1
|
Ouyang Q, Liu L, Liu L, Li Y, Qi Y, Wu K, Zhu G, Ye H. Evaluation of nutrient composition and bone-promoting activity of miiuy croaker ( Miichthys miiuy) bone. Front Nutr 2024; 11:1510028. [PMID: 39811676 PMCID: PMC11729392 DOI: 10.3389/fnut.2024.1510028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction The objective of this study was to improve the economic value of the processed by-products of farmed miiuy croaker (Miichthys miiuy) by evaluating the nutrient composition and osteogenic activity of its bones. We prepared Miichthys miiuy bone peptides (MMBP) and analyzed their osteogenic potential. Methods We assessed the osteogenic activity of MMBP by molecular docking, MC3T3-E1 cell proliferation assay and zebrafish growth model, and evaluated its effect on osteoporosis (OP) using a retinoic acid-induced osteoporosis rat model. Results Sciaena ossificans bone is rich in nutrients, including 11.40% water, 59.30% ash, 1.60% crude fat, 27.10% crude protein, and 0.58% total sugars. The total amino acids account for 22.13%, including 4.33% essential amino acids and 17.80% non-essential amino acids. The mineral content was rich, with calcium, phosphorus and selenium contents of 162511, 7151, and 0.264 mg/kg, respectively. MMBP significantly promoted the proliferation of MC3T3-E1 cells, facilitated the growth and bone development of zebrafish. In retinoic acid-induced osteoporosis rat model, increased the serum calcium and phosphorus levels, attenuated the calcium loss, and reduced the tartrate-resistant acid phosphatase and alkaline phosphatase (ALP) activities and significantly improved bone density. MMBP shows potential as a functional food ingredient due to its osteogenic properties, which may help promote bone growth and maintain bone health. These findings provide a scientific basis for the high-value utilization of Miichthys miiuy by-products and a new direction for the development of novel functional food ingredients.
Collapse
Affiliation(s)
- Qianqian Ouyang
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Lifen Liu
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Lili Liu
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yi Li
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Qi
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Guoping Zhu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Hua Ye
- School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| |
Collapse
|
2
|
Li P, Zhou M, Wang J, Tian J, Zhang L, Wei Y, Yang F, Xu Y, Wang G. Important Role of Mitochondrial Dysfunction in Immune Triggering and Inflammatory Response in Rheumatoid Arthritis. J Inflamm Res 2024; 17:11631-11657. [PMID: 39741752 PMCID: PMC11687318 DOI: 10.2147/jir.s499473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/15/2024] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disease, primarily characterized by chronic symmetric synovial inflammation and erosive bone destruction.Mitochondria, the primary site of cellular energy production, play a crucial role in energy metabolism and possess homeostatic regulation capabilities. Mitochondrial function influences the differentiation, activation, and survival of both immune and non-immune cells involved in RA pathogenesis. If the organism experiences hypoxia, genetic predisposition, and oxidative stress, it leads to mitochondrial dysfunction, which further affects immune cell energy metabolism, synovial cell proliferation, apoptosis, and inflammatory signaling, causing the onset and progression of RA; and, mitochondrial regulation is becoming increasingly important in the treatment of RA.In this review, we examine the structure and function of mitochondria, analyze the potential causes of mitochondrial dysfunction in RA, and focus on the mechanisms by which mitochondrial dysfunction triggers chronic inflammation and immune disorders in RA. We also explore the effects of mitochondrial dysfunction on RA immune cells and osteoblasts, emphasizing its key role in the immune response and inflammatory processes in RA. Furthermore, we discuss potential biological processes that regulate mitochondrial homeostasis, which are of great importance for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Pingshun Li
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Mengru Zhou
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jia Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Jiexiang Tian
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Lihuan Zhang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yong Wei
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Fang Yang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Yali Xu
- College of Integrative Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| | - Gang Wang
- Department of Rheumatology and Bone Disease, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, 730000, People’s Republic of China
| |
Collapse
|
3
|
Long L, Zhang C, He Z, Liu O, Yang H, Fan Z. LncRNA NR_045147 modulates osteogenic differentiation and migration in PDLSCs via ITGB3BP degradation and mitochondrial dysfunction. Stem Cells Transl Med 2024:szae088. [PMID: 39674578 DOI: 10.1093/stcltm/szae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/16/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis is an inflammation of the alveolar bone and soft tissue surrounding the teeth. Although mesenchymal stem cells (MSCs) have been implicated in periodontal regeneration, the mechanisms by which they promote osteogenesis remain unclear. We examined whether epigenetic modifications mediated by the long-noncoding RNA (lncRNA) NR_045147, which plays a crucial role in cancer, influence the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Alkaline phosphatase staining, alizarin red staining, and western blotting were used to detect the effects of NR_045147 on PDLSC osteogenic differentiation. Scratch migration and transwell chemotaxis assays were used to evaluate the effects of NR_045147 on PDLSC migration. Mitochondrial function was evaluated via Seahorse XF analysis to measure changes in cellular respiration upon manipulation of NR_045147 expression. Ubiquitination assays were performed to examine the protein stability and degradation pathways affected by the NR_045147-MDM2 interaction. An in vivo nude rat calvarial defect model was established and gene-edited PDLSCs were re-implanted to examine the osteogenic effects of NR_045147. NR_045147 significantly reduced PDLSC osteogenic differentiation and migration ability both in vitro and in vivo. Under inflammatory conditions, the loss of NR_045147 rescued osteogenesis. NR_045147 significantly blocked the expression of integrin beta3-binding protein (ITGB3BP). Mechanistically, NR_045147 promoted the ITGB3BP-MDM2 interaction, thus increasing ITGB3BP ubiquitination and degradation. NR_045147 regulated PDLSC mitochondrial respiration and ITGB3BP upregulation efficiently promoted their osteogenic differentiation and migration ability. Concluding, NR_045147 downregulation enhances PDLSC osteogenic differentiation and migration, connects changes in cellular metabolism to functional outcomes via mitochondrial respiration, and promotes ITGB3BP degradation by mediating its interaction with MDM2.
Collapse
Affiliation(s)
- Lujue Long
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Zhengquan He
- Department of Orthodontics, Changsha Stomatology Hospital, Changsha, Hunan, People's Republic of China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Academician Workstation for Oral-Maxilofacial and Regenerative Medicine, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Xiangya Stomatological Hospital, Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, People's Republic of China
- Research Unit of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
4
|
Choi JY, Han E, Yoo TK. Application of ChatGPT-4 to oculomics: a cost-effective osteoporosis risk assessment to enhance management as a proof-of-principles model in 3PM. EPMA J 2024; 15:659-676. [PMID: 39635018 PMCID: PMC11612069 DOI: 10.1007/s13167-024-00378-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 12/07/2024]
Abstract
Background Oculomics is an emerging medical field that focuses on the study of the eye to detect and understand systemic diseases. ChatGPT-4 is a highly advanced AI model with multimodal capabilities, allowing it to process text and statistical data. Osteoporosis is a chronic condition presenting asymptomatically but leading to fractures if untreated. Current diagnostic methods like dual X-ray absorptiometry (DXA) are costly and involve radiation exposure. This study aims to develop a cost-effective osteoporosis risk prediction tool using ophthalmological data and ChatGPT-4 based on oculomics, aligning with predictive, preventive, and personalized medicine (3PM) principles. Working hypothesis and methods We hypothesize that leveraging ophthalmological data (oculomics) combined with AI-driven regression models developed by ChatGPT-4 can significantly improve the predictive accuracy for osteoporosis risk. This integration will facilitate earlier detection, enable more effective preventive strategies, and support personalized treatment plans tailored to individual patients. We utilized DXA and ophthalmological data from the Korea National Health and Nutrition Examination Survey to develop and validate osteopenia and osteoporosis prediction models. Ophthalmological and demographic data were integrated into logistic regression analyses, facilitated by ChatGPT-4, to create prediction formulas. These models were then converted into calculator software through automated coding by ChatGPT-4. Results ChatGPT-4 automatically developed prediction models based on key predictors of osteoporosis and osteopenia included age, gender, weight, and specific ophthalmological conditions such as cataracts and early age-related macular degeneration, and successfully implemented a risk calculator tool. The oculomics-based models outperformed traditional methods, with area under the curve of the receiver operating characteristic values of 0.785 for osteopenia and 0.866 for osteoporosis in the validation set. The calculator demonstrated high sensitivity and specificity, providing a reliable tool for early osteoporosis screening. Conclusions and expert recommendations in the framework of 3PM This study illustrates the value of integrating ophthalmological data into multi-level diagnostics for osteoporosis, significantly improving the accuracy of health risk assessment and the identification of at-risk individuals. Aligned with the principles of 3PM, this approach fosters earlier detection and enables the development of individualized patient profiles, facilitating personalized and targeted treatment strategies. This study also highlights the potential of AI, specifically ChatGPT-4, in developing accessible, cost-effective, and radiation-free screening tools for advancing 3PM in clinical practice. Our findings emphasize the importance of a holistic approach, incorporating comprehensive health indices and interdisciplinary collaboration, to deliver personalized management plans. Preventive strategies should focus on lifestyle modifications and targeted interventions to enhance bone health, thereby preventing the progression of osteoporosis and contributing to overall patient well-being. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00378-0.
Collapse
Affiliation(s)
- Joon Yul Choi
- Department of Biomedical Engineering, Yonsei University, Wonju, South Korea
| | - Eoksoo Han
- Electronics and Telecommunications Research Institute (ETRI), Daejeon, South Korea
| | - Tae Keun Yoo
- Department of Ophthalmology, Hangil Eye Hospital, 35 Bupyeong-Daero, Bupyeong-Gu, Incheon, 21388 South Korea
| |
Collapse
|
5
|
Tang L, Xu Y, He J, Huang G, Jiang X, Li Y, Li H, Zhang R, Gui Z. 1-Deoxynojirimycin Derivative Containing Tegafur Induced HCT-116 Cell Apoptosis through Mitochondrial Dysfunction and Oxidative Stress Pathway. ACS Med Chem Lett 2024; 15:1947-1952. [PMID: 39563791 PMCID: PMC11571086 DOI: 10.1021/acsmedchemlett.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
Three 1-deoxynojirimycin (DNJ) derivatives (named C4-C6) including DNJ and tegafur (TGF) were designed and synthesized, and their antiproliferative effects were investigated. C4-C6, especially C6, exerted good lipophilicity, α-glucosidase inhibitory activity, and antitumor effects. Mechanism studies indicated that C6 significantly induced cell apoptosis and S-phase block and inhibited migration of HCT-116 cells. Besides, C6 induced mitochondrial damage by decreasing the mitochondrial membrane potential, improving the accumulation of ROS, upregulating the expression of Bax, and downregulating Bcl-2. Moreover, C6 induced excessive production of ROS to trigger oxidative stress, resulting in an increase in the level of MDA and NO, a decrease in the content of GSH and SOD, and an overexpression of Nrf2. Furthermore, C6 induced DNA damage by down-regulating the expression of thymidylate synthase. These results indicated that C6 is a potential antitumor agent and kills HCT-116 cells through DNA damage, mitochondrial dysfunction, and oxidative stress.
Collapse
Affiliation(s)
- Liqing Tang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yixing Xu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Jianglong He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Gaiqun Huang
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan 637000, China
| | - Xueping Jiang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Yuqi Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
| | - Hao Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Ran Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| | - Zhongzheng Gui
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212100, China
| |
Collapse
|
6
|
Jiang W, Ma X, Li B, Jiang T, Jiang H, Chen W, Gao J, Mao Y, Sun X, Ye Z, Zhao S, Huang S, Chen Y. Role of the PGAM5-CypD mitochondrial pathway in methylglyoxal-induced bone loss in diabetic osteoporosis. Bone 2024; 190:117322. [PMID: 39510433 DOI: 10.1016/j.bone.2024.117322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Diabetic osteoporosis (DOP) is a skeletal complication with a high rate of disability. It results in a great burden to the patient's family and society. Methylglyoxal (MG) is a toxic by-product of the glycolytic process that occurs during diabetic conditions. It causes osteoblastic injury and con-tributes to the initiation and development of DOP. Disruption of mitochondrial homeostasis has been implicated as a cause of dysregulated osteo-blastogenesis, an essential step in bone formation. It is unclear whether mitochondrial dysfunction is involved in MG-induced osteoblast dysfunction. In this study, we showed that mitochondrial dysfunction contributes to MG-induced MC3T3-E1 cell apoptosis and impaired differentiation. A significant reduction of mitochondrial membrane potential (MMP) and ATP production occurred in MG-induced osteoblasts as well as increasing mitochondrial reactive oxygen species (mtROS) and intracellular Ca2+. Classical antioxidant N-Acetylcysteine (NAC) significantly attenuated mitochondrial dysfunction as well as osteoblast apoptosis and osteogenic differentiation damage induced by MG. More importantly, we found that activating phosphoglycerate mutase family member 5 (PGAM5) and cyclophilin D (CypD), which contributes to mitochondrial homeostasis, is involved in MG-induced osteoblast injury. Both PGAM5 and CypD knockdown effectively reversed osteoblast viability and function, whereas PGAM5 or CypD overexpression aggravated osteoblast injury caused by MG. Moreover, the result of co-transfection revealed that PGAM5 is an upstream signaling molecule of CypD. By constructing type I diabetes mouse models, we further found that the expression of PGAM5 and CypD were both increased in the femur along with a reduction of ATP and increased TUNEL-positive cells. These results, for the first time, suggest that MG-induced mitochondrial dysfunction induces osteoblast injury through the PGAM5-CypD pathway. This study provides insight into the prevention and treatment of DOP. LAY SUMMARY: This study highlights the role of mitochondria in regulating osteoblast viability and function under conditions of diabetic osteoporosis (DOP). We found that the PGAM5-CypD mitochondrial pathway is activated following glycolytic by-product methylglyoxal (MG) treatment, which contributes to mitochondrial dysfunction and osteogenic dysfunction. This mechanism implicates mitochondria as a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Wanying Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Xinyi Ma
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Bin Li
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Tianle Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Haopu Jiang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Wenxia Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Jia Gao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Yixin Mao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Xiaoyu Sun
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China; Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, China
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, University of Hong Kong, Hong Kong
| | - Shufan Zhao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China; Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wenzhou Medical University, China.
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, China.
| | - Yang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, China; Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, China.
| |
Collapse
|
7
|
Irwin-Huston JM, Bourebaba L, Bourebaba N, Tomal A, Marycz K. Sex hormone-binding globulin promotes the osteogenic differentiation potential of equine adipose-derived stromal cells by activating the BMP signaling pathway. Front Endocrinol (Lausanne) 2024; 15:1424873. [PMID: 39483986 PMCID: PMC11524885 DOI: 10.3389/fendo.2024.1424873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Musculoskeletal injuries and chronic degenerative diseases pose significant challenges in equine health, impacting performance and overall well-being. Sex Hormone-Binding Globulin (SHBG) is a glycoprotein determining the bioavailability of sex hormones in the bloodstream, and exerting critical metabolic functions, thus impacting the homeostasis of many tissues including the bone. Methods In this study, we investigated the potential role of SHBG in promoting osteogenesis and its underlying mechanisms in a model of equine adipose-derived stromal cells (ASCs). An SHBG-knocked down model has been established using predesigned siRNA, and cells subjected to osteogenic induction medium in the presence of exogenous SHBG protein. Changes in differentiation events where then screened using various analytical methods. Results We demonstrated that SHBG treatment enhances the expression of key osteoconductive regulators in equine ASCs CD34+ cells, suggesting its therapeutic potential for bone regeneration. Specifically, SHBG increased the cellular expression of BMP2/4, osteocalcin (OCL), alkaline phosphatase (ALP), and osteopontin (OPN), crucial factors in early osteogenesis. Furthermore, SHBG treatment maintained adequate apoptosis and enhanced autophagy during osteogenic differentiation, contributing to bone formation and remodeling. SHBG further targeted mitochondrial dynamics, and promoted the reorganization of the mitochondrial network, as well as the expression of dynamics mediators including PINK, PARKIN and MFN1, suggesting its role in adapting cells to the osteogenic milieu, with implications for osteoblast maturation and differentiation. Conclusion Overall, our findings provide novel insights into SHBG's role in bone formation and suggest its potential therapeutic utility for bone regeneration in equine medicine.
Collapse
Affiliation(s)
- Jennifer M. Irwin-Huston
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Artur Tomal
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
8
|
Xu Q, Feng G, Zhang Z, Yan J, Tang Z, Wang R, Ma P, Ma Y, Zhu G, Jin Q. Identification and functional analysis of genes mediating osteoclast-driven progression of osteoporosis. Sci Prog 2024; 107:368504241300723. [PMID: 39587887 PMCID: PMC11590132 DOI: 10.1177/00368504241300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
OBJECTIVE The pathological mechanism of osteoporosis (OP) involves increased bone resorption mediated by osteoclasts and decreased bone formation mediated by osteoblasts, leading to an imbalance in bone homeostasis. Identifying key molecules in osteoclast-mediated OP progression is crucial for the prevention and treatment of OP. METHODS Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed on the OP patient datasets from the GEO database. The results were intersected with the differential expression results from the osteoclast differentiation dataset to identify key genes. These key genes were then subjected to disease relevance analysis, and consensus clustering was performed on OP patient samples based on their expression profiles. The subgroups were analyzed for differences, followed by GO, KEGG, GSEA, and GSVA analyses, and immune infiltration. Finally, osteoclast differentiation model was constructed. After validating the success of the model using TRAP and F-actin staining, the differential expression of key genes was validated in vitro via Western blot. RESULTS CTRL, ARHGEF5, PPAP2C, VSIG2, and PBLD were identified as key genes. These genes exhibited strong disease relevance (AUC > 0.9). Functional enrichment results also indicated their close association with OP and osteoclast differentiation. In vitro differential expression validation showed that during osteoclast differentiation, CTRL was downregulated, while ARHGEF5, PPAP2C, VSIG2, and PBLD were upregulated, with all differences being statistically significant (P < 0.05). DISCUSSION Currently, there are no studies on the effects of these five genes on osteoclast differentiation. Therefore, it is meaningful to design in vivo and in vitro perturbation experiments to observe the impact of each gene on osteoclast differentiation and OP progression. CONCLUSION CTRL, ARHGEF5, PPAP2C, VSIG2, and PBLD show high potential as molecular targets for basic and clinical research in osteoclast-mediated OP.
Collapse
Affiliation(s)
- Qu Xu
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Gangning Feng
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhihai Zhang
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiangbo Yan
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Zhiqun Tang
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rui Wang
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Penggang Ma
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ye Ma
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Guang Zhu
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Qunhua Jin
- The Third Ward of Orthopaedic Department, General Hospital of Ningxia Medical University, Yinchuan, China
- Institute of Osteoarthropathy, Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Guo Q, Zhai Q, Ji P. The Role of Mitochondrial Homeostasis in Mesenchymal Stem Cell Therapy-Potential Implications in the Treatment of Osteogenesis Imperfecta. Pharmaceuticals (Basel) 2024; 17:1297. [PMID: 39458939 PMCID: PMC11510265 DOI: 10.3390/ph17101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
Osteogenesis imperfecta (OI) is a hereditary disorder characterized by bones that are fragile and prone to breaking. The efficacy of existing therapies for OI is limited, and they are associated with potentially harmful side effects. OI is primarily due to a mutation of collagen type I and hence impairs bone regeneration. Mesenchymal stem cell (MSC) therapy is an attractive strategy to take advantage of the potential benefits of these multipotent stem cells to address the underlying molecular defects of OI by differentiating osteoblasts, paracrine effects, or immunomodulation. The maintenance of mitochondrial homeostasis is an essential component for improving the curative efficacy of MSCs in OI by affecting the differentiation, signaling, and immunomodulatory functions of MSCs. In this review, we highlight the MSC-based therapy pathway in OI and introduce the MSC regulation mechanism by mitochondrial homeostasis. Strategies aiming to modulate the metabolism and reduce the oxidative stress, as well as innovative strategies based on the use of compounds (resveratrol, NAD+, α-KG), antioxidants, and nanomaterials, are analyzed. These findings may enable the development of new strategies for the treatment of OI, ultimately resulting in improved patient outcomes.
Collapse
Affiliation(s)
- Qingling Guo
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Qiming Zhai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China;
- Chongqing Key Laboratory of Oral Diseases, Chongqing 401147, China
| |
Collapse
|
10
|
Zhao C, Wu Y, Zhu S, Liu H, Xu S. Irisin Protects Musculoskeletal Homeostasis via a Mitochondrial Quality Control Mechanism. Int J Mol Sci 2024; 25:10116. [PMID: 39337601 PMCID: PMC11431940 DOI: 10.3390/ijms251810116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Irisin, a myokine derived from fibronectin type III domain-containing 5 (FNDC5), is increasingly recognized for its protective role in musculoskeletal health through the modulation of mitochondrial quality control. This review synthesizes the current understanding of irisin's impact on mitochondrial biogenesis, dynamics, and autophagy in skeletal muscle, elucidating its capacity to bolster muscle strength, endurance, and resilience against oxidative-stress-induced muscle atrophy. The multifunctional nature of irisin extends to bone metabolism, where it promotes osteoblast proliferation and differentiation, offering a potential intervention for osteoporosis and other musculoskeletal disorders. Mitochondrial quality control is vital for cellular metabolism, particularly in energy-demanding tissues. Irisin's influence on this process is highlighted, suggesting its integral role in maintaining cellular homeostasis. The review also touches upon the regulatory mechanisms of irisin secretion, predominantly induced by exercise, and its systemic effects as an endocrine factor. While the therapeutic potential of irisin is promising, the need for standardized measurement techniques and further elucidation of its mechanisms in humans is acknowledged. The collective findings underscore the burgeoning interest in irisin as a keystone in musculoskeletal health and a candidate for future therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Haiying Liu
- Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing 100871, China
| | - Shuai Xu
- Department of Spinal Surgery, Peking University People’s Hospital, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Yang J, Yang W, Hu Y, Tong L, Liu R, Liu L, Jiang B, Sun Z. Screening of genes co-associated with osteoporosis and chronic HBV infection based on bioinformatics analysis and machine learning. Front Immunol 2024; 15:1472354. [PMID: 39351238 PMCID: PMC11439653 DOI: 10.3389/fimmu.2024.1472354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Objective To identify HBV-related genes (HRGs) implicated in osteoporosis (OP) pathogenesis and develop a diagnostic model for early OP detection in chronic HBV infection (CBI) patients. Methods Five public sequencing datasets were collected from the GEO database. Gene differential expression and LASSO analyses identified genes linked to OP and CBI. Machine learning algorithms (random forests, support vector machines, and gradient boosting machines) further filtered these genes. The best diagnostic model was chosen based on accuracy and Kappa values. A nomogram model based on HRGs was constructed and assessed for reliability. OP patients were divided into two chronic HBV-related clusters using non-negative matrix factorization. Differential gene expression analysis, Gene Ontology, and KEGG enrichment analyses explored the roles of these genes in OP progression, using ssGSEA and GSVA. Differences in immune cell infiltration between clusters and the correlation between HRGs and immune cells were examined using ssGSEA and the Pearson method. Results Differential gene expression analysis of CBI and combined OP dataset identified 822 and 776 differentially expressed genes, respectively, with 43 genes intersecting. Following LASSO analysis and various machine learning recursive feature elimination algorithms, 16 HRGs were identified. The support vector machine emerged as the best predictive model based on accuracy and Kappa values, with AUC values of 0.92, 0.83, 0.74, and 0.7 for the training set, validation set, GSE7429, and GSE7158, respectively. The nomogram model exhibited AUC values of 0.91, 0.79, and 0.68 in the training set, GSE7429, and GSE7158, respectively. Non-negative matrix factorization divided OP patients into two clusters, revealing statistically significant differences in 11 types of immune cell infiltration between clusters. Finally, intersecting the HRGs obtained from LASSO analysis with the HRGs identified three genes. Conclusion This study successfully identified HRGs and developed an efficient diagnostic model based on HRGs, demonstrating high accuracy and strong predictive performance across multiple datasets. This research not only offers new insights into the complex relationship between OP and CBI but also establishes a foundation for the development of early diagnostic and personalized treatment strategies for chronic HBV-related OP.
Collapse
Affiliation(s)
- Jia Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Weiguang Yang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yue Hu
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Rui Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Lice Liu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Bei Jiang
- Clinical School of the Second People’s Hospital, Tianjin Medical University, Tianjin, China
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Hipps D, Pyle A, Porter ALR, Dobson PF, Tuppen H, Lawless C, Russell OM, Turnbull DM, Deehan DJ, Hudson G. Variant load of mitochondrial DNA in single human mesenchymal stem cells. Sci Rep 2024; 14:20989. [PMID: 39251776 PMCID: PMC11385243 DOI: 10.1038/s41598-024-71822-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Heteroplasmic mitochondrial DNA (mtDNA) variants accumulate as humans age, particularly in the stem-cell compartments, and are an important contributor to age-related disease. Mitochondrial dysfunction has been observed in osteoporosis and somatic mtDNA pathogenic variants have been observed in animal models of osteoporosis. However, this has never been assessed in the relevant human tissue. Mesenchymal stem cells (MSCs) are the progenitors to many cells of the musculoskeletal system and are critical to skeletal tissues and bone vitality. Investigating mtDNA in MSCs could provide novel insights into the role of mitochondrial dysfunction in osteoporosis. To determine if this is possible, we investigated the landscape of somatic mtDNA variation in MSCs through a combination of fluorescence-activated cell sorting and single-cell next-generation sequencing. Our data show that somatic heteroplasmic variants are present in individual patient-derived MSCs, can reach high heteroplasmic fractions and have the potential to be pathogenic. The identification of somatic heteroplasmic variants in MSCs of patients highlights the potential for mitochondrial dysfunction to contribute to the pathogenesis of osteoporosis.
Collapse
Affiliation(s)
- Daniel Hipps
- The Newcastle Upon Tyne Hospitals NHS Foundation, Newcastle upon Tyne, UK.
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna L R Porter
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip F Dobson
- The Newcastle Upon Tyne Hospitals NHS Foundation, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Helen Tuppen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- The Newcastle Upon Tyne Hospitals NHS Foundation, Newcastle upon Tyne, UK
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David J Deehan
- The Newcastle Upon Tyne Hospitals NHS Foundation, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Chen H, Weng Z, Kalinowska M, Xiong L, Wang L, Song H, Xiao J, Wang F, Shen X. Anti-osteoporosis effect of bioactives in edible medicinal plants: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39093554 DOI: 10.1080/10408398.2024.2386449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Current treatments for osteoporosis include a calcium-rich diet, adequate exercise, and medication. Many synthetic drugs, although fast-acting, can cause a range of side effects for patients when taken over a long period, such as irritation of the digestive tract and a burden on the kidneys. As the world's population ages, the prevalence of osteoporosis is increasing, and the development of safe and effective treatments is urgently needed. Active compounds in edible and medicinal homologous plants have been used for centuries to improve bone quality. It is possible to employ them as dietary supplements to prevent osteoporosis. In this review, we analyze the influencing factors of osteoporosis and systematically summarize the research progress on the anti-osteoporosis effects of active compounds in edible and medicinal homologous plants. The literature suggests that some naturally occurring active compounds in edible and medicinal homologous plants can inhibit bone loss, prevent the degeneration of bone cell microstructure, and reduce bone fragility through alleviating oxidative stress, regulating autophagy, anti-inflammation, improving gut flora, and regulating estrogen level with little side effects. Our review provides useful guidance for the use of edible and medicinal homologous plants and the development of safer novel anti-osteoporosis dietary supplements.
Collapse
Affiliation(s)
- Huiling Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zebin Weng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jianbo Xiao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
14
|
Zhou L, Deng W, Wu Q, Pan Y, Huang H. Association between dietary folate intake and the risk of osteoporosis in adults: a cross-sectional study. BMC Musculoskelet Disord 2024; 25:487. [PMID: 38909178 PMCID: PMC11193181 DOI: 10.1186/s12891-024-07605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Increased intake of specific vitamins has been linked to a decreased prevalence of osteoporosis. However, the association between dietary folate intake and the risk of osteoporosis in the general population remains incompletely understood. Therefore, we aimed to determine the association between dietary folate intake and the risk of osteoporosis in the general population of the USA. METHODS In this cross-sectional study, data from the National Health and Nutrition Examination Survey (2017-2020) were collected. Osteoporosis was considered to be indicated by a bone mineral density greater than 2.5 standard deviations below the mean of the young adult reference group. Dietary folate intake was measured by a 24-hour dietary recall. Multivariate logistic regression models and restricted cubic spline models were used. RESULTS The study included 2297 participants (mean age: 63.69 ± 0.35 years), 49.92% of whom were female. In the general population, increased dietary folate intake was directly associated with a decreased risk of osteoporosis (P for trend = 0.005). In the age > 60 years and female subgroups, folate intake was inversely associated with the risk of osteoporosis (P for trend < 0.001). The dose‒response curve suggested that this association was nonlinear (P for nonlinearity = 0.015). CONCLUSIONS Our cross-sectional study provides initial insights into the inverse association between dietary folate intake and the risk of osteoporosis in the general U.S. POPULATION Further research is needed to confirm these associations.
Collapse
Affiliation(s)
- Li Zhou
- The Third School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Weinmin Deng
- Department of Rehabilitation and Physiotherapy, Foresea Life Insurance, Guangzhou General Hospital, Guangzhou, Guangdong, 510000, China
- Department of Rehabilitation and Physiotherapy, General Hospital of the Southern Theater of the Chinese People's Liberation Army, Guangzhou, Guangdong, 510000, China
| | - Qingrong Wu
- Department of Pharmacy, Ganzhou Fifth People's Hospital, Ganzhou, Jiangxi, 341000, China.
| | - Yandong Pan
- Department of Integrated Traditional Chinese and Western Medicine, Guangzhou Dongsheng Hospital, Guangzhou, Guangdong, 510000, China.
| | - Hongxing Huang
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510375, China.
| |
Collapse
|
15
|
Astaneh ME, Noori F, Fereydouni N. Curcumin-loaded scaffolds in bone regeneration. Heliyon 2024; 10:e32566. [PMID: 38961905 PMCID: PMC11219509 DOI: 10.1016/j.heliyon.2024.e32566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024] Open
Abstract
In recent years, there has been a notable surge in the development of engineered bone scaffolds intended for the repair of bone defects. While autografts and allografts have traditionally served as the primary methods in bone tissue engineering, their inherent limitations have spurred the exploration of novel avenues in biomedical implant development. The emergence of bone scaffolds not only facilitates bone reconstruction but also offers a platform for the targeted delivery of therapeutic agents. There exists a pervasive interest in leveraging various drugs, proteins, growth factors, and biomolecules with osteogenic properties to augment bone formation, as the enduring side effects associated with current clinical modalities necessitate the pursuit of safer alternatives. Curcumin, the principal bioactive compound found in turmeric, has demonstrated notable efficacy in regulating the proliferation and differentiation of bone cells while promoting bone formation. Nevertheless, its utility is hindered by restricted water solubility and poor bioavailability. Strategies aimed at enhancing the solubility, stability, and bioavailability of curcumin, including formulation techniques such as liposomes and nanoparticles or its complexation with metals, have been explored. This investigation is dedicated to exploring the impact of curcumin on the proliferation, differentiation, and migration of osteocytes, osteoblasts, and osteoclasts.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Fariba Noori
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
16
|
Zhou XJ, Lu K, Liu ZH, Xu MZ, Li C. U-shaped relationship found between fibrinogen-to-albumin ratio and systemic inflammation response index in osteoporotic fracture patients. Sci Rep 2024; 14:11299. [PMID: 38760436 PMCID: PMC11101643 DOI: 10.1038/s41598-024-61965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
The relationship between the Systemic Inflammatory Response Index (SIRI) and the Fibrinogen-to-albumin ratio (FAR) has not been extensively investigated. The objective of this study was to determine the independent relationship between FAR and SIRI in people with osteoporotic fractures (OPF). A cross-sectional study was conducted using retrospective data from 3431 hospitalized OPF patients. The exposure variable in this study was the baseline FAR, while the outcome variable was the SIRI. Covariates, including age, gender, BMI, and other clinical and laboratory factors, were adjusted. Cross-correlation analysis and linear regression models were applied. The generalized additive model (GAM) investigated non-linear relationships. Adjusted analysis revealed an independent negative association between FAR and SIRI in OPF patients (β = - 0.114, p = 0.00064, 95% CI - 0.180, - 0.049). A substantial U-shaped association between FAR and SIRI was shown using GAM analysis (p < 0.001). FAR and SIRI indicated a negative association for FAR below 6.344% and a positive correlation for FAR over 6.344%. The results of our study revealed a U-shaped relationship between SIRI and FAR. The lowest conceivable FAR for a bone-loose inflammatory disease might be 6.344%, suggesting that this has particular significance for the medical diagnosis and therapy of persons with OPF. Consequently, the term "inflammatory trough" is proposed. These results offer fresh perspectives on controlling inflammation in individuals with OPF and preventing inflammatory osteoporosis.
Collapse
Affiliation(s)
- Xiao-Jie Zhou
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Ke Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Zhou-Hang Liu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Min-Zhe Xu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, No. 566 East of Qianjin Road, Suzhou, 215300, Jiangsu, China.
| |
Collapse
|
17
|
Semicheva A, Ersoy U, Vasilaki A, Myrtziou I, Kanakis I. Defining the Most Potent Osteoinductive Culture Conditions for MC3T3-E1 Cells Reveals No Implication of Oxidative Stress or Energy Metabolism. Int J Mol Sci 2024; 25:4180. [PMID: 38673767 PMCID: PMC11050066 DOI: 10.3390/ijms25084180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The MC3T3-E1 preosteoblastic cell line is widely utilised as a reliable in vitro system to assess bone formation. However, the experimental growth conditions for these cells hugely diverge, and, particularly, the osteogenic medium (OSM)'s composition varies in research studies. Therefore, we aimed to define the ideal culture conditions for MC3T3-E1 subclone 4 cells with regard to their mineralization capacity and explore if oxidative stress or the cellular metabolism processes are implicated. Cells were treated with nine different combinations of long-lasting ascorbate (Asc) and β-glycerophosphate (βGP), and osteogenesis/calcification was evaluated at three different time-points by qPCR, Western blotting, and bone nodule staining. Key molecules of the oxidative and metabolic pathways were also assessed. It was found that sufficient mineral deposition was achieved only in the 150 μg.mL-1/2 mM Asc/βGP combination on day 21 in OSM, and this was supported by Runx2, Alpl, Bglap, and Col1a1 expression level increases. NOX2 and SOD2 as well as PGC1α and Tfam were also monitored as indicators of redox and metabolic processes, respectively, where no differences were observed. Elevation in OCN protein levels and ALP activity showed that mineralisation comes as a result of these differences. This work defines the most appropriate culture conditions for MC3T3-E1 cells and could be used by other research laboratories in this field.
Collapse
Affiliation(s)
- Alexandra Semicheva
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
| | - Ufuk Ersoy
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
| | - Ioannis Kanakis
- Chester Medical School, Faculty of Health, Medicine and Society, University of Chester, Chester CH1 4BJ, UK; (A.S.); (I.M.)
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences (ILCaMS), University of Liverpool, Liverpool L7 8TX, UK; (U.E.); (A.V.)
| |
Collapse
|
18
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Su Y, Yu G, Li D, Lu Y, Ren C, Xu Y, Yang Y, Zhang K, Ma T, Li Z. Identification of mitophagy-related biomarkers in human osteoporosis based on a machine learning model. Front Physiol 2024; 14:1289976. [PMID: 38260098 PMCID: PMC10800828 DOI: 10.3389/fphys.2023.1289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Osteoporosis (OP) is a chronic bone metabolic disease and a serious global public health problem. Several studies have shown that mitophagy plays an important role in bone metabolism disorders; however, its role in osteoporosis remains unclear. Methods: The Gene Expression Omnibus (GEO) database was used to download GSE56815, a dataset containing low and high BMD, and differentially expressed genes (DEGs) were analyzed. Mitochondrial autophagy-related genes (MRG) were downloaded from the existing literature, and highly correlated MRG were screened by bioinformatics methods. The results from both were taken as differentially expressed (DE)-MRG, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Protein-protein interaction network (PPI) analysis, support vector machine recursive feature elimination (SVM-RFE), and Boruta method were used to identify DE-MRG. A receiver operating characteristic curve (ROC) was drawn, a nomogram model was constructed to determine its diagnostic value, and a variety of bioinformatics methods were used to verify the relationship between these related genes and OP, including GO and KEGG analysis, IP pathway analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, a hub gene-related network was constructed and potential drugs for the treatment of OP were predicted. Finally, the specific genes were verified by real-time quantitative polymerase chain reaction (RT-qPCR). Results: In total, 548 DEGs were identified in the GSE56815 dataset. The weighted gene co-expression network analysis(WGCNA) identified 2291 key module genes, and 91 DE-MRG were obtained by combining the two. The PPI network revealed that the target gene for AKT1 interacted with most proteins. Three MRG (NELFB, SFSWAP, and MAP3K3) were identified as hub genes, with areas under the curve (AUC) 0.75, 0.71, and 0.70, respectively. The nomogram model has high diagnostic value. GO and KEGG analysis showed that ribosome pathway and cellular ribosome pathway may be the pathways regulating the progression of OP. IPA showed that MAP3K3 was associated with six pathways, including GNRH Signaling. The ssGSEA indicated that NELFB was highly correlated with iDCs (cor = -0.390, p < 0.001). The regulatory network showed a complex relationship between miRNA, transcription factor(TF) and hub genes. In addition, 4 drugs such as vinclozolin were predicted to be potential therapeutic drugs for OP. In RT-qPCR verification, the hub gene NELFB was consistent with the results of bioinformatics analysis. Conclusion: Mitophagy plays an important role in the development of osteoporosis. The identification of three mitophagy-related genes may contribute to the early diagnosis, mechanism research and treatment of OP.
Collapse
Affiliation(s)
- Yu Su
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Gangying Yu
- Department of International Ward (Orthopedic), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongchen Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Lu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Ren
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yibo Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yanling Yang
- Basic Medical College of Yan’an University, Yan’an, China
| | - Kun Zhang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
20
|
Hu K, Deya Edelen E, Zhuo W, Khan A, Orbegoso J, Greenfield L, Rahi B, Griffin M, Ilich JZ, Kelly OJ. Understanding the Consequences of Fatty Bone and Fatty Muscle: How the Osteosarcopenic Adiposity Phenotype Uncovers the Deterioration of Body Composition. Metabolites 2023; 13:1056. [PMID: 37887382 PMCID: PMC10608812 DOI: 10.3390/metabo13101056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Adiposity is central to aging and several chronic diseases. Adiposity encompasses not just the excess adipose tissue but also body fat redistribution, fat infiltration, hypertrophy of adipocytes, and the shifting of mesenchymal stem cell commitment to adipogenesis. Bone marrow adipose tissue expansion, inflammatory adipokines, and adipocyte-derived extracellular vesicles are central to the development of osteopenic adiposity. Adipose tissue infiltration and local adipogenesis within the muscle are critical in developing sarcopenic adiposity and subsequent poorer functional outcomes. Ultimately, osteosarcopenic adiposity syndrome is the result of all the processes noted above: fat infiltration and adipocyte expansion and redistribution within the bone, muscle, and adipose tissues, resulting in bone loss, muscle mass/strength loss, deteriorated adipose tissue, and subsequent functional decline. Increased fat tissue, typically referred to as obesity and expressed by body mass index (the latter often used inadequately), is now occurring in younger age groups, suggesting people will live longer with the negative effects of adiposity. This review discusses the role of adiposity in the deterioration of bone and muscle, as well as adipose tissue itself. It reveals how considering and including adiposity in the definition and diagnosis of osteopenic adiposity, sarcopenic adiposity, and osteosarcopenic adiposity will help in better understanding the pathophysiology of each and accelerate possible therapies and prevention approaches for both relatively healthy individuals or those with chronic disease.
Collapse
Affiliation(s)
- Kelsey Hu
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Elizabeth Deya Edelen
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Wenqing Zhuo
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Aliya Khan
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Josselyne Orbegoso
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Lindsey Greenfield
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Berna Rahi
- Department of Human Sciences, Sam Houston State University College of Health Sciences, Huntsville, TX 77341, USA;
| | - Michael Griffin
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32304, USA;
| | - Owen J. Kelly
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, TX 77304, USA; (K.H.); (E.D.E.); (W.Z.); (A.K.); (J.O.); (L.G.); (M.G.)
| |
Collapse
|
21
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
22
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|