1
|
Castillo RL, Farías J, Sandoval C, González-Candia A, Figueroa E, Quezada M, Cruz G, Llanos P, Jorquera G, Kostin S, Carrasco R. Role of NLRP3 Inflammasome in Heart Failure Patients Undergoing Cardiac Surgery as a Potential Determinant of Postoperative Atrial Fibrillation and Remodeling: Is SGLT2 Cotransporter Inhibition an Alternative for Cardioprotection? Antioxidants (Basel) 2024; 13:1388. [PMID: 39594530 PMCID: PMC11591087 DOI: 10.3390/antiox13111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
In heart failure (HF) patients undergoing cardiac surgery, an increased activity of mechanisms related to cardiac remodeling may determine a higher risk of postoperative atrial fibrillation (POAF). Given that atrial fibrillation (AF) has a negative impact on the course and management of HF, including the need for anticoagulation therapy, identifying the factors associated with AF occurrence after cardiac surgery is crucial for the prognosis of these patients. POAF is thought to occur when various clinical and biochemical triggers act on susceptible cardiac tissue (first hit), with oxidative stress and inflammation during cardiopulmonary bypass (CPB) surgery being potential contributing factors (second hit). However, the molecular mechanisms involved in these processes remain poorly characterized. Recent research has shown that patients who later develop POAF often have pre-existing abnormalities in calcium handling and activation of NLRP3-inflammasome signaling in their atrial cardiomyocytes. These molecular changes may make cardiomyocytes more susceptible to spontaneous Ca2+-releases and subsequent arrhythmias, particularly when exposed to inflammatory mediators. Additionally, some clinical studies have linked POAF with elevated preoperative inflammatory markers, but there is a need for further research in order to better understand the impact of CPB surgery on local and systemic inflammation. This knowledge would make it possible to determine whether patients susceptible to POAF have pre-existing inflammatory conditions or cellular electrophysiological factors that make them more prone to developing AF and cardiac remodeling. In this context, the NLRP3 inflammasome, expressed in cardiomyocytes and cardiac fibroblasts, has been identified as playing a key role in the development of HF and AF, making patients with pre-existing HF with reduced ejection fraction (HFrEF) the focus of several clinical studies with interventions that act at this level. On the other hand, HFpEF has been linked to metabolic and non-ischemic risk factors, but more research is needed to better characterize the myocardial remodeling events associated with HFpEF. Therefore, since ventricular remodeling may differ between HFrEF and HFpEF, it is necessary to perform studies in both groups of patients due to their pathophysiological variations. Clinical evidence has shown that pharmacological therapies that are effective for HFrEF may not provide the same anti-remodeling benefits in HFpEF patients, particularly compared to traditional adrenergic and renin-angiotensin-aldosterone system inhibitors. On the other hand, there is growing interest in medications with pleiotropic or antioxidant/anti-inflammatory effects, such as sodium-glucose cotransporter 2 inhibitors (SGLT-2is). These drugs may offer anti-remodeling effects in both HFrEF and HFpEF by inhibiting pro-inflammatory, pro-oxidant, and NLRP3 signaling pathways and their mediators. The anti-inflammatory, antioxidant, and anti-remodeling effects of SGLT-2 i have progressively expanded from HFrEF and HFpEF to other forms of cardiac remodeling. However, these advances in research have not yet encompassed POAF despite its associations with inflammation, oxidative stress, and remodeling. Currently, the direct or indirect effects of NLRP3-dependent pathway inhibition on the occurrence of POAF have not been clinically assessed. However, given that NLRP3 pathway inhibition may also indirectly affect other pathways, such as inhibition of NF-kappaB or inhibition of matrix synthesis, which are strongly linked to POAF and cardiac remodeling, it is reasonable to hypothesize that this type of intervention could play a role in preventing these events.
Collapse
Affiliation(s)
- Rodrigo L. Castillo
- Departamento de Medicina Interna Oriente, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile
- Unidad de Paciente Crítico, Hospital del Salvador, Santiago 7500922, Chile
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Los Carreras 753, Osorno 5310431, Chile;
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| | - Alejandro González-Candia
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Esteban Figueroa
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile; (A.G.-C.); (E.F.)
| | - Mauricio Quezada
- Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
| | - Gonzalo Cruz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
| | - Paola Llanos
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile;
- Facultad de Odontología, Instituto de Investigación en Ciencias Odontológicas, Universidad de Chile, Santiago 8380544, Chile
| | - Gonzalo Jorquera
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 8331051, Chile;
| | - Sawa Kostin
- Faculty of Health Sciences, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany;
| | - Rodrigo Carrasco
- Departamento de Cardiología, Clínica Alemana de Santiago, Santiago 7500922, Chile;
| |
Collapse
|
2
|
Chee YJ, Dalan R. Novel Therapeutics for Type 2 Diabetes Mellitus-A Look at the Past Decade and a Glimpse into the Future. Biomedicines 2024; 12:1386. [PMID: 39061960 PMCID: PMC11274090 DOI: 10.3390/biomedicines12071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiovascular disease (CVD) and kidney disease are the main causes of morbidity and mortality in type 2 diabetes mellitus (T2DM). Globally, the incidence of T2DM continues to rise. A substantial increase in the burden of CVD and renal disease, alongside the socioeconomic implications, would be anticipated. Adopting a purely glucose-centric approach focusing only on glycemic targets is no longer adequate to mitigate the cardiovascular risks in T2DM. In the past decade, significant advancement has been achieved in expanding the pharmaceutical options for T2DM, with novel agents such as the sodium-glucose cotransporter type 2 (SGLT2) inhibitors and glucagon-like peptide receptor agonists (GLP-1 RAs) demonstrating robust evidence in cardiorenal protection. Combinatorial approaches comprising multiple pharmacotherapies combined in a single agent are an emerging and promising way to not only enhance patient adherence and improve glycemic control but also to achieve the potential synergistic effects for greater cardiorenal protection. In this review, we provide an update on the novel antidiabetic agents in the past decade, with an appraisal of the mechanisms contributing to cardiorenal protection. Additionally, we offer a glimpse into the landscape of T2DM management in the near future by providing a comprehensive summary of upcoming agents in early-phase trials.
Collapse
Affiliation(s)
- Ying Jie Chee
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
| | - Rinkoo Dalan
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433, Singapore;
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
3
|
Conroy LJ, McCann A, Zhang N, de Gaetano M. The role of nanosystems in the delivery of glucose-lowering drugs for the preemption and treatment of diabetes-associated atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C1398-C1409. [PMID: 38525540 DOI: 10.1152/ajpcell.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Diabetes is one of the most prevalent diseases worldwide. In recent decades, type-2 diabetes has become increasingly common, particularly in younger individuals. Diabetes leads to many vascular complications, including atherosclerosis. Atherosclerosis is a cardiovascular disease characterized by lipid-rich plaques within the vasculature. Plaques develop over time, restricting blood flow, and can, therefore, be the underlying cause of major adverse cardiovascular events, including myocardial infarction and stroke. Diabetes and atherosclerosis are intrinsically linked. Diabetes is a metabolic syndrome that accelerates atherosclerosis and increases the risk of developing other comorbidities, such as diabetes-associated atherosclerosis (DAA). Gold standard antidiabetic medications focus on attenuating hyperglycemia. Though recent evidence suggests that glucose-lowering drugs may have broader applications, beyond diabetes management. This review mainly evaluates the role of glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as liraglutide and semaglutide in DAA. These drugs mimic gut hormones (incretins), which inhibit glucagon secretion while stimulating insulin secretion, thus improving insulin sensitivity. This facilitates delayed gastric emptying and increased patient satiety; hence, they are also indicated for the treatment of obesity. GLP-1 RAs have significant cardioprotective effects, including decreasing low-density lipoprotein (LDL) cholesterol and triglycerides levels. Liraglutide and semaglutide have specifically been shown to decrease cardiovascular risk. Liraglutide has displayed a myriad of antiatherosclerotic properties, with the potential to induce plaque regression. This review aims to address how glucose-lowering medications can be applied to treat diseases other than diabetes. We specifically focus on how nanomedicines can be used for the site-specific delivery of antidiabetic medicines for the treatment of diabetes-associated atherosclerosis.
Collapse
Affiliation(s)
- Luke James Conroy
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alyssa McCann
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Zhang Q, Deng Z, Li T, Chen K, Zeng Z. SGLT2 inhibitor improves the prognosis of patients with coronary heart disease and prevents in-stent restenosis. Front Cardiovasc Med 2024; 10:1280547. [PMID: 38274313 PMCID: PMC10808651 DOI: 10.3389/fcvm.2023.1280547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Coronary heart disease is a narrowing or obstruction of the vascular cavity caused by atherosclerosis of the coronary arteries, which leads to myocardial ischemia and hypoxia. At present, percutaneous coronary intervention (PCI) is an effective treatment for coronary atherosclerotic heart disease. Restenosis is the main limiting factor of the long-term success of PCI, and it is also a difficult problem in the field of intervention. Sodium-glucose cotransporter 2 (SGLT2) inhibitor is a new oral glucose-lowering agent used in the treatment of diabetes in recent years. Recent studies have shown that SGLT2 inhibitors can effectively improve the prognosis of patients after PCI and reduce the occurrence of restenosis. This review provides an overview of the clinical studies and mechanisms of SGLT2 inhibitors in the prevention of restenosis, providing a new option for improving the clinical prognosis of patients after PCI.
Collapse
Affiliation(s)
| | | | | | | | - Zhihuan Zeng
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Maffei P, Bettini S, Busetto L, Dassie F. SGLT2 Inhibitors in the Management of Type 1 Diabetes (T1D): An Update on Current Evidence and Recommendations. Diabetes Metab Syndr Obes 2023; 16:3579-3598. [PMID: 37964939 PMCID: PMC10642354 DOI: 10.2147/dmso.s240903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023] Open
Abstract
SGLT2i (sodium glucose transporter type 2 inhibitors) are pharmacological agents that act by inhibiting the SGLT2, by reducing the renal plasma glucose threshold and inducing glycosuria, resulting in a blood glucose lowering effect. In recent years, studies demonstrating some additional positive effects of SGLT2i also in the treatment of T1D have increased progressively. The SGLT2i dapagliflozin and sotagliflozin have been temporarily licensed for use by the European Medical Agency (EMA) as an adjunct to insulin therapy in adults with T1D with a body mass index of 27 kg/m2 or higher. However, in the meantime, the US Food and Drug Administration (FDA) Endocrinologic and Metabolic Drugs Advisory Committee was divided, citing concerns about the main side effects of SGLT2i, especially diabetic ketoacidosis (DKA). The aim of this manuscript was to conduct an update on current evidence and recommendations of the reported use of SGLT2i in the treatment of T1D in humans. Preclinical studies, clinical trial and real world data suggest benefits in glycaemia control and nefro-cardiovascular protection, even though several studies have documented an important increase in the risk of DKA, a serious and life-threatening adverse event of these agents. SGLT2i potentially addresses some of the unmet needs associated with T1D by improving glycaemic control with weight loss and without increasing hypoglycemia, by reducing glycaemic variability. However, due to side effects, EMA recommendation for SGLT2 use on T1D was withdrawn. Further studies will be needed to determine the safety of this therapy in T1D and to define the type of patient who can benefit most from these medications.
Collapse
Affiliation(s)
- Pietro Maffei
- Department of Medicine, Padua University, Padua, Italy
| | | | - Luca Busetto
- Department of Medicine, Padua University, Padua, Italy
| | | |
Collapse
|
6
|
Zhang J, Ma X, Liu F, Zhang D, Ling J, Zhu Z, Chen Y, Yang P, Yang Y, Liu X, Zhang J, Liu J, Yu P. Role of NLRP3 inflammasome in diabetes and COVID-19 role of NLRP3 inflammasome in the pathogenesis and treatment of COVID-19 and diabetes NLRP3 inflammasome in diabetes and COVID-19 intervention. Front Immunol 2023; 14:1203389. [PMID: 37868953 PMCID: PMC10585100 DOI: 10.3389/fimmu.2023.1203389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
2019 Coronavirus Disease (COVID-19) is a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). A "cytokine storm", i.e., elevated levels of pro-inflammatory cytokines in the bloodstream, has been observed in severe cases of COVID-19. Normally, activation of the nucleotide-binding oligomeric domain-like receptor containing pyrin domain 3 (NLRP3) inflammatory vesicles induces cytokine production as an inflammatory response to viral infection. Recent studies have found an increased severity of necrobiosis infection in diabetic patients, and data from several countries have shown higher morbidity and mortality of necrobiosis in people with chronic metabolic diseases such as diabetes. In addition, COVID-19 may also predispose infected individuals to hyperglycemia. Therefore, in this review, we explore the potential relationship between NLRP3 inflammatory vesicles in diabetes and COVID-19. In contrast, we review the cellular/molecular mechanisms by which SARS-CoV-2 infection activates NLRP3 inflammatory vesicles. Finally, we propose several promising targeted NLRP3 inflammatory vesicle inhibitors with the aim of providing a basis for NLRP3-targeted drugs in diabetes combined with noncoronary pneumonia in the clinical management of patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Huankui Academy, Nanchang University, Jiangxi, Nanchang, China
| | - Xuejing Ma
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Fuwei Liu
- Department of Cardiology, The Affiliated Ganzhou Hospital of Nanchang University, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pingping Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanlin Yang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Zhao J, Liu H, Hong Z, Luo W, Mu W, Hou X, Xu G, Fang Z, Ren L, Liu T, Wen J, Shi W, Wei Z, Yang Y, Zou W, Zhao J, Xiao X, Bai Z, Zhan X. Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med 2023; 29:84. [PMID: 37400760 DOI: 10.1186/s10020-023-00671-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/29/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Abnormal activation of NLRP3 inflammasome is related to a series of inflammatory diseases, including type 2 diabetes, gouty arthritis, non-alcoholic steatohepatitis (NASH), and neurodegenerative disorders. Therefore, targeting NLRP3 inflammasome is regarded as a potential therapeutic strategy for many inflammatory diseases. A growing number of studies have identified tanshinone I (Tan I) as a potential anti-inflammatory agent because of its good anti-inflammatory activity. However, its specific anti-inflammatory mechanism and direct target are unclear and need further study. METHODS IL-1β and caspase-1 were detected by immunoblotting and ELISA, and mtROS levels were measured by flow cytometry. Immunoprecipitation was used to explore the interaction between NLRP3, NEK7 and ASC. In a mouse model of LPS-induced septic shock, IL-1β levels in peritoneal lavage fluid and serum were measured by ELISA. Liver inflammation and fibrosis in the NASH model were analyzed by HE staining and immunohistochemistry. RESULTS Tan I inhibited the activation of NLRP3 inflammasome in macrophages, but had no effect on the activation of AIM2 or NLRC4 inflammasome. Mechanistically, Tan I inhibited NLRP3 inflammasome assembly and activation by targeting NLRP3-ASC interaction. Furthermore, Tan I exhibited protective effects in mouse models of NLRP3 inflammasome-mediated diseases, including septic shock and NASH. CONCLUSIONS Tan I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC, and exhibits protective effects in mouse models of LPS-induced septic shock and NASH. These findings suggest that Tan I is a specific NLRP3 inhibitor and may be a promising candidate for treating NLRP3 inflammasome-related diseases.
Collapse
Affiliation(s)
- Jia Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, North SiChuan Medical College, Nanchong, 637000, China
| | - Hongbin Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
- Department of Pharmacy, Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, 075000, China
| | - Zhixian Hong
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Luo
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenqing Mu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaorong Hou
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Guang Xu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhie Fang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Lutong Ren
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting Liu
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Ziying Wei
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Yongping Yang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jun Zhao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaohe Xiao
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhaofang Bai
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaoyan Zhan
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|