1
|
Xin M, Li C, You S, Zhu B, Shen J, Dong W, Xue X, Shi W, Xiong Y, Shi J, Sun S. Site-specific N-glycoproteomic analysis reveals up-regulated fucosylation in seminal plasma of asthenozoospermia. Glycobiology 2024; 34:cwae054. [PMID: 39073901 DOI: 10.1093/glycob/cwae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024] Open
Abstract
N-linked glycoproteins are rich in seminal plasma, playing essential roles in supporting sperm function and fertilization process. The alteration of seminal plasma glycans and its correspond glycoproteins may lead to sperm dysfunction and even infertility. In present study, an integrative analysis of glycoproteomic and proteomic was performed to investigate the changes of site-specific glycans and glycoptoteins in seminal plasma of asthenozoospermia. By large scale profiling and quantifying 5,018 intact N-glycopeptides in seminal plasma, we identified 92 intact N-glycopeptides from 34 glycoproteins changed in asthenozoospermia. Especially, fucosylated glycans containing lewis x, lewis y and core fucosylation were significantly up-regulated in asthenozoospermia compared to healthy donors. The up-regulation of fucosylated glycans in seminal plasma may interfere sperm surface compositions and regulation of immune response, which subsequently disrupts sperm function. Three differentiated expression of seminal vesicle-specific glycoproteins (fibronectin, seminogelin-2, and glycodelin) were also detected with fucosylation alteration in seminal plasma of asthenozoospermia. The interpretation of the altered site-specific glycan structures provides data for the diagnosis and etiology analysis of male infertility, as well as providing new insights into the potential therapeutic targets for male infertility.
Collapse
Affiliation(s)
- Miaomiao Xin
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Cheng Li
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Shanshan You
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Bojing Zhu
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiechen Shen
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Wenbo Dong
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Xia Xue
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Wenhao Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Yao Xiong
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Juanzi Shi
- The Assisted Reproduction Center, Northwest Women and Children's Hospital, NO. 73, houzaimen, Xincheng Zone, Xi'an 710003, China
| | - Shisheng Sun
- Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
2
|
Sánchez Milán JA, Mulet M, Serra A, Gallart-Palau X. Trioxidized cysteine and aging: a molecular binomial that extends far beyond classical proteinopathic paradigms. Aging (Albany NY) 2024; 16:11484-11490. [PMID: 39058307 PMCID: PMC11346781 DOI: 10.18632/aging.206036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Increased oxidative stress (OS) and the disruption of the equilibrium between the production of reactive oxygen species and antioxidants are key molecular features of unhealthy aging. OS results in the formation of oxidative posttranslational modifications (PTMs), some of which involve cysteine (Cys) residues in aging proteomes, and specifically, the formation of trioxidized Cys (t-Cys), which leads to permanent protein damage. Recent findings in rodents have uncovered that irregular regulation of t-Cys residues in the aging proteome disrupts homeostatic phosphorylation signaling, resulting in alterations to proteins that are analogous to those caused by phosphorylated serine (p-Ser) residues. This work contextualizes these significant findings and discusses the implications and molecular role(s) of t-Cys in the aging proteome. Furthermore, we present novel data, validating the increase of specific t-Cys sites associated with aging in a blood-related circulating human proteome. The scope and findings included here support the hypothesis that t-Cys residues may serve as important mechanistic and biological markers, warranting further exploration in the context of unhealthy aging and age-related major diseases.
Collapse
Affiliation(s)
- José Antonio Sánchez Milán
- Biomedical Research Institute of Lleida (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area – University Hospital Arnau de Vilanova (HUAV), Lleida, 25198, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, 25198, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area – University Hospital Arnau de Vilanova (HUAV), Lleida, 25198, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, 25198, Spain
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), Lleida, 25198, Spain
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area – University Hospital Arnau de Vilanova (HUAV), Lleida, 25198, Spain
| |
Collapse
|
3
|
Parvin A, Erabi G, Alemi A, Rezanezhad A, Maleksabet A, Sadeghpour S, Taheri-Anganeh M, Ghasemnejad-Berenji H. Seminal plasma proteomics as putative biomarkers for male infertility diagnosis. Clin Chim Acta 2024; 561:119757. [PMID: 38857670 DOI: 10.1016/j.cca.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alemi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arman Rezanezhad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
4
|
Fernández-Rhodes M, Lorca C, Lisa J, Batalla I, Ramos-Miguel A, Gallart-Palau X, Serra A. New Origins of Yeast, Plant and Bacterial-Derived Extracellular Vesicles to Expand and Advance Compound Delivery. Int J Mol Sci 2024; 25:7151. [PMID: 39000260 PMCID: PMC11241179 DOI: 10.3390/ijms25137151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields.
Collapse
Affiliation(s)
- María Fernández-Rhodes
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Cristina Lorca
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Julia Lisa
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| | - Iolanda Batalla
- Psychiatry Unit, Hospital Universitari Santa Maria, Medicine Department, Universitat de Lleida (UdL), 25198 Lleida, Spain
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 48940 Leioa, Spain
| | - Xavier Gallart-Palau
- +Pec Proteomics Research Group (+PPRG)-Neuroscience Area, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA)-University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
- Institute for Bioengineering of Catalonia (IBEC), C. Baldiri Reixac, 10-12, 08028 Barcelona, Spain
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), 25198 Lleida, Spain
| |
Collapse
|
5
|
Hong H, Lin C, Fang M, Liu J, Hsu HC, Chang CJ, Wang H. Proteomic analysis of exosomal proteins associated with bone healing speed in a rat tibial fracture model. Biomed Chromatogr 2024; 38:e5846. [PMID: 38412865 DOI: 10.1002/bmc.5846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/29/2024]
Abstract
This study investigates the impact of exosomes on bone fracture healing in a rat tibial model, distinguishing between fast and slow healing processes. Bone healing and protein expression were assessed through X-ray examinations, hematoxylin and eosin staining, and immunohistochemical staining. Exosomes were isolated, characterized and subjected to liquid chromatography-mass spectrometry for protein analysis. Molecular differences were explored using differentially expressed protein analysis, Kyoto Encyclopedia of Genes and Genomes pathway enrichment and protein-protein interaction networks. Differential bone healing patterns and protein expressions were observed between the control and model groups. Exosomes were successfully isolated and characterized, revealing 2004 identified proteins, including distinct expression profiles. Notably, ribosomal proteins, ferritin and beta-actin emerged as pivotal players in bone fracture healing. This study unveils dynamic changes in bone healing and underscores the role of exosomes in the process. Identified proteins and pathways offer valuable insights for developing innovative therapeutic strategies for bone healing.
Collapse
Affiliation(s)
- Haifeng Hong
- Department of Orthopedics, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Changhui Lin
- Department of Orthopedics, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Min Fang
- Department of Orthopedics, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Juntian Liu
- Department of Orthopedics, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| | - Hung-Chih Hsu
- Department of Medicine, Collage of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Physical Medicine and Rehabilitation, Chia-Yi Chang Gung Memorial Hospital, Chia-Yi, Taiwan
- Department of Physical Medicine and Rehabilitation, Xiamen Chang Gung Hospital, Xiamen, China
- Department of Physical Medicine and Rehabilitation, Jen-Ai Hospital, Taichung, Taiwan
| | - Chih-Jung Chang
- Medical Research Center and Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- School of Medicine, Huaqiao University, Quanzhou, Fujian Province, China
- Drug Hypersensitivity Clinical and Research Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Haibing Wang
- Department of Orthopedics, Affiliated Fuzhou First Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Sánchez Milán JA, Fernández‐Rhodes M, Guo X, Mulet M, Ngan SC, Iyappan R, Katoueezadeh M, Sze SK, Serra A, Gallart‐Palau X. Trioxidized cysteine in the aging proteome mimics the structural dynamics and interactome of phosphorylated serine. Aging Cell 2024; 23:e14062. [PMID: 38111315 PMCID: PMC10928580 DOI: 10.1111/acel.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Aging is the primary risk factor for the development of numerous human chronic diseases. On a molecular level, it significantly impacts the regulation of protein modifications, leading to the accumulation of degenerative protein modifications (DPMs) such as aberrant serine phosphorylation (p-Ser) and trioxidized cysteine (t-Cys) within the proteome. The altered p-Ser is linked to abnormal cell signaling, while the accumulation of t-Cys is associated with chronic diseases induced by oxidative stress. Despite this, the potential cross-effects and functional interplay between these two critical molecular factors of aging remain undisclosed. This study analyzes the aging proteome of wild-type C57BL/6NTac mice over 2 years using advanced proteomics and bioinformatics. Our objective is to provide a comprehensive analysis of how t-Cys affects cell signaling and protein structure in the aging process. The results obtained indicate that t-Cys residues accumulate in the aging proteome, interact with p-Ser interacting enzymes, as validated in vitro, and alter their structures similarly to p-Ser. These findings have significant implications for understanding the interplay of oxidative stress and phosphorylation in the aging process. Additionally, they open new venues for further research on the role(s) of these protein modifications in various human chronic diseases and aging, wherein exacerbated oxidation and aberrant phosphorylation are implicated.
Collapse
Affiliation(s)
- Jose Antonio Sánchez Milán
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - María Fernández‐Rhodes
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - Xue Guo
- Institute of Molecular and Cell Biology (IMCB)SingaporeSingapore
| | - María Mulet
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Maryam Katoueezadeh
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Aida Serra
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - Xavier Gallart‐Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of PsychologyUniversity of Lleida (UdL)LleidaSpain
| |
Collapse
|
7
|
Lorca C, Fernández-Rhodes M, Sánchez Milán JA, Mulet M, Elortza F, Ramos-Miguel A, Callado LF, Meana JJ, Mur M, Batalla I, Vilella E, Serra A, Gallart-Palau X. Next-Generation Proteomics of Brain Extracellular Vesicles in Schizophrenia Provide New Clues on the Altered Molecular Connectome. Biomedicines 2024; 12:129. [PMID: 38255234 PMCID: PMC10812948 DOI: 10.3390/biomedicines12010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs) are tiny membranous structures that mediate intercellular communication. The role(s) of these vesicles have been widely investigated in the context of neurological diseases; however, their potential implications in the neuropathology subjacent to human psychiatric disorders remain mostly unknown. Here, by using next-generation discovery-driven proteomics, we investigate the potential role(s) of brain EVs (bEVs) in schizophrenia (SZ) by analyzing these vesicles from the three post-mortem anatomical brain regions: the prefrontal cortex (PFC), hippocampus (HC), and caudate (CAU). The results obtained indicate that bEVs from SZ-affected brains contain region-specific proteins that are associated with abnormal GABAergic and glutamatergic transmission. Similarly, these vesicles from the analyzed regions were implicated in synaptic decay, abnormal brain immunity, neuron structural imbalances, and impaired cell homeostasis. Our findings also provide evidence, for the first time, that networks of molecular exchange (involving the PFC, HC, and CAU) are potentially active and mediated by EVs in non-diseased brains. Additionally, these bEV-mediated networks seem to have become partially reversed and largely disrupted in the brains of subjects affected by SZ. Taken as a whole, these results open the door to the uncovering of new biological markers and therapeutic targets, based on the compositions of bEVs, for the benefit of patients affected by SZ and related psychotic disorders.
Collapse
Affiliation(s)
- Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; (C.L.); (M.F.-R.); (J.A.S.M.); (M.M.)
- Department of Medical Basic Sciences, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), University of Lleida (UdL), 25198 Lleida, Spain
| | - María Fernández-Rhodes
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; (C.L.); (M.F.-R.); (J.A.S.M.); (M.M.)
- Department of Medical Basic Sciences, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), University of Lleida (UdL), 25198 Lleida, Spain
| | - Jose Antonio Sánchez Milán
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; (C.L.); (M.F.-R.); (J.A.S.M.); (M.M.)
- Department of Medical Basic Sciences, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), University of Lleida (UdL), 25198 Lleida, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; (C.L.); (M.F.-R.); (J.A.S.M.); (M.M.)
- Department of Medical Basic Sciences, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), University of Lleida (UdL), 25198 Lleida, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Science and Technology Park of Bizkaia, 48160 Derio, Spain;
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.R.-M.); (L.F.C.); (J.J.M.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 43206 Reus, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.R.-M.); (L.F.C.); (J.J.M.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 43206 Reus, Spain
| | - J. Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (A.R.-M.); (L.F.C.); (J.J.M.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 43206 Reus, Spain
| | - Maria Mur
- Psychiatry Department, Hospital Universitari Santa Maria, Medicine Department, Universitat de Lleida (UdL), 25198 Lleida, Spain; (M.M.); (I.B.)
| | - Iolanda Batalla
- Psychiatry Department, Hospital Universitari Santa Maria, Medicine Department, Universitat de Lleida (UdL), 25198 Lleida, Spain; (M.M.); (I.B.)
| | - Elisabet Vilella
- Centro de Investigación Biomédica en Red en Salud Mental CIBERSAM, Instituto de Salud Carlos III, 43206 Reus, Spain
- Hospital Universitari Institut Pere Mata, Institut Investigació Sanitària Pere Virgili (IISPV)-CERCA, Universitat Rovira i Virgili, 43206 Reus, Spain
| | - Aida Serra
- Department of Medical Basic Sciences, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), +Pec Proteomics Research Group (+PPRG), University of Lleida (UdL), 25198 Lleida, Spain
| | - Xavier Gallart-Palau
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; (C.L.); (M.F.-R.); (J.A.S.M.); (M.M.)
- Department of Psychology, University of Lleida (UdL), 25001 Lleida, Spain
| |
Collapse
|
8
|
Gallart-Palau X, Lorca C, Mulet M, Sánchez Milán JA, Lisa J, Ngan SC, Iyappan R, Katoueezadeh M, Serra A, Sze SK. Differential systemic decellularization in vivo to study molecular changes in each vasculature layer in murine models of disease. STAR Protoc 2023; 4:102524. [PMID: 37624701 PMCID: PMC10463255 DOI: 10.1016/j.xpro.2023.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular dysfunction underlies the onset and progression of many life-threatening diseases, highlighting the need for improved understanding of its molecular basis. Here, we present differential systemic decellularization in vivo (DISDIVO), a protocol that enables systemic and independent study of the molecular changes in each vasculature layer in murine models of disease. We describe steps for anesthesia, perfusion surgery, and exsanguination. We then detail detachment and collection of glycocalyx and decellularization and collection of both endothelial and smooth muscle cells. For complete details on the use and execution of this protocol, please refer to Serra et al., Gallart-Palau et al., and Vinaiphat et al.1,2,3.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Psychology, University of Lleida (UdL), 25001 Lleida, Spain.
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain
| | - María Mulet
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain
| | - José Antonio Sánchez Milán
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain
| | - Julia Lisa
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA) - +Pec Proteomics Research Group (+PPRG) - Neuroscience Area - University Hospital Arnau de Vilanova (HUAV), 80 Av. Rovira Roure, 25198 Lleida, Spain; Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Maryam Katoueezadeh
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Aida Serra
- Department of Medical Basic Sciences, University of Lleida (UdL), +Pec Proteomics Research Group (+PPRG), Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLLEIDA), 25198 Lleida, Spain.
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|