1
|
Cobo-Vuilleumier N, Lorenzo PI, Martin Vazquez E, López Noriega L, Nano R, Piemonti L, Martín F, Gauthier BR. Enhancing human islet xenotransplant survival and function in diabetic immunocompetent mice through LRH-1/NR5A2 pharmacological activation. Front Immunol 2024; 15:1470881. [PMID: 39399499 PMCID: PMC11466778 DOI: 10.3389/fimmu.2024.1470881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
The intricate etiology of type 1 diabetes mellitus (T1D), characterized by harmful interactions between the immune system and insulin-producing beta cells, has hindered the development of effective therapies including human islet transplantation, which requires strong immunosuppressants that impair beta cell survival and function. As such alternative immunomodulating therapies are required for successful transplantation. The discovery that pharmacological activation of the nuclear receptor LRH-1/NR5A2 can reverse hyperglycemia in mouse models of T1D by altering, and not suppressing the autoimmune attack, prompted us to investigate whether LRH-1/NR5A2 activation could improve human islet function/survival after xenotransplantation in immunocompetent mice. Human islets were transplanted under the kidney capsule of streptozotocin (STZ)-induced diabetic mice, and treatment with BL001 (LRH-1/NR5A2 agonist) or vehicle was administered one week post-transplant. Our study, encompassing 3 independent experiments with 3 different islet donors, revealed that mice treated for 8 weeks with BL001 exhibited lower blood glucose levels correlating with improved mouse survival rates as compared to vehicle-treated controls. Human C-peptide was detectable in BL001-treated mice at both 4 and 8 weeks indicating functional islet beta cells. Accordingly, in mice treated with BL001 for 8 weeks, the beta cell mass was preserved, while a significant decrease in alpha cells was observed compared to mice treated with BL001 for only 4 weeks. In contrast, vehicle-treated mice exhibited a reduction in insulin-expressing cells at 8 weeks compared to those at 4 weeks. These results suggest that BL001 significantly enhances the survival, engraftment, and functionality of human islets in a STZ-induced diabetic mouse model.
Collapse
Affiliation(s)
- N. Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - P. I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - E. Martin Vazquez
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - L. López Noriega
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - R. Nano
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - L. Piemonti
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - F. Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - B. R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), Junta de Andalucía-University of Pablo de Olavide-University of Seville-Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
2
|
Wang Q, Huang YX, Liu L, Zhao XH, Sun Y, Mao X, Li SW. Pancreatic islet transplantation: current advances and challenges. Front Immunol 2024; 15:1391504. [PMID: 38887292 PMCID: PMC11180903 DOI: 10.3389/fimmu.2024.1391504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Diabetes is a prevalent chronic disease that traditionally requires severe reliance on medication for treatment. Oral medication and exogenous insulin can only temporarily maintain blood glucose levels and do not cure the disease. Most patients need life-long injections of exogenous insulin. In recent years, advances in islet transplantation have significantly advanced the treatment of diabetes, allowing patients to discontinue exogenous insulin and avoid complications.Long-term follow-up results from recent reports on islet transplantation suggest that they provide significant therapeutic benefit although patients still require immunotherapy, suggesting the importance of future transplantation strategies. Although organ shortage remains the primary obstacle for the development of islet transplantation, new sources of islet cells, such as stem cells and porcine islet cells, have been proposed, and are gradually being incorporated into clinical research. Further research on new transplantation sites, such as the subcutaneous space and mesenteric fat, may eventually replace the traditional portal vein intra-islet cell infusion. Additionally, the immunological rejection reaction in islet transplantation will be resolved through the combined application of immunosuppressant agents, islet encapsulation technology, and the most promising mesenchymal stem cells/regulatory T cell and islet cell combined transplantation cell therapy. This review summarizes the progress achieved in islet transplantation, and discusses the research progress and potential solutions to the challenges faced.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-xi Huang
- Department of Hepatobiliary and Pancreatic Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-hong Zhao
- Department of Pharmacy, Taizhou Hospital, Zhejiang University, Taizhou, Zhejiang, China
| | - Yi Sun
- MRL Global Medical Affairs, MSD China, Shanghai, China
| | - Xinli Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques and Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
3
|
Yang J, Yan Y, Yin X, Liu X, Reshetov IV, Karalkin PA, Li Q, Huang RL. Bioengineering and vascularization strategies for islet organoids: advancing toward diabetes therapy. Metabolism 2024; 152:155786. [PMID: 38211697 DOI: 10.1016/j.metabol.2024.155786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Diabetes presents a pressing healthcare crisis, necessitating innovative solutions. Organoid technologies have rapidly advanced, leading to the emergence of bioengineering islet organoids as an unlimited source of insulin-producing cells for treating insulin-dependent diabetes. This advancement surpasses the need for cadaveric islet transplantation. However, clinical translation of this approach faces two major limitations: immature endocrine function and the absence of a perfusable vasculature compared to primary human islets. In this review, we summarize the latest developments in bioengineering functional islet organoids in vitro and promoting vascularization of organoid grafts before and after transplantation. We highlight the crucial roles of the vasculature in ensuring long-term survival, maturation, and functionality of islet organoids. Additionally, we discuss key considerations that must be addressed before clinical translation of islet organoid-based therapy, including functional immaturity, undesired heterogeneity, and potential tumorigenic risks.
Collapse
Affiliation(s)
- Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China; Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, China
| | - Xiangqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China
| | - Igor V Reshetov
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Pavel A Karalkin
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, 127473 Moscow, Russia
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China; Shanghai Institute for Plastic and Reconstructive Surgery, China.
| |
Collapse
|
4
|
Nashimoto Y, Konno A, Imaizumi T, Nishikawa K, Ino K, Hori T, Kaji H, Shintaku H, Goto M, Shiku H. Microfluidic vascular formation model for assessing angiogenic capacities of single islets. Biotechnol Bioeng 2024; 121:1050-1059. [PMID: 38131167 DOI: 10.1002/bit.28631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/12/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Pancreatic islet transplantation presents a promising therapy for individuals suffering from type 1 diabetes. To maintain the function of transplanted islets in vivo, it is imperative to induce angiogenesis. However, the mechanisms underlying angiogenesis triggered by islets remain unclear. In this study, we introduced a microphysiological system to study the angiogenic capacity and dynamics of individual islets. The system, which features an open-top structure, uniquely facilitates the inoculation of islets and the longitudinal observation of vascular formation in in vivo like microenvironment with islet-endothelial cell communication. By leveraging our system, we discovered notable islet-islet heterogeneity in the angiogenic capacity. Transcriptomic analysis of the vascularized islets revealed that islets with high angiogenic capacity exhibited upregulation of genes related to insulin secretion and downregulation of genes related to angiogenesis and fibroblasts. In conclusion, our microfluidic approach is effective in characterizing the vascular formation of individual islets and holds great promise for elucidating the angiogenic mechanisms that enhance islet transplantation therapy.
Collapse
Affiliation(s)
- Yuji Nashimoto
- Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, Japan
- Graduate School of Engineering, Tohoku University, Miyagi, Japan
- Graduate School of Environmental Studies, Tohoku University, Miyagi, Japan
- Cluster for Pioneering Research, RIKEN, Saitama, Japan
| | - An Konno
- Graduate School of Environmental Studies, Tohoku University, Miyagi, Japan
| | - Takuto Imaizumi
- Graduate School of Environmental Studies, Tohoku University, Miyagi, Japan
| | | | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Takeshi Hori
- Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirokazu Kaji
- Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Hirofumi Shintaku
- Cluster for Pioneering Research, RIKEN, Saitama, Japan
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Graduate School of Medicine, Tohoku University, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Miyagi, Japan
- Graduate School of Environmental Studies, Tohoku University, Miyagi, Japan
| |
Collapse
|
5
|
Zhang T, Wang N, Zhu L, Chen L, Liu H. Bidirectional Relationship between Glycemic Control and COVID-19 and Perspectives of Islet Organoid Models of SARS-CoV-2 Infection. Biomedicines 2023; 11:biomedicines11030856. [PMID: 36979836 PMCID: PMC10045433 DOI: 10.3390/biomedicines11030856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leads to morbidity and mortality, with several clinical manifestations, and has caused a widespread pandemic. It has been found that type 2 diabetes is a risk factor for severe coronavirus disease 2019 (COVID-19) illness. Moreover, accumulating evidence has shown that SARS-CoV-2 infection can increase the risk of hyperglycemia and diabetes, though the underlying mechanism remains unclear because of a lack of authentic disease models to recapitulate the abnormalities involved in the development, regeneration, and function of human pancreatic islets under SARS-CoV-2 infection. Stem-cell-derived islet organoids have been valued as a model to study islets’ development and function, and thus provide a promising model for unraveling the mechanisms underlying the onset of diabetes under SARS-CoV-2 infection. This review summarized the latest results from clinical and basic research on SARS-CoV-2-induced pancreatic islet damage and impaired glycemic control. Furthermore, we discuss the potential and perspectives of using human ES/iPS cell-derived islet organoids to unravel the bidirectional relationship between glycemic control and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tongran Zhang
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Nannan Wang
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingqiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Lihua Chen
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China
- Correspondence: (L.C.); (H.L.)
| | - Huisheng Liu
- Guangzhou Laboratory, Guangzhou 510006, China; (T.Z.); (N.W.)
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 510180, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, China
- Correspondence: (L.C.); (H.L.)
| |
Collapse
|