1
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
2
|
Williamson MH, Clements WK. WNT16 primer. Differentiation 2025; 142:100833. [PMID: 39730242 DOI: 10.1016/j.diff.2024.100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Affiliation(s)
- McLean H Williamson
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wilson K Clements
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
3
|
Schierano G, Baldi D, Peirone B, von Degerfeld MM, Modica F, Notaro V, Boretto C, Muzio G, Autelli R. Implant stability quotient and osteogenic process in dental implant sites prepared using piezoelectric technique: A study in minipigs. J Prosthodont 2025. [PMID: 39873350 DOI: 10.1111/jopr.14025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/26/2024] [Indexed: 01/30/2025] Open
Abstract
PURPOSE Few studies have explored the bone response in dental implant sites prepared using a piezoelectric device, indicating moderate effectiveness in enhancing secondary stability and osteogenesis. This study seeks to expand our understanding of the changes in biological, clinical, and radiographic parameters, during the initial phases of osseointegration in sites prepared with piezoelectric surgery. MATERIALS AND METHODS Two implant sites were prepared in the tibia of four minipigs. At the time of implant placement (T0), bone cortex thickness and Implant Stability Quotient (ISQ) were assessed. A bone specimen was collected from the tibia and used as the baseline for biomolecular analyses. X-ray was taken after implant insertion. After 14 days (T14), a computed tomography (CT) scan of the tibias was conducted, and ISQ values were reassessed. Histological and biomolecular analyses were performed on bone sections containing the implant. RESULTS ISQ significantly increased from T0 to T14, in the absence of any correlation between the cortical thickness and ISQ. In two animals, CT showed a slight trabecular bone thickening adjacent to the implants and disorganized radiodense spots; in the other two, no trabecular osseodensification was evident. Newly formed bone was about 48% of the tissue around implants. At T14, an increase in osteogenic factors and a decrease in inflammatory molecules were observed. CONCLUSION This study enhances understanding of the biological and clinical responses at bone implant sites following piezoelectric surgery. It highlights the relationship between the rise in certain osteogenic factors and new bone formation, as well as a potential association with increased ISQ.
Collapse
Affiliation(s)
- Gianmario Schierano
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Domenico Baldi
- Department of Surgical Science (DISC), Division of Prosthetic Dentistry, University of Genoa, Genoa, Italy
| | - Bruno Peirone
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Fabio Modica
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Vincenzo Notaro
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Cecilia Boretto
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuliana Muzio
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Riccardo Autelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Lin B, Liu H, Liu H, Su L, Sun K, Feng H, Liu Y, Yu M, Han D. A novel WNT10A variant impairs the homeostasis of alveolar bone mesenchymal stem cells. Oral Dis 2025; 31:168-180. [PMID: 38852166 DOI: 10.1111/odi.15032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVES To explore the influence of a novel WNT10A variant on bone mineral density, proliferation, and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells in humans. SUBJECTS AND METHODS Whole-exome sequencing and Sanger sequencing were utilized to detect gene variants in a family with non-syndromic tooth agenesis (NSTA). The panoramic mandibular index was calculated on the proband with WNT10A variant and normal controls to evaluate bone mineral density. Alveolar bone mesenchymal stem cells from the proband with a novel WNT10A variant and normal controls were isolated and cultured, then proliferation and osteogenic differentiation capacities were evaluated and compared. RESULTS We identified a novel WNT10A pathogenic missense variant (c.353A > G/p. Tyr118Cys) in a family with NSTA. The panoramic mandibular index of the proband implied a reduction in bone mineral density. Moreover, the proliferation and osteogenic differentiation capacities of alveolar bone mesenchymal stem cells from the proband with WNT10A Tyr118Cys variant were significantly decreased. CONCLUSIONS Our findings broaden the spectrum of WNT10A variants in patients with non-syndromic oligodontia, suggest an association between WNT10A and the proliferation and osteogenic differentiation of alveolar bone mesenchymal stem cells, and demonstrate that WNT10A is involved in maintaining jaw bone homeostasis.
Collapse
Affiliation(s)
- Bichen Lin
- Frist Clinical Division, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Lanxin Su
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
5
|
Xu J, Hu M, Liu L, Xu X, Xu L, Song Y. A transcriptomic analysis of dental pulp stem cell senescence in vitro. Biomed Eng Online 2024; 23:102. [PMID: 39425139 PMCID: PMC11488381 DOI: 10.1186/s12938-024-01298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND/PURPOSE The use of human dental pulp stem cells (hDPSCs) as autologous stem cells for tissue repair and regenerative techniques is a significant area of global research. The objective of this study was to investigate the effects of long-term in vitro culture on the multidifferentiation potential of hDPSCs and the potential molecular mechanisms involved. MATERIALS AND METHODS The tissue block method was used to extract hDPSCs from orthodontic-minus-extraction patients, which were then expanded and cultured in vitro for 12 generations. Stem cells from passages three, six, nine, and twelve were selected. Flow cytometry was used to detect the expression of stem cell surface markers, and CCK-8 was used to assess cell proliferation. β-Galactosidase staining was employed to detect cellular senescence, Alizarin Red S staining to assess osteogenic potential, and Oil Red O staining to evaluate lipogenic capacity. RNA sequencing (RNA-seq) was conducted to identify differentially expressed genes in DPSCs and investigate their potential mechanisms. RESULTS With increasing passage numbers, pulp stem cells showed an increase in senescence and a decrease in proliferative capacity and osteogenic-lipogenic multidifferentiation potential. The expression of stem cell surface markers CD34 and CD45 was stable, whereas the expression of CD73, CD90, and CD105 decreased with increasing passages. According to the RNA-seq analysis, the differentially expressed genes CFH, WNT16, HSD17B2, IDI1, and COL5A3 may be associated with stem cell senescence. CONCLUSION Increased in vitro expansion induced cellular senescence in pulp stem cells, which resulted in a reduction in their proliferative capacity and osteogenic-lipogenic differentiation potential. The differential expression of genes such as CFH, WNT16, HSD17B2, IDI1, and COL5A3 may represent a potential mechanism for the induction of cellular senescence in pulp stem cells.
Collapse
Affiliation(s)
- Jidong Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Mingchang Hu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Longfei Liu
- Qingdao Engineering Vocational College, Qingdao, 266000, China
| | - Xuecheng Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Linlin Xu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China.
| |
Collapse
|
6
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
7
|
Hou M, Deng Y, Lv N, Wu Y, Zhu Y, Zhang Y, Liu Y, Xia X, Yu C, Yu J, He F, Xu Y, Zhu X. Cyclic amplification of remodeling bone regeneration process via cerium-energized spinning hydrogel biomembrane for rescuing osteoporotic bone defects. CHEMICAL ENGINEERING JOURNAL 2024; 492:152262. [DOI: 10.1016/j.cej.2024.152262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
8
|
Pius AK, Toya M, Gao Q, Lee ML, Ergul YS, Chow SKH, Goodman SB. Effects of Aging on Osteosynthesis at Bone-Implant Interfaces. Biomolecules 2023; 14:52. [PMID: 38254652 PMCID: PMC10813487 DOI: 10.3390/biom14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Joint replacement is a common surgery and is predominantly utilized for treatment of osteoarthritis in the aging population. The longevity of many of these implants depends on bony ingrowth. Here, we provide an overview of current techniques in osteogenesis (inducing bone growth onto an implant), which is affected by aging and inflammation. In this review we cover the biologic underpinnings of these processes as well as the clinical applications. Overall, aging has a significant effect at the cellular and macroscopic level that impacts osteosynthesis at bone-metal interfaces after joint arthroplasty; potential solutions include targeting prolonged inflammation, preventing microbial adhesion, and enhancing osteoinductive and osteoconductive properties.
Collapse
Affiliation(s)
- Alexa K. Pius
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Masakazu Toya
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Qi Gao
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Max L. Lee
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Yasemin Sude Ergul
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
| | - Stuart Barry Goodman
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, Stanford, CA 94063, USA; (A.K.P.); (M.T.); (Q.G.); (M.L.L.); (Y.S.E.); (S.K.-H.C.)
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Liu Q, Yu M, Liao M, Ran Z, Tang X, Hu J, Su B, Fu G, Wu Q. The ratio of alpha-calcitonin gene-related peptide to substance P is associated with the transition of bone metabolic states during aging and healing. J Mol Histol 2023; 54:689-702. [PMID: 37857924 DOI: 10.1007/s10735-023-10167-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
Alpha-calcitonin gene-related peptide (αCGRP) and substance P (SP) are functionally correlated sensory neuropeptides deeply involved in bone homeostasis. However, they are usually studied individually rather than as an organic whole. To figure out whether they are interdependent, we firstly recorded the real-time αCGRP and SP levels in aging bone and healing fracture, which revealed a moderate to high level of αCGRP coupled with a low αCGRP/SP ratio in an anabolic state, and a high level of αCGRP coupled with a high αCGRP/SP ratio in a catabolic state, suggesting the importance of αCGRP/SP ratio in driving aging and healing scenarios. During facture healing, increase in αCGRP/SP ratio by adding αCGRP led to better callus formation and faster callus remodeling, while simultaneous addition of αCGRP and SP resulted in hypertrophic callus and delayed remodeling. The characteristics in inflammation and osteoclast activation further confirmed the importance of high αCGRP/SP ratio during catabolic bone remodeling. In vitro assays using different mixtures of αCGRP-SP proved that the osteogenic potential of the mixtures depended mostly on αCGRP, while their effects on osteoclasts and neutrophils relied on both peptides. These results demonstrated that αCGRP and SP were spatiotemporally interdependent. The αCGRP/SP ratio may be more important than the dose of a single neuropeptide in managing age-related and trauma-related bone diseases.
Collapse
Affiliation(s)
- Qianzi Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Minxuan Yu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Menglin Liao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Zhiyue Ran
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Xiaofeng Tang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Jun Hu
- Department of Stomatology, Qijiang District People's Hospital, Chongqing, 401420, China
| | - Beiju Su
- Chongqing Dazu District Hospital of Traditional Chinese Medicine, Chongqing, 402360, China
| | - Gang Fu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| | - Qingqing Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
- Department of Oral Implantology, Stomatological Hospital of Chongqing Medical University, Chongqing, 400015, China.
| |
Collapse
|