1
|
Janas K, Gudowska A, Drobniak SM. Avian colouration in a polluted world: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:1261-1277. [PMID: 38494176 DOI: 10.1111/brv.13067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024]
Abstract
Brilliant, diverse colour ornaments of birds were one of the crucial cues that led Darwin to the idea of sexual selection. Although avian colouration plays many functions, including concealment, thermoregulation, or advertisement as a distasteful prey, a quality-signalling role in sexual selection has attracted most research attention. Sexually selected ornaments are thought to be more susceptible to external stressors than naturally selected traits, and as such, they might be used as a test for environmental quality. For this reason, the last two decades have seen numerous studies on the impact of anthropogenic pollution on the expression of various avian colour traits. Herein, we provide the first meta-analytical summary of these results and examine whether there is an interaction between the mechanism of colour production (carotenoid-based, melanin-based and structural) and the type of anthropogenic factor (categorised as heavy metals, persistent organic pollutants, urbanisation, or other). Following the assumption of heightened condition dependence of ornaments under sexual selection, we also expected the magnitude of effect sizes to be higher in males. The overall effect size was close to significance and negative, supporting a general detrimental impact of anthropogenic pollutants on avian colouration. In contrast to expectations, there was no interaction between pollution types and colour-producing mechanisms. Yet there were significant differences in sensitivity between colour-producing mechanisms, with carotenoid-based colouration being the most affected by anthropogenic environmental disturbances. Moreover, we observed no significant tendency towards heightened sensitivity in males. We identified a publication gap on structural colouration, which, compared to pigment-based colouration, remains markedly understudied and should thus be prioritised in future research. Finally, we call for the unification of methods used in colour quantification in ecological research to ensure comparability of results among studies.
Collapse
Affiliation(s)
- Katarzyna Janas
- Ornithological Station, Museum and Institute of Zoology, Polish Academy of Sciences, Gdańsk, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Environmental and Earth Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Costantini D, Blévin P, Bustnes JO, Esteve V, Gabrielsen GW, Herzke D, Humann-Guilleminot S, Moe B, Parenteau C, Récapet C, Bustamante P, Chastel O. Integument carotenoid-based colouration reflects contamination to perfluoroalkyl substances, but not mercury, in arctic black-legged kittiwakes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.952765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities are introducing multiple chemical contaminants into ecosystems that act as stressors for wildlife. Perfluoroalkyl substances (PFAS) and mercury (Hg) are two relevant contaminants that may cause detrimental effects on the fitness of many aquatic organisms. However, there is a lack of information on their impact on the expression of secondary sexual signals that animals use for mate choice. We have explored the correlations between integument carotenoid-based colourations, blood levels of carotenoids, and blood levels of seven PFAS and of total Hg (THg) in 50 adult male black-legged kittiwakes (Rissa tridactyla) from the Norwegian Arctic during the pre-laying period, while controlling for other colouration influencing variables such as testosterone and body condition. Kittiwakes with elevated blood concentrations of PFAS (PFOSlin, PFNA, PFDcA, PFUnA, or PFDoA) had less chromatic but brighter bills, and brighter gape and tongue; PFOSlin was the pollutant with the strongest association with bill colourations. Conversely, plasma testosterone was the only significant correlate of hue and chroma of both gape and tongue, and of hue of the bill. Kittiwakes with higher concentrations of any PFAS, but not of THg, tended to have significantly higher plasma concentrations of the carotenoids astaxanthin, zeaxanthin, lutein, and cryptoxanthin. Our work provides the first correlative evidence that PFAS exposure might interfere with the carotenoid metabolism and the expression of integument carotenoid-based colourations in a free-living bird species. This outcome may be a direct effect of PFAS exposure or be indirectly caused by components of diet that also correlate with elevated PFAS concentrations (e.g., proteins). It also suggests that there might be no additive effect of THg co-exposure with PFAS on the expression of colourations. These results call for further work on the possible interference of PFAS with the expression of colourations used in mate choice.
Collapse
|
3
|
Masó G, Vicente‐Sastre D, Fitze P. Intrinsic climatic predictability affects ornamental coloration of adult males: evidence for compensation among carotenoid‐ and melanin‐based coloration. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- G. Masó
- Department of Biodiversity and Ecologic Restoration Instituto Pirenaico de Ecología (IPE‐CSIC) Avda. Nuestra Señora de la Victoria 16 22700 Jaca Spain
- GRECO Institute of Aquatic Ecology University of Girona 17003 Girona Spain
- Faculty of Sciences and Technology (FCT) University of Vic – Central University of Catalonia (UVic‐UCC) C. de la Laura, 13 08500 Vic Spain
| | - D. Vicente‐Sastre
- Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Universitat de Barcelona Av. Diagonal 643 08028 Barcelona Spain
| | - P.S. Fitze
- Department of Biodiversity and Ecologic Restoration Instituto Pirenaico de Ecología (IPE‐CSIC) Avda. Nuestra Señora de la Victoria 16 22700 Jaca Spain
- Department of Biodiversity and Evolutionary Biology Museo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2 28006 Madrid Spain
| |
Collapse
|
4
|
Ren S, Li Y, Li C. Effects of P-nitrophenol exposure on the testicular development and semen quality of roosters. Gen Comp Endocrinol 2021; 301:113656. [PMID: 33159910 DOI: 10.1016/j.ygcen.2020.113656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/25/2020] [Accepted: 10/29/2020] [Indexed: 01/26/2023]
Abstract
The widespread use of P-nitrophenol (PNP) as a raw material in pesticides, medicines and dyes has led to environmental pollution. PNP is a well-known endocrine disruptor in mammals and quails. This study investigated the effects of long-term PNP exposure on the testicular development and semen quality of roosters. Pubescent and postpubescent animals were given drinking water supplemented with (0 mg/L, 1 mg/L, 10 mg/L, or 100 mg/L) PNP for eight weeks or sixteen weeks. The relative testis weight, antioxidant index, serum hormone concentration, morphological changes, semen quality and expression of major steroidogenic genes were measured. The results showed that eight weeks of PNP exposure decreased CAT activity and increased H2O2 level in serum and testes in the 10 mg/L and 100 mg/L PNP-treated groups. Detached sperm cells were also found in the testicular tissues of the 100 mg/L PNP-treated group. After sixteen weeks of PNP exposure, daily weight gain, sperm motility, serum testosterone concentration and 3β1-hydroxysteroid dehydrogenase (HSD3β1) mRNA expression were decreased in the 100 mg/L PNP-treated group. Some vacuoles in the seminiferous epithelium in the testicular tissues were found in the 10 mg/L and 100 mg/L PNP-treated groups. In conclusion, as an endocrine disruptor, PNP exposure impaired antioxidant capacity, reduced testosterone synthesis, caused morphological changes in testes, and ultimately decreased semen quality in the roosters. The reproductive damage of PNP to roosters depended on the length of exposure time and the administered dose.
Collapse
Affiliation(s)
- Shanmao Ren
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yansen Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunmei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Seewagen CL. The threat of global mercury pollution to bird migration: potential mechanisms and current evidence. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1254-1267. [PMID: 30159636 DOI: 10.1007/s10646-018-1971-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Mercury is a global pollutant that has been widely shown to adversely affect reproduction and other endpoints related to fitness and health in birds, but almost nothing is known about its effects on migration relative to other life cycle processes. Here I consider the physiological and histological effects that mercury is known to have on non-migrating birds and non-avian vertebrates to identify potential mechanisms by which mercury might hinder migration performance. I posit that the broad ability of mercury to inactivate enzymes and compromise the function of other proteins is a single mechanism by which mercury has strong potential to disrupt many of the physiological processes that make long-distance migration possible. In just this way alone, there is reason to expect mercury to interfere with navigation, flight endurance, oxidative balance, and stopover refueling. Navigation and flight could be further affected by neurotoxic effects of mercury on the brain regions that process geomagnetic information from the visual system and control biomechanics, respectively. Interference with photochemical reactions in the retina and decreases in scotopic vision sensitivity caused by mercury also have the potential to disrupt visual-based magnetic navigation. Finally, migration performance and possibly survival might be limited by the immunosuppressive effects of mercury on birds at a time when exposure to novel pathogens and parasites is great. I conclude that mercury pollution is likely to be further challenging what is already often the most difficult and perilous phase of a migratory bird's annual cycle, potentially contributing to global declines in migratory bird populations.
Collapse
Affiliation(s)
- Chad L Seewagen
- Great Hollow Nature Preserve & Ecological Research Center, 225 Route 37, New Fairfield, CT, USA.
| |
Collapse
|
6
|
Spickler JL, Swaddle JP, Gilson RL, Varian-Ramos CW, Cristol DA. Sexually selected traits as bioindicators: exposure to mercury affects carotenoid-based male bill color in zebra finches. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:1138-1147. [PMID: 32862260 DOI: 10.1007/s10646-020-02271-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
To examine whether sexually selected traits are particularly sensitive bioindicators of environmental toxicants, we assessed the effects of exposure to environmentally relevant dietary concentrations of the pollutant methylmercury on pigment coloration in zebra finches (Taeniopygia guttata). First, we tested whether effects of methylmercury on coloration were influenced by timing of exposure. Birds were either exposed developmentally (up to 114 days after hatching), as adults (after reaching sexual maturity), or for their entire life. Bill coloration, which is a carotenoid-based, sexually selected trait, was less red in males with lifetime exposure to methylmercury, compared to controls. Neither adult, nor developmental exposure influenced bill color in adult males, with the possible exception of early exposure of nestlings. Among females, where bill color is not under strong sexual selection, neither lifetime nor adult exposure to methylmercury affected bill color. For males and females, there was no effect of either lifetime or adult methylmercury exposure on coloration of back feathers, which is a non-sexually-dimorphic, melanin-based trait that is not likely the result of sexual selection. This study is a comprehensive experimental test of the proposal that sexually selected traits may be particularly useful bioindicators of the stress imposed by environmental toxins such as methylmercury.
Collapse
Affiliation(s)
- Jessica L Spickler
- Department of Biology, Institute for Bird Behavior Studies, William & Mary, Williamsburg, VA, 23187, USA
| | - John P Swaddle
- Institute for Integrative Conservation, William & Mary, Williamsburg, VA, 23187, USA
| | - Rebecca L Gilson
- Department of Biology, Institute for Bird Behavior Studies, William & Mary, Williamsburg, VA, 23187, USA
| | | | - Daniel A Cristol
- Department of Biology, Institute for Bird Behavior Studies, William & Mary, Williamsburg, VA, 23187, USA.
| |
Collapse
|
7
|
Sebastiano M, Angelier F, Blévin P, Ribout C, Sagerup K, Descamps S, Herzke D, Moe B, Barbraud C, Bustnes JO, Gabrielsen GW, Chastel O. Exposure to PFAS is Associated with Telomere Length Dynamics and Demographic Responses of an Arctic Top Predator. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10217-10226. [PMID: 32696640 DOI: 10.1021/acs.est.0c03099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental factors that can influence telomeres are diverse, but the association between telomeres and exposure to environmental contaminants is yet to be elucidated. To date, prior studies have focused on legacy persistent chlorinated pollutants (POPs), while the effects of poly- and perfluoroalkyl substances (PFAS) have been poorly documented. Here, we investigated the associations among PFAS congeners, absolute telomere length (cross-sectional approach), and telomere dynamics (rate of telomere length change over time, longitudinal approach) in one of the most contaminated arctic top predators, the glaucous gull Larus hyperboreus from Svalbard. We further estimated the effect of PFAS on apparent survival rates and re-sighting probabilities using a 10-year capture/recapture dataset (2010-2019). We found that birds exposed to higher concentrations of perfluorononadecanoate (PFNA) (median of 1565 pg/mL of ww in males and 1370 pg/mL of ww in females) and perfluorotetradecanoate (PFTeDA) (median of 370 pg/mL of ww in males and 210 pg/mL of ww in females) showed the slowest rate of telomere shortening. We also found that high blood concentrations of perfluorooctanoate (PFOA) (median of 120 pg/mL of ww in males and 150 pg/mL of ww in females) and perfluorohexanesulfonate (PFHxS) (median of 495 pg/mL of ww in males and 395 pg/mL of ww in females) were positively associated with higher re-sighting probabilities and apparent survival in males but not in females. Our work is the first to report an association between single PFAS compounds and telomeres, and the first to link PFAS exposure with survival probabilities, suggesting that the effect of PFAS exposure might be more tied to the type of compound rather than the total concentration of PFAS.
Collapse
Affiliation(s)
- Manrico Sebastiano
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
- Akvaplan-niva AS, Fram Centre, NO-9296 Tromsø, Norway
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | | | | | - Dorte Herzke
- Norwegian Institute for Air Research, NILU, Fram Centre, NO-9296 Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research, NINA, Høgskoleringen 9, NO-7034 Trondheim, Norway
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, NINA, Fram Centre, NO-9296 Tromsø, Norway
| | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-Univ., 79360 La Rochelle, France
| |
Collapse
|
8
|
Wu JP, Peng Y, Zhi H, Wu SK, Chen XY, Zeng YH, Luo XJ, Mai BX. Contaminant-related oxidative distress in common kingfisher (Alcedo atthis) breeding at an e-waste site in South China. ENVIRONMENTAL RESEARCH 2020; 182:109079. [PMID: 31887468 DOI: 10.1016/j.envres.2019.109079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/29/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The crude electronic waste (e-waste) recycling has caused severe contamination of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the local environment, begging the question of whether wildlife like birds living at e-waste sites are suffering from adverse effects. We examined several oxidative status markers and their relationships with hepatic concentrations of PCBs and PBDEs in common kingfisher (Alcedo atthis) that inhabit an e-waste site in South China. The results showed that the mean concentrations of ∑PCBs (19100 ng/g) and ∑PBDEs (507 ng/g) in kingfishers from e-waste site were several orders of magnitude higher than those in the species from a reference site. Correspondingly, hepatic concentrations of malondialdehyde (MDA) and reactive oxygen species (ROS) in kingfishers from the e-waste site were significantly higher than those detected in the reference population, suggesting oxidative distress in the birds breeding at the e-waste site. The activities of superoxide dismutase (SOD) and catalase (CAT) in the liver from the exposed group were significantly lower compared with the reference group, while the opposite trend was observed for glutathione peroxidase (GPx). Significantly positive correlations were observed between PCB or PBDE concentrations and the levels of MDA and ROS; while negative correlations were found for enzymatic activities of SOD and CAT. Overall, our results may suggest a potential linkage between exposure to e-waste-derived pollutants and elevated oxidative stress, thereby indicating a potential oxidative stress-related health effects in common kingfisher breeding at the e-waste site.
Collapse
Affiliation(s)
- Jiang-Ping Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China.
| | - Ying Peng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hui Zhi
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, 241002, China
| | - Si-Kang Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China
| | - Xiao-Yun Chen
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, College of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, China
| | - Yan-Hong Zeng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
9
|
Côte J, Boniface A, Blanchet S, Hendry AP, Gasparini J, Jacquin L. Melanin-based coloration and host-parasite interactions under global change. Proc Biol Sci 2019; 285:rspb.2018.0285. [PMID: 29848644 DOI: 10.1098/rspb.2018.0285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
The role of parasites in shaping melanin-based colour polymorphism, and the consequences of colour polymorphism for disease resistance, remain debated. Here we review recent evidence of the links between melanin-based coloration and the behavioural and immunological defences of vertebrates against their parasites. First we propose that (1) differences between colour morphs can result in variable exposure to parasites, either directly (certain colours might be more or less attractive to parasites) or indirectly (variations in behaviour and encounter probability). Once infected, we propose that (2) immune variation between differently coloured individuals might result in different abilities to cope with parasite infection. We then discuss (3) how these different abilities could translate into variable sexual and natural selection in environments varying in parasite pressure. Finally, we address (4) the potential role of parasites in the maintenance of melanin-based colour polymorphism, especially in the context of global change and multiple stressors in human-altered environments. Because global change will probably affect both coloration and the spread of parasitic diseases in the decades to come, future studies should take into account melanin-based coloration to better predict the evolutionary responses of animals to changing disease risk in human-altered environments.
Collapse
Affiliation(s)
- J Côte
- Laboratoire Évolution & Diversité Biologique EDB, UMR 5174, UPS; CNRS; ENSFEA; IRD, Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - A Boniface
- Department of Biology & Redpath Museum, McGill University, Montréal, Québec, Canada
| | - S Blanchet
- Station d'Ecologie Théorique et Expérimentale SETE, UMR 5321, UPS, CNRS, Moulis, France
| | - A P Hendry
- Department of Biology & Redpath Museum, McGill University, Montréal, Québec, Canada
| | - J Gasparini
- Sorbonnes Universités, UPMC Univ Paris 06, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, 75005, Paris, France
| | - L Jacquin
- Laboratoire Évolution & Diversité Biologique EDB, UMR 5174, UPS; CNRS; ENSFEA; IRD, Université Toulouse 3 Paul Sabatier, Toulouse, France
| |
Collapse
|
10
|
Costantini D, Blévin P, Herzke D, Moe B, Gabrielsen GW, Bustnes JO, Chastel O. Higher plasma oxidative damage and lower plasma antioxidant defences in an Arctic seabird exposed to longer perfluoroalkyl acids. ENVIRONMENTAL RESEARCH 2019; 168:278-285. [PMID: 30366280 DOI: 10.1016/j.envres.2018.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 09/27/2018] [Accepted: 10/07/2018] [Indexed: 05/22/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFASs) may cause detrimental effects on physiological function and reproduction of Arctic animals. However, there is a paucity of information on the link between PFASs and oxidative stress, which can have potential detrimental effects on key fitness traits, such as cellular homeostasis or reproduction. We have examined the correlations between multiple blood-based markers of oxidative status and several perfluoroalkyl acids (i.e., with 8 or more carbons) in male Arctic black-legged kittiwakes (Rissa tridactyla) during the pre-laying period. Higher protein oxidative damage was found in those birds having higher concentrations of perfluorododecanoic acid (PFDoA), perfluorotridecanoic acid (PFTriA) and perfluorotetradecanoic acid (PFTeA). Lower plasmatic non-enzymatic micro-molecular antioxidants were found in those birds having higher concentrations of perfluoroundecanoic acid (PFUnA), PFDoA and PFTeA. Effect size estimates showed that the significant correlations between PFASs and oxidative status markers were intermediate to strong. The non-enzymatic antioxidant capacity (including antioxidants of protein origin) was significantly lower in those birds having higher plasma concentration of linear perfluorooctanesulfonic acid (PFOSlin). In contrast, the activity of the antioxidant enzyme glutathione peroxidase in erythrocytes was not associated with any PFAS compounds. Our results suggest that increased oxidative stress might be one consequence of long-chain PFAS exposure. Experimental work will be needed to demonstrate whether PFASs cause toxic effects on free-living vertebrates through increased oxidative stress.
Collapse
Affiliation(s)
- David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005 Paris, France.
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 - CNRS Université de La Rochelle, 79360 Villiers-en-Bois, France
| | - Dorte Herzke
- Norwegian Institute for Air Research, NILU, Fram Centre, NO-9296 Tromsø, Norway
| | - Børge Moe
- Norwegian Institute for Nature Research, NINA, Høgskoleringen 9, NO-7034 Trondheim, Norway; Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | | | - Jan Ove Bustnes
- Norwegian Institute for Nature Research, NINA, Fram Centre, NO-9296 Tromsø, Norway
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 - CNRS Université de La Rochelle, 79360 Villiers-en-Bois, France
| |
Collapse
|
11
|
Briels N, Ciesielski TM, Herzke D, Jaspers VLB. Developmental Toxicity of Perfluorooctanesulfonate (PFOS) and Its Chlorinated Polyfluoroalkyl Ether Sulfonate Alternative F-53B in the Domestic Chicken. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12859-12867. [PMID: 30351028 DOI: 10.1021/acs.est.8b04749] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The chlorinated polyfluoroalkyl ether sulfonate F-53B is used as a mist suppressant in the Chinese electroplating industry. Because of the regulations on perfluorooctanesulfonate (PFOS), its use is expected to increase. Until now, F-53B toxicity data have been scarce and are, to our knowledge, lacking for birds. This study therefore investigated the effects of PFOS and F-53B, separately and as mixtures, on the development of the chicken ( Gallus gallus domesticus). Compounds were injected in ovo, before incubation, at 150 and 1500 ng/g egg. At embryonic day 20, a significantly lower heart rate was observed in all treated groups compared to the control group and hatchlings exposed to the high dose of F-53B had a significantly enlarged liver (8%). Embryonic survival was not affected and no significant effects on hatchling body mass or oxidative stress parameters were found. Our results suggest that these compounds likely have different toxicity thresholds for the investigated endpoints, and/or different modes of action. This study thereby underlines the potential developmental toxicity of PFOS and F-53B at environmentally relevant concentrations. Assessment of PFOS alternatives should therefore continue, preferably prior to their large scale use, as they should be ensured to be less harmful than PFOS itself.
Collapse
Affiliation(s)
- Nathalie Briels
- Norwegian University of Science and Technology (NTNU) , Department of Biology , 7491 Trondheim , Norway
| | - Tomasz M Ciesielski
- Norwegian University of Science and Technology (NTNU) , Department of Biology , 7491 Trondheim , Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), FRAM centre , 9007 Tromsø , Norway
| | - Veerle L B Jaspers
- Norwegian University of Science and Technology (NTNU) , Department of Biology , 7491 Trondheim , Norway
| |
Collapse
|
12
|
Pritsos KL, Perez CR, Muthumalage T, Dean KM, Cacela D, Hanson-Dorr K, Cunningham F, Bursian SJ, Link JE, Shriner S, Horak K, Pritsos CA. Dietary intake of Deepwater Horizon oil-injected live food fish by double-crested cormorants resulted in oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 146:62-67. [PMID: 28688517 DOI: 10.1016/j.ecoenv.2017.06.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The Deepwater Horizon oil spill released 134 million gallons of crude oil into the Gulf of Mexico making it the largest oil spill in US history and exposing fish, birds, and marine mammals throughout the Gulf of Mexico to its toxicity. Fish eating waterbirds such as the double-crested cormorant (Phalacrocorax auritus) were exposed to the oil both by direct contact with the oil and orally through preening and the ingestion of contaminated fish. This study investigated the effects of orally ingestedMC252 oil-contaminated live fish food by double-crested cormorants on oxidative stress. Total, reduced, and oxidized glutathione levels, superoxide dismutase and glutathione peroxidase activities, total antioxidant capacity and lipid peroxidation were assessed in the liver tissues of control and treated cormorants. The results suggest that ingestion of the oil-contaminated fish resulted in significant increase in oxidative stress in the liver tissues of these birds. The oil-induced increase in oxidative stress could have detrimental impacts on the bird's life-history.
Collapse
Affiliation(s)
- Karen L Pritsos
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | - Cristina R Perez
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | - Thivanka Muthumalage
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States
| | | | | | - Katie Hanson-Dorr
- US Department of Agriculture, APHIS/Wildlife Services' National Wildlife Research Center, MS, United States
| | - Fred Cunningham
- US Department of Agriculture, APHIS/Wildlife Services' National Wildlife Research Center, MS, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Jane E Link
- Department of Animal Science, Michigan State University, East Lansing, MI, United States
| | - Susan Shriner
- US Department of Agriculture, APHIS/Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| | - Katherine Horak
- US Department of Agriculture, APHIS/Wildlife Services, National Wildlife Research Center, Fort Collins, CO, United States
| | - Chris A Pritsos
- Department of Agriculture, Nutrition, and Veterinary Sciences, University of Nevada, Reno, United States.
| |
Collapse
|