1
|
Moqaddam MA, Nemati M, Dara MM, Hoteit M, Sadek Z, Ramezani A, Rand MK, Abbassi-Daloii A, Pashaei Z, Almaqhawi A, Razi O, Escobar KA, Supriya R, Saeidi A, Zouhal H. Exploring the Impact of Astaxanthin Supplementation in Conjunction with a 12-Week CrossFit Training Regimen on Selected Adipo-Myokines Levels in Obese Males. Nutrients 2024; 16:2857. [PMID: 39275173 PMCID: PMC11397083 DOI: 10.3390/nu16172857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/16/2024] Open
Abstract
OBJECTIVE Obesity is associated with an exacerbated metabolic condition that is mediated through impairing balance in the secretion of some adipo-myokines. Therefore, the objective of the present study was to explore the impact of astaxanthin supplementation in conjunction with a 12-week CrossFit training regimen on some selected adipo-myokines, insulin insensitivity, and serum lipid levels in obese males. MATERIAL AND METHODS This study is a randomized control trial design; 60 obese males were randomly divided into four groups of 15, including the control group (CG), supplement group (SG), training group (TG), and combined training and supplement group (TSG). The participants were subjected to 12 weeks of astaxanthin (AST) supplementation [20 mg/d capsule, once/d] or CrossFit training or a combination of both interventions. The training regimen comprised 36 sessions of CrossFit, each lasting 60 min, conducted three times per week. The metabolic indices, body composition, anthropometrical, cardio-respiratory, and also some plasma adipo-myokine factors, including decorin (DCN), activin A, myostatin (MST), transforming growth factor (TGF)-β1, and follistatin (FST), were examined 12 and 72 h before the initiation of the main interventional protocols, and then 72 h after the final session of the training protocol. RESULTS There was no significant difference in the baseline data between the groups (p > 0.05). There were significant interactions between group x time for DCN (η2 = 0.82), activin A (η2 = 0.50), FST (η2 = 0.92), MST (η2 = 0.75), and TGFB-1 (η2 = 0.67) (p < 0.001 for all the variables). Significantly changes showed for DCN in TSG compared to TG and SG and also TG compared to SG (p = 0.0001); for activin A in SG compared to TG (p = 0.01) and TSG (p = 0.002); for FST in SG compared to TG and TSG (p = 0.0001), also in TSG compared to TG (p = 0.0001); for MST in SG, TG, and TSG compared to CG (p = 0.0001) and also in TSG compared to SG (p = 0.0001) and TG (p = 0.001); for TGFB-1 in SG, TG, and TSG compared to CG (p = 0.0001) and also TSG compared to SG (p = 0.0001) and TG (p = 0.001). CONCLUSIONS The 12-week CrossFit training concurrent with AST supplementation reduced anthropometric and metabolic factors and also serum lipid levels while producing positive changes in body composition and cardiovascular factors. Increased FST and DCN and reduced activin A, MST, and TGF-β1 were other affirmative responses to both interventions.
Collapse
Affiliation(s)
- Mohammad Ahmadi Moqaddam
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Morteza Nemati
- Department of Biomechanics and Sports Injuries, Faculty of Physical Education and Sports Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Marjan Mansouri Dara
- Department of Physical Education and Sport Science, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Maha Hoteit
- Food Science Unit, National Council for Scientific Research of Lebanon (CNRS-L), Beirut 11-8281, Lebanon
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Zahra Sadek
- Section 1, Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
- Laboratory of Motor System, Handicap and Rehabilitation (MOHAR), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon
| | - Akbar Ramezani
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Mahboubeh Khak Rand
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Asieh Abbassi-Daloii
- Ayatollah Amoli Branch, Department of Exercise Physiology, Islamic Azad University, Amol 6134937333, Iran
| | - Zhaleh Pashaei
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Abdullah Almaqhawi
- Department of Family Medicine and Community, College of Medicine, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sports Science, Razi University, Kermanshah 6714414971, Iran
| | - Kurt A Escobar
- Department of Kinesiology, California State University, Long Beach, CA 90840, USA
| | - Rashmi Supriya
- Centre for Health and Exercise Science Research, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
- Academy of Wellness and Human Development, Faculty of Arts and Social Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, Faculty of Humanities and Social Sciences, University of Kurdistan, Sanandaj 1517566177, Iran
| | - Hassane Zouhal
- M2S (Laboratoire Mouvement, Sport, Santé)-EA 1274, Université Rennes, 35044 Rennes, France
- Institut International des Sciences du Sport (2I2S), 35850 Irodouer, France
| |
Collapse
|
2
|
Bandala C, Carro-Rodríguez J, Cárdenas-Rodríguez N, Peña-Montero I, Gómez-López M, Hernández-Roldán AP, Huerta-Cruz JC, Muñoz-González F, Ignacio-Mejía I, Domínguez B, Lara-Padilla E. Comparative Effects of Gymnema sylvestre and Berberine on Adipokines, Body Composition, and Metabolic Parameters in Obese Patients: A Randomized Study. Nutrients 2024; 16:2284. [PMID: 39064727 PMCID: PMC11280467 DOI: 10.3390/nu16142284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Gymnema sylvestre (GS) and berberine (BBR) are natural products that have demonstrated therapeutic potential for the management of obesity and its comorbidities, as effective and safe alternatives to synthetic drugs. Although their anti-obesogenic and antidiabetic properties have been widely studied, comparative research on their impact on the gene expression of adipokines, such as resistin (Res), omentin (Ome), visfatin (Vis) and apelin (Ap), has not been reported. METHODOLOGY We performed a comparative study in 50 adult Mexican patients with obesity treated with GS or BBR for 3 months. The baseline and final biochemical parameters, body composition, blood pressure, gene expression of Res, Ome, Vis, and Ap, and safety parameters were evaluated. RESULTS BBR significantly decreased (p < 0.05) body weight, blood pressure and Vis and Ap gene expression and increased Ome, while GS decreased fasting glucose and Res gene expression (p < 0.05). A comparative analysis of the final measurements revealed a lower gene expression of Ap and Vis (p < 0.05) in patients treated with BBR than in those treated with GS. The most frequent adverse effects in both groups were gastrointestinal symptoms, which attenuated during the first month of treatment. CONCLUSION In patients with obesity, BBR has a better effect on body composition, blood pressure, and the gene expression of adipokines related to metabolic risk, while GS has a better effect on fasting glucose and adipokines related to insulin resistance, with minimal side effects.
Collapse
Affiliation(s)
- Cindy Bandala
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Jazmín Carro-Rodríguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | | | - Itzel Peña-Montero
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Modesto Gómez-López
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| | - Ana Paola Hernández-Roldán
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Juan Carlos Huerta-Cruz
- Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias, Ismael Cosio Villegas, Secretaria de Salud, Mexico City 14080, Mexico;
| | - Felipe Muñoz-González
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Mexico City 11340, Mexico
| | - Iván Ignacio-Mejía
- Laboratorio de Medicina Traslacional, Escuela Militar de Graduados en Sanidad, Universidad del Ejército y Fuerza Aérea, Mexico City 11200, Mexico;
| | - Brayan Domínguez
- Laboratorio de Neurociencia Traslacional Aplicada a Enfermedades Crónicas y Emergentes, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.B.); (J.C.-R.); (A.P.H.-R.); (F.M.-G.); (B.D.)
| | - Eleazar Lara-Padilla
- Laboratorio de Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (I.P.-M.); (M.G.-L.)
| |
Collapse
|
3
|
Govindasamy K, Gogoi H, Jebabli N, Bediri SM, Aljahni M, Parpa K, Clark CCT, Granacher U, Zouhal H. The effects of kettlebell training versus resistance training using the own body mass on physical fitness and physiological adaptations in obese adults: a randomized controlled trial. BMC Sports Sci Med Rehabil 2024; 16:106. [PMID: 38715134 PMCID: PMC11077891 DOI: 10.1186/s13102-024-00894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
AIM OF STUDY This study aimed to explore the effects of different types of resistance training using kettlebells versus the own body mass, in comparison to a passive control, on key physical fitness and physiological parameters in young, obese adults. METHODS Data from 60 sedentary, obese male college students, aged 17-26, were used for final analyses. Participants were randomly assigned to one of three groups: a control group (CG, n = 20, no training), a kettlebell resistance training group (KRTG, n = 20), or a bodyweight resistance training group (BWRTG, n = 20). Selected measures of physical fitness were tested using the 12-minutes run test, the push-up test, the sit-up test, and the sit-and-reach test. Physiological measures included vital capacity, resting and maximum heart rate (HRmax), mean arterial blood pressure, breath holding time, and respiratory rate. Biochemical variables were measured in the morning, in a fasted state, and comprised high and low density lipoprotein, total cholesterol, and triglycerides. The 12-weeks progressive KRTG and BWRTG were specifically tailored using sets, repetitions, and intensity levels. RESULTS Notable findings include significant body fat reductions in BWRTG (p < 0.001; d = 1.53) and KRTG (p < 0.001; d = 1.43), and a substantial increase in VO2max for BWRTG (p < 0.001; d = 1.32) and KRTG (p < 0.001; d = 1.34) compared to CG. KRTG also showed significant improvements in vital capacity (p < 0.001; d = 1.61) and reductions in resting heart rate (p = 0.024, d = 1.05) and respiratory rate (p = 0.001, d = 1.55), with BWRTG showing similar trends (resting heart rate: p = 0.041, d = 1.35; respiratory rate: p = 0.001, d = 1.98). Both intervention groups significantly improved breath holding time (KRTG: p = 0.001, d = 1.58; BWRTG: p < 0.001, d = 1.98) and reduced total cholesterol and low-density lipoprotein levels compared to CG. CONCLUSIONS This study demonstrates that both KRTG and BWRTG are effective in improving body composition and selected fitness and physiological measures. Thus, resistance training using kettlebells or bodyweight training are recommended if the goal is to improve body composition and fitness in obese male adults. TRIAL REGISTRATION OSF, September, 28th 2023. https://doi.org/10.17605/OSF.IO/Z6Y9Gosf.io/2mb98.
Collapse
Affiliation(s)
- Karuppasamy Govindasamy
- Department of Physical Education and Sports Sciences, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, India.
| | - Hemantajit Gogoi
- Department of Physical Education, Rajiv Gandhi University, Itanagar, Arunachal Pradesh, 791112, India
| | - Nidhal Jebabli
- Research Unit: Sport Sciences, Health and Movement, Higher Institute of Sport and Physical Education of Kef, UR22JS01, University of Jendouba, Kef, 7100, Tunisia
| | | | - Mohammed Aljahni
- College of Arts and Humanities, Department of Educational Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Koulla Parpa
- Department of Sport and Exercise Science, UCLan University of Cyprus, Pyla, Cyprus
| | - Cain C T Clark
- Institute for Health and Wellbeing, Coventry University, Coventry, CV1 5FB, UK
- College of Life Sciences, Birmingham City University, Birmingham, B15 3TN, UK
| | - Urs Granacher
- Department of Sport and Sport Science, Exercise and Human Movement Science, University of Freiburg Sandfangweg 4, 79102, Freiburg, Germany.
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé), EA 1274, Rennes, F-35000, France.
- Institut International des Sciences du Sport (2IS), Irodouer, 35850, France.
| |
Collapse
|
4
|
Todorova V, Ivanova S, Chakarov D, Kraev K, Ivanov K. Ecdysterone and Turkesterone-Compounds with Prominent Potential in Sport and Healthy Nutrition. Nutrients 2024; 16:1382. [PMID: 38732627 PMCID: PMC11085066 DOI: 10.3390/nu16091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
The naturally occurring compounds ecdysterone and turkesterone, which are present in plants, including Rhaponticum carthamoides Willd. (Iljin), Spinacia oleracea L., Chenopodium quinoa Willd., and Ajuga turkestanica (Regel) Briq, are widely recognized due to their possible advantages for both general health and athletic performance. The current review investigates the beneficial biological effects of ecdysterone and turkesterone in nutrition, highlighting their roles not only in enhancing athletic performance but also in the management of various health problems. Plant-based diets, associated with various health benefits and environmental sustainability, often include sources rich in phytoecdysteroids. However, the therapeutic potential of phytoecdysteroid-rich extracts extends beyond sports nutrition, with promising applications in treating chronic fatigue, cardiovascular diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Velislava Todorova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Stanislava Ivanova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Dzhevdet Chakarov
- Department of Propedeutics of Surgical Diseases, Section of General Surgery, Faculty of Medicine, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Kalin Ivanov
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Gaweł E, Hall B, Siatkowski S, Grabowska A, Zwierzchowska A. The Combined Effects of High-Intensity Interval Exercise Training and Dietary Supplementation on Reduction of Body Fat in Adults with Overweight and Obesity: A Systematic Review. Nutrients 2024; 16:355. [PMID: 38337640 PMCID: PMC10857230 DOI: 10.3390/nu16030355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Excessive body fat is associated with various comorbidities including cardiovascular disease, type 2 diabetes mellitus and certain types of cancer. The search for effective, relatively easy to maintain body-fat reduction interventions has been ongoing. We aimed to review the current literature to assess the effectiveness of high-intensity interval training with and without dietary supplementation on body fat loss, concentration of markers of metabolic health and aerobic capacity of adults with overweight and obesity. Seventy full-text articles were assessed to determine their eligibility and thirteen were included in the review. The methodology of this systematic review was developed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Almost all studies (93%) demonstrated effectiveness of high-intensity interval training of various protocols in reducing body fat, improving metabolic health and aerobic capacity of adults with overweight and obesity. These effects were enhanced by an addition of a dietary supplement, such as green tea or ginger or other. Although combining HIIT with dietary supplementation seem to improve body composition, metabolic health and aerobic capacity in adults with overweight and obesity in some instances to a greater extent than HIIT alone, it does not seem to be necessary to combine these two interventions.
Collapse
Affiliation(s)
- Eliza Gaweł
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikolowska Street 72a, 40-065 Katowice, Poland; (E.G.); (A.Z.)
| | - Barbara Hall
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72, 40-065 Katowice, Poland;
| | - Szymon Siatkowski
- Institute of Healthy Living, The Jerzy Kukuczka Academy of Physical Education, Mikolowska Street 72, 40-065 Katowice, Poland;
| | - Agata Grabowska
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Anna Zwierzchowska
- Institute of Sport Sciences, The Jerzy Kukuczka Academy of Physical Education in Katowice, Mikolowska Street 72a, 40-065 Katowice, Poland; (E.G.); (A.Z.)
| |
Collapse
|
6
|
Yang J, Liang J, Xu J, Lin T, Ye Q, Lin Q, Ji F, Shi D. The impact of dietary interventions on polycystic ovary syndrome patients with a BMI ≥25 kg/m 2: A systematic review and meta-analysis of randomized controlled trials. Reprod Med Biol 2024; 23:e12607. [PMID: 39351128 PMCID: PMC11442045 DOI: 10.1002/rmb2.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Background Dietary interventions, recommended as a primary approach globally, benefit women with polycystic ovary syndrome (PCOS) by inducing weight loss and improving clinical symptoms, metabolism, and pregnancy results. However, the impact of diet on PCOS in individuals with BMI ≥ 25 kg/m2 is unclear. The aim of this review was to offer dietary guidance for these patients. Methods Six databases, CNKI, Wanfang, VIP, PubMed, Cochrane Library, and Web of Science, were searched systematically from inception to December 2023 for clinical randomized controlled trials (RCT) on dietary interventions for PCOS. Two researchers independently screened and extracted data following pre-defined inclusion criteria, with bias assessment using the Cochrane Handbook and Review Manager (version 5.4) software. Results Nine RCTs with 559 participants were included. Among women with PCOS and obesity, compared to the control group, individuals who underwent dietary interventions experienced improvements in weight-related Indicators, glycolipid metabolism, hormone-related indicators, and fertility-related outcomes. Subgroup analysis indicated that calorie-restricted diets (CRDs) and low-energy-low-carb combined diets had advantages over other dietary interventions. Moreover, the overweight period was the optimal intervention period. Conclusions Dietary interventions can improve the clinical manifestations of PCOS and pregnancy rates in patients with a BMI ≥ 25 kg/m2. Particularly, CRDs, low-calorie-low-carb combined diets, and low-calorie-extract combined diets are recommended.
Collapse
Affiliation(s)
- Juan Yang
- Department of TCM Fujian Province Maternal and Child Health Care Hospital, Fujian Medical University Fuzhou China
| | - Jiahui Liang
- College of Acupuncture and Massage Fujian University of Traditional Chinese Medicine Fuzhou China
| | - Jinbang Xu
- Department of TCM Fujian Province Maternal and Child Health Care Hospital, Fujian Medical University Fuzhou China
| | - Tong Lin
- Department of TCM Fujian Province Maternal and Child Health Care Hospital, Fujian Medical University Fuzhou China
| | - Qiaoling Ye
- College of Acupuncture and Massage Fujian University of Traditional Chinese Medicine Fuzhou China
| | - Qiuping Lin
- Department of TCM Fujian Province Maternal and Child Health Care Hospital, Fujian Medical University Fuzhou China
| | - Feng Ji
- College of Acupuncture and Massage Fujian University of Traditional Chinese Medicine Fuzhou China
| | - Dan Shi
- Department of TCM Fujian Province Maternal and Child Health Care Hospital, Fujian Medical University Fuzhou China
| |
Collapse
|