourth Encephalopathy Department, Shenyang Second Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Jinxi Wang
- Teaching Laboratory Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
3
|
Rini DM, Xu W, Suzuki T. Current Research on the Role of Isomaltooligosaccharides in Gastrointestinal Health and Metabolic Diseases. Prev Nutr Food Sci 2024; 29:93-105. [PMID: 38974594 PMCID: PMC11223922 DOI: 10.3746/pnf.2024.29.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 07/09/2024] Open
Abstract
The intestinal epithelium plays an important role in maintaining the intestinal barrier and facilitating nutrient absorption. It also serves as a critical physical barrier against the infiltration of foreign substances from the intestinal lumen into the circulation. Intestinal barrier dysfunction has been implicated in the development of several diseases. Isomaltooligosaccharides (IMOs), which are a type of dietary fiber, possess multiple health benefits. However, there is limited information regarding their efficacy against gastrointestinal diseases. This review explores the therapeutic potential of IMOs in obesity, diabetes mellitus, inflammatory bowel disease (IBD), hyperlipidemia, and constipation. High-fat diet (HFD)-induced obesity models have shown that IMOs, administered alone or in combination with other compounds, exhibit potent antiobesity effects, making them promising agents in the treatment of obesity and its associated complications. Moreover, IMOs exhibit preventive effects against HFD-induced metabolic dysfunction by modulating gut microbiota and short-chain fatty acid levels, thereby ameliorating symptoms. Furthermore, IMOs can reduce IBD and alleviate hyperlipidemia, as indicated by the reduced histological colitis scores and improved lipid profiles observed in clinical trials and animal studies. This review highlights IMOs as a versatile intervention strategy that can improve gastrointestinal health by modulating gut microbiota, immune responses, and metabolic parameters, providing a multifaceted approach to address the complex nature of gastrointestinal disorders.
Collapse
Affiliation(s)
- Dina Mustika Rini
- Department of Food Technology, Faculty of Engineering, Universitas Pembangunan Nasional “Veteran” Jawa Timur, Surabaya 60294, Indonesia
| | - Wenxi Xu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100193, China
| | - Takuya Suzuki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|
4
|
She Y, Ma Y, Zou P, Peng Y, An Y, Chen H, Luo P, Wei S. The Role of Grifola frondosa Polysaccharide in Preventing Skeletal Muscle Atrophy in Type 2 Diabetes Mellitus. Life (Basel) 2024; 14:784. [PMID: 39063539 PMCID: PMC11278391 DOI: 10.3390/life14070784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a burgeoning public health challenge worldwide. Individuals with T2DM are at increased risk for skeletal muscle atrophy, a serious complication that significantly compromises quality of life and for which effective prevention measures are currently inadequate. Emerging evidence indicates that systemic and local inflammation stemming from the compromised intestinal barrier is one of the crucial mechanisms contributing to skeletal muscle atrophy in T2DM patients. Notably, natural plant polysaccharides were found to be capable of enhancing intestinal barrier function and mitigating secondary inflammation in some diseases. Herein, we hypothesized that Grifola frondosa polysaccharide (GFP), one of the major plant polysaccharides, could prevent skeletal muscle atrophy in T2DM via regulating intestinal barrier function and inhibiting systemic and local inflammation. Using a well-established T2DM rat model, we demonstrated that GFP was able to not only prevent hyperglycemia and insulin resistance but also repair intestinal mucosal barrier damage and subsequent inflammation, thereby alleviating the skeletal muscle atrophy in the T2DM rat model. Additionally, the binding free energy analysis and molecular docking of monosaccharides constituting GFP were further expanded for related targets to uncover more potential mechanisms. These results provide a novel preventative and therapeutic strategy for T2DM patients.
Collapse
Affiliation(s)
- Ying She
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yun Ma
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Pei Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yang Peng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Yong An
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Hang Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
| | - Peng Luo
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang 561113, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
5
|
Gao X, Zhang P. Exercise perspective: Benefits and mechanisms of gut microbiota on the body. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:508-515. [PMID: 39019779 PMCID: PMC11255194 DOI: 10.11817/j.issn.1672-7347.2024.230550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 07/19/2024]
Abstract
Gut microbiota refers to the vast and diverse community of microorganisms residing in the intestines. Factors such as genetics, environmental influences (e.g., exercise, diet), and early life experiences (e.g., infant feeding methods) can all affect the ecological balance of gut microbiota within the body. Dysbiosis of the gut microbiota is associated with extra-intestinal diseases such as Parkinson's syndrome, osteoporosis, and autoimmune diseases, suggesting that disturbances in gut microbiota may be one of the causes of these diseases. Exercise benefits various diseases, with gut microbiota playing a role in regulating the nervous, musculoskeletal, and immune systems. Gut microbiota can impact the body's health status through the gut-brain axis, gut-muscle axis, and immune pathways. Moderate-intensity aerobic exercise can increase the quantity of gut microbiota and change microbial abundance, although short-term exercise does not significantly affect the alpha diversity of the microbiota. Resistance exercise also does not have a significant regulatory effect on gut microbiota.
Collapse
Affiliation(s)
- Xin Gao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| | - Peizhen Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
6
|
Liu T, Gu J, Fu C, Su L. Three-Dimensional Scaffolds for Intestinal Cell Culture: Fabrication, Utilization, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:158-175. [PMID: 37646409 DOI: 10.1089/ten.teb.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The intestine is a visceral organ that integrates absorption, metabolism, and immunity, which is vulnerable to external stimulus. Researchers in the fields such as food science, immunology, and pharmacology have committed to developing appropriate in vitro intestinal cell models to study the intestinal absorption and metabolism mechanisms of various nutrients and drugs, or pathogenesis of intestinal diseases. In the past three decades, the intestinal cell models have undergone a significant transformation from conventional two-dimensional cultures to three-dimensional (3D) systems, and the achievements of 3D cell culture have been greatly contributed by the fabrication of different scaffolds. In this review, we first introduce the developing trend of existing intestinal models. Then, four types of scaffolds, including Transwell, hydrogel, tubular scaffolds, and intestine-on-a-chip, are discussed for their 3D structure, composition, advantages, and limitations in the establishment of intestinal cell models. Excitingly, some of the in vitro intestinal cell models based on these scaffolds could successfully mimic the 3D structure, microenvironment, mechanical peristalsis, fluid system, signaling gradients, or other important aspects of the original human intestine. Furthermore, we discuss the potential applications of the intestinal cell models in drug screening, disease modeling, and even regenerative repair of intestinal tissues. This review presents an overview of state-of-the-art scaffold-based cell models within the context of intestines, and highlights their major advances and applications contributing to a better knowledge of intestinal diseases. Impact statement The intestine tract is crucial in the absorption and metabolism of nutrients and drugs, as well as immune responses against external pathogens or antigens in a complex microenvironment. The appropriate experimental cell model in vitro is needed for in-depth studies of intestines, due to the limitation of animal models in dynamic control and real-time assessment of key intestinal physiological and pathological processes, as well as the "R" principles in laboratory animal experiments. Three-dimensional (3D) scaffold-based cell cultivation has become a developing tendency because of the superior cell proliferation and differentiation and more physiologically relevant environment supported by the customized 3D scaffolds. In this review, we summarize four types of up-to-date 3D cell culture scaffolds fabricated by various materials and techniques for a better recapitulation of some essential physiological and functional characteristics of original intestines compared to conventional cell models. These emerging 3D intestinal models have shown promising results in not only evaluating the pharmacokinetic characteristics, security, and effectiveness of drugs, but also studying the pathological mechanisms of intestinal diseases at cellular and molecular levels. Importantly, the weakness of the representative 3D models for intestines is also discussed.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Jia Gu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Lingshan Su
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Hernández-Martín M, Bocanegra A, Garcimartín A, Issa JÁ, Redondo-Castillejo R, Macho-González A, Benedí J, Sánchez Muniz FJ, López-Oliva ME. Analysis of immunohistomorphological changes in the colonic mucosa in a high-saturated fat and high-cholesterol fed streptozotocin/nicotinamide diabetic rat model. Methods Cell Biol 2024; 185:165-195. [PMID: 38556447 DOI: 10.1016/bs.mcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The mucosal surface of gastrointestinal tract is lined with epithelial cells that establish an effective barrier between the lumen and internal environment through intercellular junctions, preventing the passage of potentially harmful substances. The "intestinal barrier function" consist of a defensive system that prevent the passage of antigens, toxins, and microbial products, while maintains the correct development of the epithelial barrier, the immune system and the acquisition of tolerance toward dietary antigens and intestinal microbiota. Intestinal morphology changes subsequent to nutritional variations, stress, aging or diseases, which can also affect the composition of the microbiota, altering the homeostasis of the intestine. A growing body of evidence suggests that alterations in intestinal barrier function favor the development of exaggerated immune responses, leading to metabolic endotoxemia, which seems to be the origin of many chronic metabolic diseases such as type 2 diabetes mellitus (T2DM). Although the mechanisms are still unknown, the interaction between dietary patterns, gut microbiota, intestinal mucosa, and metabolic inflammation seems to be a key factor for the development of T2DM, among other diseases. This chapter details the different techniques that allow evaluating the morphological and molecular alterations that lead of the intestinal barrier dysfunction in a T2DM experimental model. To induce both diabetic metabolic disturbances and gut barrier disruption, Wistar rats were fed a high-saturated fat and high-cholesterol diet and received a single dose of streptozotocin/nicotinamide. This animal model may contribute to clarify the understanding of the role of intestinal barrier dysfunction on the late-stage T2DM etiology.
Collapse
Affiliation(s)
- Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Aránzazu Bocanegra
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Jousef Ángel Issa
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Rocío Redondo-Castillejo
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Adrián Macho-González
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Nutrition, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Department of Pharmacology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco José Sánchez Muniz
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Nutrition, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain; AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain.
| |
Collapse
|
8
|
Pheiffer C, Riedel S, Dias S, Adam S. Gestational Diabetes and the Gut Microbiota: Fibre and Polyphenol Supplementation as a Therapeutic Strategy. Microorganisms 2024; 12:633. [PMID: 38674578 PMCID: PMC11051981 DOI: 10.3390/microorganisms12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an escalating public health concern due to its association with short- and long-term adverse maternal and child health outcomes. Dysbiosis of microbiota within the gastrointestinal tract has been linked to the development of GDM. Modification of microbiota dysbiosis through dietary adjustments has attracted considerable attention as adjunct strategies to improve metabolic disease. Diets high in fibre and polyphenol content are associated with increased gut microbiota alpha diversity, reduced inflammation and oxidative processes and improved intestinal barrier function. This review explores the potential of fibre and polyphenol supplementation to prevent GDM by investigating their impact on gut microbiota composition and function.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
9
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
10
|
Kobayashi K, Mochizuki J, Yamazaki F, Sashihara T. Yogurt starter strains ameliorate intestinal barrier dysfunction via activating AMPK in Caco-2 cells. Tissue Barriers 2024; 12:2184157. [PMID: 36852963 PMCID: PMC10832913 DOI: 10.1080/21688370.2023.2184157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/19/2023] [Indexed: 03/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are commonly used probiotics that improve human health in various aspects. We previously reported that yogurt starter strains, Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131, potentially enhance the intestinal epithelial barrier function by inducing the expression of antimicrobial peptides in the small intestine. However, their effects on physical barrier functions remain unknown. In this study, we found that both strains ameliorated the decreased trans-epithelial resistance and the increased permeability of fluorescein isothiocyanate-dextran induced by tumor necrosis factor (TNF)-α and interferon (IFN)-γ in Caco-2 cells. We also demonstrated that LAB prevented a decrease in the expression and disassembly of tight junctions (TJs) induced by TNF-α and IFN-γ. To assess the repair activity of TJs, a calcium switch assay was performed. Both strains were found to promote the reassembly of TJs, and their activity was canceled by the inhibitor of AMP-activated protein kinase (AMPK). Moreover, these strains showed increased AMPK phosphorylation. These observations suggest that the strains ameliorated physical barrier dysfunction via the activation of AMPK. The activities preventing barrier destruction induced by TNF-α and IFN-γ were strain-dependent. Several strains containing L. bulgaricus 2038 and S. thermophilus 1131 significantly suppressed the barrier impairment, and L. bulgaricus 2038 showed the strongest activity among them. Our findings suggest that the intake of L. bulgaricus 2038 and S. thermophilus 1131 is a potential strategy for the prevention and repair of leaky gut.
Collapse
Affiliation(s)
- Kyosuke Kobayashi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Junko Mochizuki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Fuka Yamazaki
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| | - Toshihiro Sashihara
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
11
|
Benedé-Ubieto R, Cubero FJ, Nevzorova YA. Breaking the barriers: the role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024; 16:2331460. [PMID: 38512763 PMCID: PMC10962615 DOI: 10.1080/19490976.2024.2331460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Obesity, insulin resistance (IR), and the gut microbiome intricately interplay in Metabolic-associated Steatotic Liver Disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease (NAFLD), a growing health concern. The complex progression of MASLD extends beyond the liver, driven by "gut-liver axis," where diet, genetics, and gut-liver interactions influence disease development. The pathophysiology of MASLD involves excessive liver fat accumulation, hepatocyte dysfunction, inflammation, and fibrosis, with subsequent risk of hepatocellular carcinoma (HCC). The gut, a tripartite barrier, with mechanical, immune, and microbial components, engages in a constant communication with the liver. Recent evidence links dysbiosis and disrupted barriers to systemic inflammation and disease progression. Toll-like receptors (TLRs) mediate immunological crosstalk between the gut and liver, recognizing microbial structures and triggering immune responses. The "multiple hit model" of MASLD development involves factors like fat accumulation, insulin resistance, gut dysbiosis, and genetics/environmental elements disrupting the gut-liver axis, leading to impaired intestinal barrier function and increased gut permeability. Clinical management strategies encompass dietary interventions, physical exercise, pharmacotherapy targeting bile acid (BA) metabolism, and microbiome modulation approaches through prebiotics, probiotics, symbiotics, and fecal microbiota transplantation (FMT). This review underscores the complex interactions between diet, metabolism, microbiome, and their impact on MASLD pathophysiology and therapeutic prospects.
Collapse
Affiliation(s)
- Raquel Benedé-Ubieto
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Yulia A. Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| |
Collapse
|
12
|
Rawling M, Schiavone M, Mugnier A, Leclercq E, Merrifield D, Foey A, Apper E. Modulation of Zebrafish ( Danio rerio) Intestinal Mucosal Barrier Function Fed Different Postbiotics and a Probiotic from Lactobacilli. Microorganisms 2023; 11:2900. [PMID: 38138044 PMCID: PMC10745996 DOI: 10.3390/microorganisms11122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
It is generally accepted that microbes play a critical role in maintaining gut barrier function, making them ideal to target in order to mitigate the effects of intestinal diseases such as inflammatory bowel disease with specialist supplementations such as probiotic or postbiotic preparations. In this study, specific strains of Lactobacillus helvictus both live and inactivated and Lactobacillus plantarum inactivated were fed to zebrafish at an inclusion level of 6 × 106 cells/g in order to assess the effects on gut barrier function and protection. Taken together, our results indicate that dietary administration of pro- or postbiotics strengthens the gut barrier function and innate immunity of healthy zebrafish in a strain-specific and process-dependent way. With some differences in the response intensity, the three treatments led to increased intestinal villi length and proportion of IELs, reinforcement of the GC population and up-regulated expression of biomarkers of AMP production and tight junction zona-occludin 2a (zo-2a). In addition, LPPost had an impact on the adaptive immune response, and we hypothesized that it conferred the potential to drive Th17/ILC3 immunity, as suggested by its effect on the gene expression of il22, of different AMPs, and the expression of zo2a. Moreover, LPPost showed the potential to drive Th1/ILC1-like immunity, with a higher percentage of CD8+ cells and higher ifnγ gene expression. In summary, the use of inactivated Lactobacilli species in this study represented a promising strategy for improving barrier function and regulating the immune fate of the intestinal mucosa in a strain-specific way.
Collapse
Affiliation(s)
- Mark Rawling
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Marion Schiavone
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Amélie Mugnier
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Eric Leclercq
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| | - Daniel Merrifield
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Andrew Foey
- Aquatic Animal Nutrition and Health Research Group, School of Marine and Biological Sciences, Plymouth University, Plymouth, Devon PL4 8AA, UK; (D.M.); (A.F.)
| | - Emmanuelle Apper
- Lallemand SAS, 19 rue des Briquetiers, 31702 Blagnac, France; (M.S.); (A.M.); (E.L.)
| |
Collapse
|
13
|
García-Díez E, López-Oliva ME, Perez-Vizcaino F, Pérez-Jiménez J, Ramos S, Martín MÁ. Dietary Supplementation with a Cocoa-Carob Blend Modulates Gut Microbiota and Prevents Intestinal Oxidative Stress and Barrier Dysfunction in Zucker Diabetic Rats. Antioxidants (Basel) 2023; 12:1519. [PMID: 37627514 PMCID: PMC10452029 DOI: 10.3390/antiox12081519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
We have recently developed a cocoa-carob blend (CCB) rich in polyphenols with antidiabetic properties. In this study, we investigated whether its benefits could be related to gut health and gut microbiota (GM) composition and the likely phenolic metabolites involved. Zucker diabetic fatty rats were fed on a standard or a CCB-rich diet for 12 weeks. Intestinal barrier structure and oxidative and inflammatory biomarkers were analyzed in colonic samples. GM composition and phenolic metabolites were evaluated from feces. The results show that CCB improved mucin and tight-junction proteins and counteracted gut oxidative stress and inflammation by regulating sirtuin-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) levels. CCB also modulated the composition of the GM, showing increases in Akkermansia and Bacteroides and decreases in Ruminococcus genera. Correlation analysis strengthened the associations between these genera and improved pathological variables in diabetic animals. Moreover, 12 phenolic metabolites were identified in CCB feces, being2,3-dihydroxybenzoic and 3,4,5-trihydroxybenzoic acids significantly associated with increased levels of Akkermansia and Oscillospira genera. Our findings support the potential use of CCB to prevent intestinal damage and dysbiosis in T2D, which would help to delay the progression of this pathology.
Collapse
Affiliation(s)
- Esther García-Díez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
| | - María Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007 Madrid, Spain
| | - Jara Pérez-Jiménez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sonia Ramos
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Ángeles Martín
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
14
|
Zeng Z, Yang Y, Zhong X, Dai F, Chen S, Tong X. Ameliorative Effects of Lactobacillus paracasei L14 on Oxidative Stress and Gut Microbiota in Type 2 Diabetes Mellitus Rats. Antioxidants (Basel) 2023; 12:1515. [PMID: 37627510 PMCID: PMC10451986 DOI: 10.3390/antiox12081515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting of more novel probiotic strains has attained continuous interest. This study aimed to investigate the beneficial effects of Lactobacillus paracasei strain L14, an isolate from a traditional Chinese dairy product, on type 2 diabetes mellitus (T2DM) rats. Preventive supplementation of strain L14 showed excellent anti-diabetic effects on high-fat diet/low-dose streptozotocin (HFD/STZ)-induced T2DM rats. It significantly reduced hyperglycemia, protected pancreatic β-cell and liver function, and ameliorated oxidative stress while considerably improving dyslipidemia and inflammation. Furthermore, the strain modulated the gut microbiota to alleviate gut dysbiosis. Interestingly, most of these biochemical parameters could even restore to normal levels by the intervention of strain L14. The whole-genome sequencing of L14 was performed to provide a critical molecular basis for its probiotic activities. Genes related to antioxidant systems and other beneficial microbial metabolites like exopolysaccharides (EPS) biosynthesis were found. This study demonstrates that probiotic L. paracasei L14 has good potential for applications in functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Zhu Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Yi Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| | - Xinxin Zhong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| | - Shangwu Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; (Z.Z.); (Y.Y.); (F.D.)
| |
Collapse
|
15
|
Neri-Rosario D, Martínez-López YE, Esquivel-Hernández DA, Sánchez-Castañeda JP, Padron-Manrique C, Vázquez-Jiménez A, Giron-Villalobos D, Resendis-Antonio O. Dysbiosis signatures of gut microbiota and the progression of type 2 diabetes: a machine learning approach in a Mexican cohort. Front Endocrinol (Lausanne) 2023; 14:1170459. [PMID: 37441494 PMCID: PMC10333697 DOI: 10.3389/fendo.2023.1170459] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction The gut microbiota (GM) dysbiosis is one of the causal factors for the progression of different chronic metabolic diseases, including type 2 diabetes mellitus (T2D). Understanding the basis that laid this association may lead to developing new therapeutic strategies for preventing and treating T2D, such as probiotics, prebiotics, and fecal microbiota transplants. It may also help identify potential early detection biomarkers and develop personalized interventions based on an individual's gut microbiota profile. Here, we explore how supervised Machine Learning (ML) methods help to distinguish taxa for individuals with prediabetes (prediabetes) or T2D. Methods To this aim, we analyzed the GM profile (16s rRNA gene sequencing) in a cohort of 410 Mexican naïve patients stratified into normoglycemic, prediabetes, and T2D individuals. Then, we compared six different ML algorithms and found that Random Forest had the highest predictive performance in classifying T2D and prediabetes patients versus controls. Results We identified a set of taxa for predicting patients with T2D compared to normoglycemic individuals, including Allisonella, Slackia, Ruminococus_2, Megaspgaera, Escherichia/Shigella, and Prevotella, among them. Besides, we concluded that Anaerostipes, Intestinibacter, Prevotella_9, Blautia, Granulicatella, and Veillonella were the relevant genus in patients with prediabetes compared to normoglycemic subjects. Discussion These findings allow us to postulate that GM is a distinctive signature in prediabetes and T2D patients during the development and progression of the disease. Our study highlights the role of GM and opens a window toward the rational design of new preventive and personalized strategies against the control of this disease.
Collapse
Affiliation(s)
- Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | | | | | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Padron-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Aarón Vázquez-Jiménez
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Programa de Maestría y Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), México City, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
16
|
Mooradian AD. Diabetes-related perturbations in the integrity of physiologic barriers. J Diabetes Complications 2023; 37:108552. [PMID: 37356233 DOI: 10.1016/j.jdiacomp.2023.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
One of the hallmarks of health is the integrity of barriers at the cellular and tissue levels. The two cardinal functions of barriers include preventing access of deleterious elements of the environment (barrier function) while facilitating the transport of essential ions, signaling molecules and nutrients needed to maintain the internal milieu (transport function). There are several cellular and subcellular barriers and some of these barriers can be interrelated. The principal physiologic barriers include blood-retinal barrier, blood-brain barrier, blood-testis barrier, renal glomerular/tubular barrier, intestinal barrier, pulmonary blood-alveolar barrier, blood-placental barrier and skin barrier. Tissue specific barriers are the result of the vasculature, cellular composition of the tissue and extracellular matrix within the tissue. Uncontrolled diabetes and acute hyperglycemia may disrupt the integrity of physiologic barriers, primarily through altering the vascular integrity of the tissues and may well contribute to the clinically recognized complications of diabetes. Although diabetes is a systemic disease, some of the organs display clinically significant deterioration in function while others undergo subclinical changes. The pathophysiology of the disruption of these barriers is not entirely clear but it may be related to diabetes-related cellular stress. Understanding the mechanisms of diabetes related dysfunction of various physiologic barriers might help identifying novel therapeutic targets for reducing clinically significant complications of diabetes.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Florida Jacksonville College of Medicine, Jacksonville, FL, USA.
| |
Collapse
|
17
|
Chen L, Guo L, Feng S, Wang C, Cui Z, Wang S, Lu Q, Chang H, Hang B, Snijders AM, Mao JH, Lu Y, Ding D. Fecal microbiota transplantation ameliorates type 2 diabetes via metabolic remodeling of the gut microbiota in db/db mice. BMJ Open Diabetes Res Care 2023; 11:e003282. [PMID: 37253485 PMCID: PMC10230930 DOI: 10.1136/bmjdrc-2022-003282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/30/2023] [Indexed: 06/01/2023] Open
Abstract
INTRODUCTION Gut microbiome (GM) deregulation has been implicated in major conditions such as obesity and type 2 diabetes (T2DM). Our previous prospective study indicated that fecal microbiota transplantation (FMT) successfully improved patients with T2DM. We hypothesized that FMT may be a potential therapeutic method for T2DM, but its precise mechanisms in T2DM remains to be elucidated. RESEARCH DESIGN AND METHODS Eight db/m mice were FMT donors and control mice, and 16 genetically diabetic db/db mice were equally divided into two groups (db/db+phosphate-buffered saline (PBS) group, db/db+FMT group). The db/db+FMT group was administered fresh fecal suspension (0.2 mL/mice) daily for 4 weeks. Analysis of the GM and serum metabolome was carried out by 16S ribosomal RNA sequencing and liquid chromatogram-mass spectrometry, respectively. Effects of FMT on the gut barrier and pancreas were assessed using protein assays, messenger RNA, immunohistology and clinical indicators testing. RESULTS Our results showed that FMT treatment of db/db mice relieves a series of clinical indicators, including fasting plasma glucose, serum insulin and oral glucose tolerance test among others. Compared with non-diabetic control mice, db/db+PBS mice exhibited decreased abundance of Ruminococaceae, Porphyromonadaceae and increased abundance of Rikenellaceae and Lactobacillaceae. FMT treatment reversed this effect on the microbiome. Eleven metabolites were changed between the db/db+PBS and db/db+FMT groups. Correlation analysis showed that the structural changes of the GM were correlated with host metabolite levels. We further showed that FMT treatment of db/db mice improved intestinal barrier function, reduced inflammation and caused an alteration in the number of circulating immune cells. CONCLUSIONS FMT-mediated changes in the GM, serum metabolites, intestinal epithelial barrier, inflammation and circulating immune cells play an important role in the efficacy of FMT on T2DM disease progression.
Collapse
Affiliation(s)
- Lijuan Chen
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Lin Guo
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Susu Feng
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Congcong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Zhicheng Cui
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Sijing Wang
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Qingmiao Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Biomaterials, Berkeley-Nanjing Research Center, Nanjing, Jiangsu, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yibing Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| | - Dafa Ding
- Department of Endocrinology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University Second Affiliated Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Song J, Jeong SJ, Lim CB, Kang B, Oh SS, Yun G, Kim IH, Cho Y. Assessment of a 50:50 mixture of two Bacillus subtilis strains as growth promoters for finishing pigs: productivity improvement and noxious gas reduction. J Anim Sci 2023; 101:skad374. [PMID: 37975179 PMCID: PMC10684039 DOI: 10.1093/jas/skad374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
In this study, we aimed to assess the potential of a 50:50 mixture of two Bacillus subtilis strains in improving the productivity and health of finishing pigs and reducing noxious gases in their feces. These strains were found to abundantly secrete surfactin which has been shown to alleviate the effects of lipopolysaccharides in vitro. For the 10-wk experiment, 200 finishing pigs ([Landrace × Yorkshire] × Duroc) with an average body weight of 54.15 ± 1.70 kg were divided into four groups. Each group was fed with a basal diet supplemented with an equal amount of spores from the two B. subtilis strains at different levels: control group, no addition; treatment group 1, 0.5 × 109; treatment group 2, 1.0 × 109; treatment group 3, 1.5 × 109 cfu·kg-1 addition. During the 10-wk feeding period, dietary supplementation of 0.5 × 109, 1.0 × 109, and 1.5 × 109 cfu·kg-1 of the spore cells from these two strains resulted in a 0.9%, 1.9%, and 2.5% increase in body weight, respectively (linear P < 0.095). During the final 5 wk, the average daily gain (ADG) in weight was increased by the strains at amounts of 0.5 × 109, 1.0 × 109, and 1.5 × 109 cfu·kg-1 with a clear dosage effect (linear P < 0.05). However, neither the gain-to-feed ratio, the average daily feed intake, nor nutrient digestibility was affected by the supplementation. In blood, the endotoxin lipopolysaccharides, and two liver toxicity indicator enzymes; aspartate aminotransferase and lactate dehydrogenase were decreased (P < 0.05) in the 1.0 × 109 cfu·kg-1 spores-feeding group. Furthermore, four noxious gases were reduced by 8 to 20% in feces excreted by pigs fed with 1.5 × 109 cfu·kg-1 spores with a linear dosage effect (linear P < 0.001 to 0.05) during the final 5 wk. Our findings suggest that the mixture of B. subtilis strains may enhance the productivity of finishing pigs by reducing the risk of mild endotoxemia, rather than increasing digestibility or daily feed intake. Therefore, these Bacillus strains have the potential to act as growth promoters for pigs, leading to improved animal health and productivity. These results have significant implications for pig farmers seeking to optimize the health and growth of their animals.
Collapse
Affiliation(s)
- Junho Song
- Department of Animal Resource & Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sook-Jung Jeong
- Proxenrem, OsongSaengmyeong1-ro, Osong-eup, Chungju-si 28160, Republic of Korea
| | - Chai Bin Lim
- Department of Animal Resource & Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Bongseok Kang
- Proxenrem, OsongSaengmyeong1-ro, Osong-eup, Chungju-si 28160, Republic of Korea
| | - Sang Sik Oh
- Electrical & Electronics Engineering, Ton Duc Thang University, Dist7, HCMC 700000, Vietnam
| | - Gilly Yun
- Electrical & Electronics Engineering, Ton Duc Thang University, Dist7, HCMC 700000, Vietnam
- Molpaxbio, Yuseongdaero 1689-70, Yuseong-gu, Daejeon 34047, Republic of Korea
| | - In Ho Kim
- Department of Animal Resource & Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Yangrae Cho
- Proxenrem, OsongSaengmyeong1-ro, Osong-eup, Chungju-si 28160, Republic of Korea
| |
Collapse
|
19
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
20
|
Meneses MJ, Macedo MP. Editorial: Metabolic miscommunication among organs: The missing links. Front Endocrinol (Lausanne) 2023; 14:1136283. [PMID: 36714077 PMCID: PMC9880458 DOI: 10.3389/fendo.2023.1136283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Affiliation(s)
- Maria João Meneses
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- DECSIS II Iberia, Évora, Portugal
- *Correspondence: Maria João Meneses, ; Maria Paula Macedo,
| | - Maria Paula Macedo
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- *Correspondence: Maria João Meneses, ; Maria Paula Macedo,
| |
Collapse
|
21
|
Hughes FM, Odom MR, Cervantes A, Purves J. Inflammation triggered by the NLRP3 inflammasome is a critical driver of diabetic bladder dysfunction. Front Physiol 2022; 13:920487. [PMID: 36505062 PMCID: PMC9733912 DOI: 10.3389/fphys.2022.920487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes is a rapidly expanding epidemic projected to affect as many as 1 in 3 Americans by 2050. This disease is characterized by devastating complications brought about high glucose and metabolic derangement. The most common of these complications is diabetic bladder dysfunction (DBD) and estimates suggest that 50-80% of patients experience this disorder. Unfortunately, the Epidemiology of Diabetes Interventions and Complications Study suggests that strict glucose control does not decrease ones risk for incontinence, although it does decrease the risk of other complications such as retinopathy, nephropathy and neuropathy. Thus, there is a significant unmet need to better understand DBD in order to develop targeted therapies to alleviate patient suffering. Recently, the research community has come to understand that diabetes produces a systemic state of low-level inflammation known as meta-inflammation and attention has focused on a role for the sterile inflammation-inducing structure known as the NLRP3 inflammasome. In this review, we will examine the evidence that NLRP3 plays a central role in inducing DBD and driving its progression towards an underactive phenotype.
Collapse
Affiliation(s)
- Francis M. Hughes
- Division of Urology, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | | | | | | |
Collapse
|
22
|
Wang YF, Liang FM, Liu M, Ding LC, Hui JJ, Xu HY, Liu LJ. Is compromised intestinal barrier integrity responsible for the poor prognosis in critically ill patients with pre-existing hyperglycemia? Diabetol Metab Syndr 2022; 14:172. [PMID: 36397109 PMCID: PMC9669527 DOI: 10.1186/s13098-022-00943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Compromised intestinal barrier integrity can be independently driven by hyperglycemia, and both hyperglycemia and intestinal barrier injury are associated with poor prognosis in critical illness. This study investigated the intestinal barrier biomarkers in critically ill patients, to explore the role of compromised intestinal barrier integrity on the prognosis of critically ill patients with pre-existing hyperglycemia. METHODS This was a retrospective observational study. The relationships between intestinal barrier biomarkers and glycated hemoglobin A1c (HbA1c), fasting blood glucose (FBG), indicators of clinical characteristics, disease severity, and prognosis in critically ill patients were investigated. Then the metrics mentioned above were compared between survivors and non-survivors, the risk factors of 90-day mortality were investigated by logistic regression analysis. Further, patients were divided into HbA1c < 6.5% Group and HbA1c ≥ 6.5% Group, metrics mentioned above were compared between these two groups. RESULTS A total of 109 patients with critical illness were included in the study. D-lactate and lipopolysaccharide (LPS) were associated with sequential organ failure assessment (SOFA) score and 90-day mortality. LPS was an independent risk factor of 90-day mortality. DAO, NEU (neutrophil) proportion, temperature, lactate were lower in HbA1c ≥ 6.5% Group while D-lactate, LPS, indicators of disease severity and prognosis showed no statistical difference between HbA1c < 6.5% Group and HbA1c ≥ 6.5% Group. CONCLUSIONS Intestinal barrier integrity is associated with the disease severity and prognosis in critical illness. Compromised intestinal barrier integrity might be responsible for the poor prognosis in critically ill patients with pre-existing hyperglycemia.
Collapse
Affiliation(s)
- Yi-Feng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng-Ming Liang
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Min Liu
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Li-Cheng Ding
- Department of Emergency Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiao-Jie Hui
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Hong-Yang Xu
- Department of Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| | - Li-Jun Liu
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
23
|
Lamas B, Evariste L, Houdeau E. Interactions du dioxyde de titane alimentaire avec l’axe microbiote-système immunitaire : un nouvel acteur dans le développement de désordres métaboliques ? CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2022. [DOI: 10.1016/j.cnd.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Xia F, Li Y, Deng L, Ren R, Ge B, Liao Z, Xiang S, Zhou B. Alisol B 23-Acetate Ameliorates Lipopolysaccharide-Induced Intestinal Barrier Dysfunction by Inhibiting TLR4-NOX1/ROS Signaling Pathway in Caco-2 Cells. Front Pharmacol 2022; 13:911196. [PMID: 35774596 PMCID: PMC9237229 DOI: 10.3389/fphar.2022.911196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 01/13/2023] Open
Abstract
Alisol B 23-Acetate (AB23A) is a naturally occurring triterpenoid, which can be indicated in the rhizome of medicinal and dietary plants from Alisma species. Previous studies have demonstrated that AB23A could inhibit intestinal permeability by regulating tight junction (TJ)-related proteins. Even so, the AB23A protective mechanism against intestinal barrier dysfunction remains poorly understood. This investigation seeks to evaluate the AB23A protective effects on intestinal barrier dysfunction and determine the mechanisms for restoring intestinal barrier dysfunction in LPS-stimulated Caco-2 monolayers. According to our findings, AB23A attenuated the inflammation by reducing pro-inflammatory cytokines production like IL-6, TNF-α, IL-1β, and prevented the paracellular permeability by inhibiting the disruption of TJ in LPS-induced Caco-2 monolayers after treated with LPS. AB23A also inhibited LPS-induced TLR4, NOX1 overexpression and subsequent ROS generation in Caco-2 monolayers. Transfected with NOX1-specific shRNA diminished the up-regulating AB23A effect on ZO-1 and occludin expression. Moreover, transfected with shRNA of TLR4 not only enhanced ZO-1 and occludin expression but attenuated NOX1 expression and ROS generation. Therefore, AB23A ameliorates LPS-induced intestinal barrier dysfunction by inhibiting TLR4-NOX1/ROS signaling pathway in Caco-2 monolayers, suggesting that AB23A may have positive impact on maintaining the intestinal barrier’s integrity.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fan Xia, ; Benjie Zhou,
| | - Yuxin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang, China
| | - Lijun Deng
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ruxia Ren
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bingchen Ge
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Ziqiong Liao
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Fan Xia, ; Benjie Zhou,
| |
Collapse
|
25
|
McRae A, Ricardo-Silgado ML, Liu Y, Calderon G, Gonzalez-Izundegui D, Rohakhtar FR, Simon V, Li Y, Acosta A. A Protocol for the Cryopreservation of Human Intestinal Mucosal Biopsies Compatible With Single-Cell Transcriptomics and Ex Vivo Studies. Front Physiol 2022; 13:878389. [PMID: 35600311 PMCID: PMC9119022 DOI: 10.3389/fphys.2022.878389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity of the human intestinal epithelium has hindered the understanding of the pathophysiology of distinct specialized cell types on a single-cell basis in disease states. Described here is a workflow for the cryopreservation of endoscopically obtained human intestinal mucosal biopsies, subsequent preparation of this tissue to yield highly viable fluorescence-activated cell sorting (FACS)isolated human intestinal epithelial cell (IEC) single-cell suspensions compatible with successful library preparation and deep single-cell RNA sequencing (scRNAseq). We validated this protocol in deep scRNAseq of 59,653 intestinal cells in 10 human participants. Furthermore, primary intestinal cultures were successfully generated from cryopreserved tissue, capable of surviving in short-term culture and suitable for physiological assays studying gut peptide secretion from rare hormone-producing enteroendocrine cells in humans. This study offers an accessible avenue for single-cell transcriptomics and ex vivo studies from cryopreserved intestinal mucosal biopsies. These techniques may be used in the future to dissect and define novel aberrations to the intestinal ecosystem that lead to the development and progression of disease states in humans, even in rare IEC populations.
Collapse
Affiliation(s)
- Alison McRae
- Precision Medicine for Obesity Program, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Maria Laura Ricardo-Silgado
- Precision Medicine for Obesity Program, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Yuanhang Liu
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Gerardo Calderon
- Precision Medicine for Obesity Program, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Daniel Gonzalez-Izundegui
- Precision Medicine for Obesity Program, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | | | - Vernadette Simon
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN, United States
| | - Ying Li
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Andres Acosta
- Precision Medicine for Obesity Program, Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Andres Acosta,
| |
Collapse
|
26
|
Hijová E. Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. Metabolites 2022; 12:metabo12040313. [PMID: 35448499 PMCID: PMC9031884 DOI: 10.3390/metabo12040313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and being overweight have reached incredible proportions worldwide and are one of the most common human health problems. The causes of obesity are multifactorial, including a complex interplay among genes, metabolism, diet, physical activity, and the environment. The intestinal microbiota has the ability to affect the host physiology for both benefit and damage, either directly or through microbial metabolites. The aim of this review is to discuss the mechanisms by which the intestinal microbiota could act as a key modifier of obesity and related metabolic abnormalities. The synbiotic components provide an optimal target for modulation of the intestinal microbiota and help reshape the metabolic profile in obese people. The development of novel functional foods containing synbiotic ingredients may present a support in the prevention of obesity as one of the risk factors for chronic diseases. Knowledge of the synbiotic mechanisms of action and the use of new functional foods supplemented with probiotics and prebiotics will facilitate the clinical application and development of individual health care strategies.
Collapse
Affiliation(s)
- Emília Hijová
- Center of Clinical and Preclinical Research (MEDIPARK), Department of Experimental Medicine, Faculty of Medicine, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia
| |
Collapse
|
27
|
Wang YF, Wang S, Xu HY, Liu LJ. Commentary: Intestinal barrier function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front Endocrinol (Lausanne) 2022; 13:939703. [PMID: 36034429 PMCID: PMC9399428 DOI: 10.3389/fendo.2022.939703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yi-feng Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Song Wang
- Department of Critical Care Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Hong-yang Xu
- Department of Critical Care Medicine, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Hong-yang Xu, ; Li-jun Liu,
| | - Li-jun Liu
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Hong-yang Xu, ; Li-jun Liu,
| |
Collapse
|