1
|
Dougherty PJ, Carling MD. Go west, young bunting: recent climate change drives rapid movement of a Great Plains hybrid zone. Evolution 2024; 78:1774-1789. [PMID: 39212586 PMCID: PMC11519009 DOI: 10.1093/evolut/qpae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Describing how hybrid zones respond to anthropogenic influence can illuminate how the environment regulates both species distributions and reproductive isolation between species. In this study, we analyzed specimens collected from the Passerina cyanea×P. amoena hybrid zone between 2004 and 2007 and between 2019 and 2021 to explore changes in genetic structure over time. This comparison follows a previous study that identified a significant westward shift of the Passerina hybrid zone during the latter half of the twentieth century. A second temporal comparison of hybrid zone genetic structure presents unique potential to describe finer-scale dynamics and to identify potential mechanisms of observed changes more accurately. After concluding that the westward movement of the Passerina hybrid zone has accelerated in recent decades, we investigated potential drivers of this trend by modeling the influence of bioclimatic and landcover variables on genetic structure. We also incorporated eBird data to determine how the distributions of P. cyanea and P. amoena have responded to recent climate and landcover changes. We found that the distribution of P. cyanea in the northern Great Plains has shifted west to track a moving climatic niche, supporting anthropogenic climate change as a key mediator of introgression in this system.
Collapse
Affiliation(s)
- Paul J Dougherty
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, United States
- University of Wyoming Program in Ecology, Laramie, WY, United States
- University of Wyoming Museum of Vertebrates, Laramie, WY, United States
| | - Matthew D Carling
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY, United States
- University of Wyoming Program in Ecology, Laramie, WY, United States
- University of Wyoming Museum of Vertebrates, Laramie, WY, United States
| |
Collapse
|
2
|
Haque MT, Khan MK, Herberstein ME. Current evidence of climate-driven colour change in insects and its impact on sexual signals. Ecol Evol 2024; 14:e11623. [PMID: 38957695 PMCID: PMC11219098 DOI: 10.1002/ece3.11623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The colours of insects function in intraspecific communication such as sexual signalling, interspecific communication such as protection from predators, and in physiological processes, such as thermoregulation. The expression of melanin-based colours is temperature-dependent and thus likely to be impacted by a changing climate. However, it is unclear how climate change drives changes in body and wing colour may impact insect physiology and their interactions with conspecifics (e.g. mates) or heterospecific (e.g. predators or prey). The aim of this review is to synthesise the current knowledge of the consequences of climate-driven colour change on insects. Here, we discuss the environmental factors that affect insect colours, and then we outline the adaptive mechanisms in terms of phenotypic plasticity and microevolutionary response. Throughout we discuss the impact of climate-related colour change on insect physiology, and interactions with con-and-heterospecifics.
Collapse
Affiliation(s)
- Md Tangigul Haque
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Md Kawsar Khan
- School of Natural SciencesMacquarie UniversitySydneyNew South WalesAustralia
- Department of Biology, Chemistry and PharmacyFree University BerlinBerlinGermany
| | | |
Collapse
|
3
|
Lavretsky P, Kraai KJ, Butler D, Morel J, VonBank JA, Marty JR, Musni VM, Collins DP. Human-Induced Range Expansions Result in a Recent Hybrid Zone between Sister Species of Ducks. Genes (Basel) 2024; 15:651. [PMID: 38927587 PMCID: PMC11202560 DOI: 10.3390/genes15060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Landscapes are consistently under pressure from human-induced ecological change, often resulting in shifting species distributions. For some species, changing the geographical breadth of their niche space results in matching range shifts to regions other than those in which they are formally found. In this study, we employ a population genomics approach to assess potential conservation issues arising from purported range expansions into the south Texas Brush Country of two sister species of ducks: mottled (Anas fulvigula) and Mexican (Anas diazi) ducks. Specifically, despite being non-migratory, both species are increasingly being recorded outside their formal ranges, with the northeastward and westward expansions of Mexican and mottled ducks, respectively, perhaps resulting in secondary contact today. We assessed genetic ancestry using thousands of autosomal loci across the ranges of both species, as well as sampled Mexican- and mottled-like ducks from across overlapping regions of south Texas. First, we confirm that both species are indeed expanding their ranges, with genetically pure Western Gulf Coast mottled ducks confirmed as far west as La Salle county, Texas, while Mexican ducks recorded across Texas counties near the USA-Mexico border. Importantly, the first confirmed Mexican × mottled duck hybrids were found in between these regions, which likely represents a recently established contact zone that is, on average, ~100 km wide. We posit that climate- and land use-associated changes, including coastal habitat degradation coupled with increases in artificial habitats in the interior regions of Texas, are facilitating these range expansions. Consequently, continued monitoring of this recent contact event can serve to understand species' responses in the Anthropocene, but it can also be used to revise operational survey areas for mottled ducks.
Collapse
Affiliation(s)
- Philip Lavretsky
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79668, USA;
| | - Kevin J. Kraai
- Waterfowl Program, Texas Parks and Wildlife Department, Canyon, TX 79015, USA;
| | - David Butler
- Central Coast Wetland Ecosystem Project, Texas Parks and Wildlife Department, Bay City, TX 77414, USA; (D.B.); (J.M.)
| | - James Morel
- Central Coast Wetland Ecosystem Project, Texas Parks and Wildlife Department, Bay City, TX 77414, USA; (D.B.); (J.M.)
| | - Jay A. VonBank
- Northern Prairie Wildlife Research Center, U.S. Geological Survey, Jamestown, ND 58401, USA;
| | - Joseph R. Marty
- Southwest Region—Texas Chenier Plain NWR Complex, U.S. Fish and Wildlife Service, Anahuac, TX 77514, USA;
| | - Vergie M. Musni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79668, USA;
| | - Daniel P. Collins
- Southwest Region—Migratory Bird Program, U.S. Fish and Wildlife Service, Albuquerque, NM 87103, USA;
| |
Collapse
|
4
|
Swaby EJ, Coe AL, Ansorge J, Caswell BA, Hayward SAL, Mander L, Stevens LG, McArdle A. The fossil insect assemblage associated with the Toarcian (Lower Jurassic) oceanic anoxic event from Alderton Hill, Gloucestershire, UK. PLoS One 2024; 19:e0299551. [PMID: 38630753 PMCID: PMC11023202 DOI: 10.1371/journal.pone.0299551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
Extreme global warming and environmental changes associated with the Toarcian (Lower Jurassic) Oceanic Anoxic Event (T-OAE, ~183 Mya) profoundly impacted marine organisms and terrestrial plants. Despite the exceptionally elevated abundances of fossil insects from strata of this age, only assemblages from Germany and Luxembourg have been studied in detail. Here, we focus on the insect assemblage found in strata recording the T-OAE at Alderton Hill, Gloucestershire, UK, where <15% of specimens have previously been described. We located all known fossil insects (n = 370) from Alderton Hill, and used these to create the first comprehensive taxonomic and taphonomic analysis of the entire assemblage. We show that a diverse palaeoentomofaunal assemblage is preserved, comprising 12 orders, 21 families, 23 genera and 21 species. Fossil disarticulation is consistent with insect decay studies. The number of orders is comparable with present-day assemblages from similar latitudes (30°-40°N), including the Azores, and suggests that the palaeoentomofauna reflects a life assemblage. At Alderton, Hemiptera, Coleoptera and Orthoptera are the commonest (56.1%) orders. The high abundance of Hemiptera (22.1%) and Orthoptera (13.4%) indicates well-vegetated islands, while floral changes related to the T-OAE may be responsible for hemipteran diversification. Predatory insects are relatively abundant (~10% of the total assemblage) and we hypothesise that the co-occurrence of fish and insects within the T-OAE represents a jubilee-like event. The marginally higher proportion of sclerotised taxa compared to present-day insect assemblages possibly indicates adaptation to environmental conditions or taphonomic bias. The coeval palaeoentomofauna from Strawberry Bank, Somerset is less diverse (9 orders, 12 families, 6 genera, 3 species) and is taphonomically biased. The Alderton Hill palaeoentomofauna is interpreted to be the best-preserved and most representative insect assemblage from Toarcian strata in the UK. This study provides an essential first step towards understanding the likely influence of the T-OAE on insects.
Collapse
Affiliation(s)
- Emily J. Swaby
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, United Kingdom
| | - Angela L. Coe
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, United Kingdom
| | - Jörg Ansorge
- Institut für Geologische Wissenschaften, Ernst-Moritz-Arndt-Universität Greifswald, Greifswald, Germany
| | - Bryony A. Caswell
- School of Environmental Science, Faculty of Science and Engineering, University of Hull, Hull, United Kingdom
| | - Scott A. L. Hayward
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, United Kingdom
| | - Luke Mander
- School of Environment, Earth and Ecosystem Sciences, The Open University, Walton Hall, Milton Keynes, Buckinghamshire, United Kingdom
| | | | | |
Collapse
|
5
|
Reeves LA, Garratt MPD, Fountain MT, Senapathi D. A whole ecosystem approach to pear psyllid ( Cacopsylla pyri) management in a changing climate. JOURNAL OF PEST SCIENCE 2024; 97:1203-1226. [PMID: 39188924 PMCID: PMC11344733 DOI: 10.1007/s10340-024-01772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 08/28/2024]
Abstract
Whole ecosystem-based approaches are becoming increasingly common in pest management within agricultural systems. These strategies consider all trophic levels and abiotic processes within an ecosystem, including interactions between different factors. This review outlines a whole ecosystem approach to the integrated pest management of pear psyllid (Cacopsylla pyri Linnaeus) within pear (Pyrus communis L.) orchards, focusing on potential disruptions as a result of climate change. Pear psyllid is estimated to cost the UK pear industry £5 million per annum and has a significant economic impact on pear production globally. Pesticide resistance is well documented in psyllids, leading to many growers to rely on biological control using natural enemies during the summer months. In addition, multiple insecticides commonly used in pear psyllid control have been withdrawn from the UK and Europe, emphasising the need for alternative control methods. There is growing concern that climate change could alter trophic interactions and phenological events within agroecosystems. For example, warmer temperatures could lead to earlier pear flowering and pest emergence, as well as faster insect development rates and altered activity levels. If climate change impacts pear psyllid differently to natural enemies, then trophic mismatches could occur, impacting pest populations. This review aims to evaluate current strategies used in C. pyri management, discuss trophic interactions within this agroecosystem and highlight potential changes in the top-down and bottom-up control of C. pyri as a result of climate change. This review provides a recommended approach to pear psyllid management, identifies evidence gaps and outlines areas of future research.
Collapse
Affiliation(s)
- Laura A. Reeves
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| | - Michael P. D. Garratt
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, Berkshire, RG6 6AR UK
| |
Collapse
|
6
|
Brown MR, Abbott RJ, Twyford AD. The emerging importance of cross-ploidy hybridisation and introgression. Mol Ecol 2024; 33:e17315. [PMID: 38501394 DOI: 10.1111/mec.17315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Natural hybridisation is now recognised as pervasive in its occurrence across the Tree of Life. Resurgent interest in natural hybridisation fuelled by developments in genomics has led to an improved understanding of the genetic factors that promote or prevent species cross-mating. Despite this body of work overturning many widely held assumptions about the genetic barriers to hybridisation, it is still widely thought that ploidy differences between species will be an absolute barrier to hybridisation and introgression. Here, we revisit this assumption, reviewing findings from surveys of polyploidy and hybridisation in the wild. In a case study in the British flora, 203 hybrids representing 35% of hybrids with suitable data have formed via cross-ploidy matings, while a wider literature search revealed 59 studies (56 in plants and 3 in animals) in which cross-ploidy hybridisation has been confirmed with genetic data. These results show cross-ploidy hybridisation is readily overlooked, and potentially common in some groups. General findings from these studies include strong directionality of hybridisation, with introgression usually towards the higher ploidy parent, and cross-ploidy hybridisation being more likely to involve allopolyploids than autopolyploids. Evidence for adaptive introgression across a ploidy barrier and cases of cross-ploidy hybrid speciation shows the potential for important evolutionary outcomes.
Collapse
Affiliation(s)
- Max R Brown
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Abbott
- School of Biology, University of St Andrews, St Andrews, Fife, UK
| | - Alex D Twyford
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Royal Botanical Garden Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Carbonell JA, Pallarés S, Velasco J, Millán A, Abellán P. Thermal tolerance does not explain the altitudinal segregation of lowland and alpine aquatic insects. J Therm Biol 2024; 121:103862. [PMID: 38703597 DOI: 10.1016/j.jtherbio.2024.103862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Elevation gradients provide powerful study systems for examining the influence of environmental filters in shaping species assemblages. High-mountain habitats host specific high-elevation assemblages, often comprising specialist species adapted to endure pronounced abiotic stress, while such harsh conditions prevent lowland species from colonizing or establishing. While thermal tolerance may drive the altitudinal segregation of ectotherms, its role in structuring aquatic insect communities remains poorly explored. This study investigates the role of thermal physiology in shaping the current distribution of high-mountain diving beetles from the Sierra Nevada Iberian mountain range and closely related lowland species. Cold tolerance of five species from each altitudinal zone was measured estimating the supercooling point (SCP), lower lethal temperature (LLT) and tolerance to ice enclosure, while heat tolerance was assessed from the heat coma temperature (HCT). Alpine species exhibited wider fundamental thermal niches than lowland species, likely associated with the broader range of climatic conditions in high-mountain areas. Cold tolerance did not seem to prevent lowland species from colonizing higher elevations, as most studied species were moderately freeze-tolerant. Therefore, fundamental thermal niches seem not to fully explain species segregation along elevation gradients, suggesting that other thermal tolerance traits, environmental factors, and biotic interactions may also play important roles.
Collapse
Affiliation(s)
- J A Carbonell
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain; Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven (KU Leuven), Leuven, Belgium.
| | - S Pallarés
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| | - J Velasco
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - A Millán
- Department of Ecology and Hydrology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - P Abellán
- Department of Zoology, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
8
|
Choquet M, Lizano AM, Le Moan A, Ravinet M, Dhanasiri AKS, Hoarau G. Unmasking microsatellite deceptiveness and debunking hybridization with SNPs in four marine copepod species of Calanus. Mol Ecol 2023; 32:6854-6873. [PMID: 37902127 DOI: 10.1111/mec.17183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/31/2023]
Abstract
Interspecific hybridization events are on the rise in natural systems due to climate change disrupting species barriers. Across taxa, microsatellites have long been the molecular markers of choice to identify admixed individuals. However, with the advent of high-throughput sequencing easing the generation of genome-wide datasets, incorrect reports of hybridization resulting from microsatellite technical artefacts have been uncovered in a growing number of taxa. In the marine zooplankton genus Calanus (Copepoda), whose species are used as climate change indicators, microsatellite markers have suggested hybridization between C. finmarchicus and C. glacialis, while other nuclear markers (InDels) never detected any admixed individuals, leaving the scientific community divided. Here, for the first time, we investigated the potential for hybridization among C. finmarchicus, C. glacialis, C. helgolandicus and C. hyperboreus using two large and independent SNP datasets. These were derived firstly from a protocol of target-capture applied to 179 individuals collected from 17 sites across the North Atlantic and Arctic Oceans, including sympatric areas, and second from published RNA sequences. All SNP-based analyses were congruent in showing that Calanus species are distinct and do not appear to hybridize. We then thoroughly re-assessed the microsatellites showing hybrids, with the support of published transcriptomes, and identified technical issues plaguing eight out of 10 microsatellites, including size homoplasy, paralogy, potential for null alleles and even two primer pairs targeting the same locus. Our study illustrates how deceptive microsatellites can be when applied to the investigation of hybridization.
Collapse
Affiliation(s)
- Marvin Choquet
- Natural History Museum, University of Oslo, Oslo, Norway
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Apollo M Lizano
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Alan Le Moan
- CNRS-Sorbonne Université, Station Biologique de Roscoff, Roscoff, France
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Anusha K S Dhanasiri
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
9
|
Ramos Aguila LC, Li X, Akutse KS, Bamisile BS, Sánchez Moreano JP, Lie Z, Liu J. Host-Parasitoid Phenology, Distribution, and Biological Control under Climate Change. Life (Basel) 2023; 13:2290. [PMID: 38137891 PMCID: PMC10744521 DOI: 10.3390/life13122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Climate change raises a serious threat to global entomofauna-the foundation of many ecosystems-by threatening species preservation and the ecosystem services they provide. Already, changes in climate-warming-are causing (i) sharp phenological mismatches among host-parasitoid systems by reducing the window of host susceptibility, leading to early emergence of either the host or its associated parasitoid and affecting mismatched species' fitness and abundance; (ii) shifting arthropods' expansion range towards higher altitudes, and therefore migratory pest infestations are more likely; and (iii) reducing biological control effectiveness by natural enemies, leading to potential pest outbreaks. Here, we provided an overview of the warming consequences on biodiversity and functionality of agroecosystems, highlighting the vital role that phenology plays in ecology. Also, we discussed how phenological mismatches would affect biological control efficacy, since an accurate description of stage differentiation (metamorphosis) of a pest and its associated natural enemy is crucial in order to know the exact time of the host susceptibility/suitability or stage when the parasitoids are able to optimize their parasitization or performance. Campaigns regarding landscape structure/heterogeneity, reduction of pesticides, and modelling approaches are urgently needed in order to safeguard populations of natural enemies in a future warmer world.
Collapse
Affiliation(s)
- Luis Carlos Ramos Aguila
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Xu Li
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya;
- Unit of Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | | | - Jessica Paola Sánchez Moreano
- Grupo Traslacional en Plantas, Universidad Regional Amazónica Ikiam, Parroquia Muyuna km 7 vía Alto Tena, Tena 150150, Napo, Ecuador;
| | - Zhiyang Lie
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| | - Juxiu Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (X.L.); (Z.L.); (J.L.)
| |
Collapse
|
10
|
Wolf S, Collatz J, Enkerli J, Widmer F, Romeis J. Assessing potential hybridization between a hypothetical gene drive-modified Drosophila suzukii and nontarget Drosophila species. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:1921-1932. [PMID: 36693350 DOI: 10.1111/risa.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Genetically engineered gene drives (geGD) are potentially powerful tools for suppressing or even eradicating populations of pest insects. Before living geGD insects can be released into the environment, they must pass an environmental risk assessment to ensure that their release will not cause unacceptable harm to non-targeted entities of the environment. A key research question concerns the likelihood that nontarget species will acquire the functional GD elements; such acquisition could lead to reduced abundance or loss of those species and to a disruption of the ecosystem services they provide. The main route for gene flow is through hybridization between the geGD insect strain and closely related species that co-occur in the area of release and its expected dispersal. Using the invasive spotted-wing drosophila, Drosophila suzukii, as a case study, we provide a generally applicable strategy on how a combination of interspecific hybridization experiments, behavioral observations, and molecular genetic analyses can be used to assess the potential for hybridization.
Collapse
Affiliation(s)
- Sarah Wolf
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
- Institute for Plant Sciences, University of Bern, Bern, Switzerland
| | - Jana Collatz
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| | - Jürg Enkerli
- Molecular Ecology, Agroscope, Zürich, Switzerland
| | | | - Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zürich, Switzerland
| |
Collapse
|
11
|
Wang Y, Li Z, Zhao Z. Population mixing mediates the intestinal flora composition and facilitates invasiveness in a globally invasive fruit fly. MICROBIOME 2023; 11:213. [PMID: 37759251 PMCID: PMC10538247 DOI: 10.1186/s40168-023-01664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Changes in population heterozygosity and genetic diversity play important roles in mediating life history traits of organisms; these changes often lead to phenotypic evolution in offspring, which become superior to their parents. In the present study, we examined phenotypic differentiation, the intestinal microbiome composition, and metabolism shift in the oriental fruit fly (Bactrocera dorsalis) by comparing an inbred (monophyletic) original population and an outbred (mixed) invasive population. RESULTS The results showed that the outbred population of B. dorsalis had significantly higher biomass, adult longevity, and fecundity than the inbred population. Additionally, intestinal microflora analysis revealed that both Diutina rugosa and Komagataeibacter saccharivorans were significantly enriched in the outbred population with higher genetic heterozygosity. D. rugosa enrichment altered amino acid metabolism in the intestinal tract, and supplementing essential amino acids (e.g. histidine and glutamine) in the diet led to an increase in pupal weight of the outbred population. Additionally, transcriptome analysis revealed that the HSPA1S gene was significantly downregulated in the outbred population. HSPA1S was involved in activation of the JNK-MAPK pathway through negative regulation, caused the upregulation of juvenile hormone (JH), and led to an increase in biomass in the outbred flies. CONCLUSION In conclusion, the outbred population had an altered intestinal microbe composition, mediating metabolism and transcriptional regulation, leading to phenotypic differentiation; this may be a potential mechanism driving the global invasion of B. dorsalis. Thus, multiple introductions could lead to invasiveness enhancement in B. dorsalis through population mixing, providing preliminary evidence that changes in the intestinal microbiome can promote biological invasion. Video Abstract.
Collapse
Affiliation(s)
- Yidan Wang
- Department of Plant Biosecurity & MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity & MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zihua Zhao
- Department of Plant Biosecurity & MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Slade EM, Ong XR. The future of tropical insect diversity: strategies to fill data and knowledge gaps. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101063. [PMID: 37247774 DOI: 10.1016/j.cois.2023.101063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The decline of insect diversity is a much-discussed, yet understudied phenomenon, particularly in the tropics, where the majority of insect abundance, diversity and biomass is found. Integrated approaches involving traditional taxonomic methods, new molecular approaches, and novel monitoring and identification tools and applications are needed to address related and challenging questions regarding how many species of tropical insects exist, their distributions and natural history, the relative impacts of global change drivers on insect diversity across complex tropical landscapes, and the effects of insect declines on ecosystem functions and services. The main barriers to addressing these challenges are a lack of capacity and funding for research on insects in tropical countries and a lack of recognition of their importance for ecosystem functioning and human wellbeing. Insects must be brought into policy agendas, local capacity and funding through cross-boundary collaborations and equitable scientific practices increased, and their importance emphasized.
Collapse
Affiliation(s)
- Eleanor M Slade
- Tropical Ecology & Entomology Lab, Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Xin Rui Ong
- Tropical Ecology & Entomology Lab, Asian School of the Environment, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
13
|
Lackey ACR, Murray AC, Mirza NA, Powell THQ. The role of sexual isolation during rapid ecological divergence: Evidence for a new dimension of isolation in Rhagoletis pomonella. J Evol Biol 2023. [PMID: 37173822 DOI: 10.1111/jeb.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/15/2023]
Abstract
The pace of divergence and likelihood of speciation often depends on how and when different types of reproductive barriers evolve. Questions remain about how reproductive isolation evolves after initial divergence. We tested for the presence of sexual isolation (reduced mating between populations due to divergent mating preferences and traits) in Rhagoletis pomonella flies, a model system for incipient ecological speciation. We measured the strength of sexual isolation between two very recently diverged (~170 generations) sympatric populations, adapted to different host fruits (hawthorn and apple). We found that flies from both populations were more likely to mate within than between populations. Thus, sexual isolation may play an important role in reducing gene flow allowed by early-acting ecological barriers. We also tested how warmer temperatures predicted under climate change could alter sexual isolation and found that sexual isolation was markedly asymmetric under warmer temperatures - apple males and hawthorn females mated randomly while apple females and hawthorn males mated more within populations than between. Our findings provide a window into the early speciation process and the role of sexual isolation after initial ecological divergence, in addition to examining how environmental conditions could shape the likelihood of further divergence.
Collapse
Affiliation(s)
- Alycia C R Lackey
- University of Louisville, Louisville, Kentucky, USA
- Binghamton University, Binghamton, New York, USA
| | | | | | | |
Collapse
|
14
|
Diamond SE, Bellino G, Deme GG. Urban insect bioarks of the 21st century. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101028. [PMID: 37024047 DOI: 10.1016/j.cois.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
Insects exhibit divergent biodiversity responses to cities. Many urban populations are not at equilibrium: biodiversity decline or recovery from environmental perturbation is often still in progress. Substantial variation in urban biodiversity patterns suggests the need to understand its mechanistic basis. In addition, current urban infrastructure decisions might profoundly influence future biodiversity trends. Although many nature-based solutions to urban climate problems also support urban insect biodiversity, trade-offs are possible and should be avoided to maximize biodiversity-climate cobenefits. Because insects are coping with the dual threats of urbanization and climate change, there is an urgent need to design cities that facilitate persistence within the city footprint or facilitate compensatory responses to global climate change as species transit through the city footprint.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Grace Bellino
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gideon G Deme
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
Smaller, lighter coloured and less hairy Procladius (Diptera, Chironomidae) in warmer climate. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
AbstractThe relationship between body size, colour and hairiness of Procladius of the Diptera family Chironomidae and climate measured as annual mean air temperature was analysed. The study was based on 453 males representing 31 species from 253 localities in 27 countries in Europe and six elsewhere. Wing length as well as three other characters reflecting body size showed significant decrease with warmer climate conditions. The results are in line with several other studies of insects concluding that adult insects are smaller in warmer climate, also considering the implications of global warming. Likewise, all five characters representing colour lightness showed significantly lighter coloured Procladius specimens with warmer climate. The relationship between hairiness and annual mean air temperature was weaker than that of size or colour and temperature, but all five characters studied showed a statistically significant decrease in hairiness with warmer climate. The biological relevance of smaller size, lighter colour and less hairiness in warmer climate can be related to several factors regulating flight and swarming, including less need of protection against cold weather, overheating avoidance, mating success agility and predator escape.
Collapse
|
16
|
Abstract
AbstractClimate change is altering species' habitats, phenology, and behavior. Although sexual behaviors impact population persistence and fitness, climate change's effects on sexual signals are understudied. Climate change can directly alter temperature-dependent sexual signals, cause changes in body size or condition that affect signal production, or alter the selective landscape of sexual signals. We tested whether temperature-dependent mating calls of Mexican spadefoot toads (Spea multiplicata) had changed in concert with climate in the southwestern United States across 22 years. We document increasing air temperatures, decreasing rainfall, and changing seasonal patterns of temperature and rainfall in the spadefoots' habitat. Despite increasing air temperatures, spadefoots' ephemeral breeding ponds have been getting colder at most elevations, and male calls have been slowing as a result. However, temperature-standardized call characters have become faster, and male condition has increased, possibly due to changes in the selective environment. Thus, climate change might generate rapid, complex changes in sexual signals with important evolutionary consequences.
Collapse
|
17
|
Andersen JC, Havill NP, Boettner GH, Chandler JL, Caccone A, Elkinton JS. Real-time geographic settling of a hybrid zone between the invasive winter moth (Operophtera brumata L.) and the native Bruce spanworm (O. bruceata Hulst). Mol Ecol 2022; 31:6617-6633. [PMID: 35034394 DOI: 10.1111/mec.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/04/2022] [Indexed: 01/13/2023]
Abstract
Hybridization plays an important and underappreciated role in shaping the evolutionary trajectories of species. Following the introduction of a non-native organism to a novel habitat, hybridization with a native congener may affect the probability of establishment of the introduced species. In most documented cases of hybridization between a native and a non-native species, a mosaic hybrid zone is formed, with hybridization occurring heterogeneously across the landscape. In contrast, most naturally occurring hybrid zones are clinal in structure. Here, we report on a long-term microsatellite data set that monitored hybridization between the invasive winter moth, Operophtera brumata (Lepidoptera: Geometridae), and the native Bruce spanworm, O. bruceata, over a 12-year period. Our results document one of the first examples of the real-time formation and geographic settling of a clinal hybrid zone. In addition, by comparing one transect in Massachusetts where extreme winter cold temperatures have been hypothesized to restrict the distribution of winter moth, and one in coastal Connecticut, where winter temperatures are moderated by Long Island Sound, we found that the location of the hybrid zone appeared to be independent of environmental variables and maintained under a tension model wherein the stability of the hybrid zone was constrained by population density, reduced hybrid fitness, and low dispersal rates. Documenting the formation of a contemporary clinal hybrid zone may provide important insights into the factors that shaped other well-established hybrid zones.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, Connecticut, USA
| | - George H Boettner
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jennifer L Chandler
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
18
|
Huo QB, Zhu BQ, Murányi D, Tierno de Figueroa JM, Zhao MY, Xiang YN, Yang YB, Du YZ. The First Study of Mating Mistakes in Stoneflies (Plecoptera) from China, with Remarks on Their Biological Implications. INSECTS 2022; 13:1102. [PMID: 36555012 PMCID: PMC9781399 DOI: 10.3390/insects13121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Currently, information on the biology of Plecoptera from China is scarce, particularly on mating behavior. In this paper, the existence of mating mistakes (erroneous mating attempts) involving 13 Chinese stonefly species (belonging to nine genera and three families) is reported. These erroneous mating behaviors can be included into three different categories: mating attempts between conspecific males (including the formation of erroneous mating balls), mating attempts between different taxa (including displacement attempts during copulation), and mating-related behaviors with non-living objects. From these behaviors, some aspects of stoneflies during mating, such as the physical competition between males, the sensorial mechanisms implied in triggering a mating behavior, the conditions favoring the mating mistakes, and the possible consequences of interspecific mating in the hybrid production, are discussed.
Collapse
Affiliation(s)
- Qing-Bo Huo
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
- Department of Zoology, Eszterházy Károly Catholic University, Leányka u. 6, H-3300 Eger, Hungary
| | - Bin-Qing Zhu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dávid Murányi
- Department of Zoology, Eszterházy Károly Catholic University, Leányka u. 6, H-3300 Eger, Hungary
| | | | - Meng-Yuan Zhao
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Nan Xiang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Ben Yang
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
| | - Yu-Zhou Du
- School of Horticulture and Plant Protection & Institute of Applied Entomology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Malison RL, Hand BK, Winter E, Giersch JJ, Amish SJ, Whited D, Stanford JA, Luikart G. Landscape connectivity and genetic structure in a mainstem and a tributary stonefly (Plecoptera) species using a novel reference genome. J Hered 2022; 113:453-471. [DOI: 10.1093/jhered/esac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Understanding how environmental variation influences population genetic structure can help predict how environmental change influences population connectivity, genetic diversity, and evolutionary potential. We used riverscape genomics modelling to investigate how climatic and habitat variables relate to patterns of genetic variation in two stonefly species, one from mainstem river habitats (Sweltsa coloradensis) and one from tributaries (Sweltsa fidelis) in 40 sites in northwest Montana, USA. We produced a draft genome assembly for S. coloradensis (N50 = 0.251 Mbp, BUSCO > 95% using “insecta_ob9” reference genes). We genotyped 1930 SNPs in 372 individuals for S. coloradensis and 520 SNPs in 153 individuals for S. fidelis. We found higher genetic diversity for S. coloradensis compared to S. fidelis, but nearly identical genetic differentiation among sites within each species (both had global loci median FST = 0.000), despite differences in stream network location. For landscape genomics and testing for selection, we produced a less stringently filtered data set (3454 and 1070 SNPs for S. coloradensis and S. fidelis, respectively). Environmental variables (mean summer precipitation, slope, aspect, mean June stream temperature, land cover type) were correlated with 19 putative adaptive loci for S. coloradensis. but there was only one putative adaptive locus for S. fidelis (correlated with aspect). Interestingly, we also detected potential hybridization between multiple Sweltsa species which has never been previously detected. Studies like ours, that test for adaptive variation in multiple related species are needed to help assess landscape connectivity and the vulnerability of populations and communities to environmental change.
Collapse
Affiliation(s)
- Rachel L Malison
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT
| | - Brian K Hand
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT
| | - Emily Winter
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT
| | - J Joseph Giersch
- US Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park, West Glacier, Montana
| | - Stephen J Amish
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT
- Conservation Genomics Group, Division of Biological Sciences, University of Montana, Missoula, Montana
| | - Diane Whited
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT
| | - Jack A Stanford
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT
| | - Gordon Luikart
- The University of Montana, Flathead Lake Biological Station, 32125 Bio Station Lane, Polson, MT
- Conservation Genomics Group, Division of Biological Sciences, University of Montana, Missoula, Montana
| |
Collapse
|
20
|
Do habitat and elevation promote hybridization during secondary contact between three genetically distinct groups of warbling vireo (Vireo gilvus)? Heredity (Edinb) 2022; 128:352-363. [PMID: 35396350 PMCID: PMC9076831 DOI: 10.1038/s41437-022-00529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Following postglacial expansion, secondary contact can occur between genetically distinct lineages. These genetic lineages may be associated with specific habitat or environmental variables and therefore, their distributions in secondary contact could reflect such conditions within these areas. Here we used mtDNA, microsatellite, and morphological data to study three genetically distinct groups of warbling vireo (Vireo gilvus) and investigate the role that elevation and habitat play in their distributions. We studied two main contact zones and within each contact zone, we examined two separate transects. Across the Great Plains contact zone, we found that hybridization between eastern and western groups occurs along a habitat and elevational gradient, whereas hybridization across the Rocky Mountain contact zone was not as closely associated with habitat or elevation. Hybrids in the Great Plains contact zone were more common in transitional areas between deciduous and mixed-wood forests, and at lower elevations (<1000 m). Hybridization patterns were similar along both Great Plains transects indicating that habitat and elevation play a role in hybridization between distinct eastern and western genetic groups. The observed patterns suggest adaptation to different habitats, perhaps originating during isolation in multiple Pleistocene refugia, is facilitating hybridization in areas where habitat types overlap.
Collapse
|
21
|
Hernández LM, Espitia P, Florian D, Castiblanco V, Cardoso JA, Gómez-Jiménez MI. Geographic Distribution of Colombian Spittlebugs (Hemiptera: Cercopidae) via Ecological Niche Modeling: A Prediction for the Main Tropical Forages' Pest in the Neotropics. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.725774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spittlebugs (Hemiptera: Cercopidae) are the main tropical pests in Central and South America of cultivated pastures. We aimed to estimate the potential distribution of Aeneolamia varia, A. lepidior, A. reducta, Prosapia simulans, Zulia carbonaria, and Z. pubescens throughout the Neotropics using ecological niche modeling. These six insect species are common in Colombia and cause large economic losses. Records of these species, prior to the year 2000, were compiled from human observations, specimens from CIAT Arthropod Reference Collection (CIATARC), Global Biodiversity Information Facility (GBIF), speciesLink (splink), and an extensive literature review. Different ecological niche models (ENMs) were generated for each species: Maximum Entropy (MaxEnt), generalized linear (GLM), multivariate adaptive regression spline (MARS), and random forest model (RF). Bioclimatic datasets were obtained from WorldClim and the 19 available variables were used as predictors. Future changes in the potential geographical distribution were simulated in ENMs generated based on climate change projections for 2050 in two scenarios: optimistic and pessimistic. The results suggest that (i) Colombian spittlebugs impose an important threat to Urochloa production in different South American countries, (ii) each spittlebug species has a unique geographic distribution pattern, (iii) in the future the six species are likely to invade new geographic areas even in an optimistic scenario, (iv) A. lepidior and A. reducta showed a higher number of suitable habitats across Colombia, Venezuela, Brazil, Peru, and Ecuador, where predicted risk is more severe. Our data will allow to (i) monitor the dispersion of these spittlebug species, (ii) design strategies for integrated spittlebug management that include resistant cultivars adoption to mitigate potential economic damage, and (iii) implement regulatory actions to prevent their introduction and spread in geographic areas where the species are not yet found.
Collapse
|
22
|
Hayes T, López-Martínez G. Resistance and survival to extreme heat shows circadian and sex-specific patterns in A cavity nesting bee. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100020. [PMID: 36003599 PMCID: PMC9387514 DOI: 10.1016/j.cris.2021.100020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
The pollination services provided by insects have been a crucial part of evolution and survival for many species, including humans. For bees to be efficient pollinators they must survive the environmental insults they face daily. Thus, looking into the short- and long-term effects of heat exposure on bee performance provides us with a foundation for investigating how stress can affect insect pollination. Solitary bees are a great model for investigating the effects of environmental stress on pollinators because the vast majority of insect pollinator species are solitary rather than social. One of the most pervasive environmental stressors to insects is temperature. Here we investigated how a one-hour heat shock affected multiple metrics of performance in the alfalfa leafcutting bee, Megachile rotundata. We found that a short heat shock (1hr at 45°C) can delay adult emergence in males but not females. Bee pupae were rather resilient to a range of high temperature exposures that larvae did not survive. Following heat shock (1hr at 50°C), adult bees were drastically less active than untreated bees, and this reduction in activity was evident over several days. Heat shock also led to a decrease in bee survival and longevity. Additionally, we found a connection between starvation survival after heat shock and time of exposure, where bees exposed in the morning survived longer than those exposed in the afternoon, when they would normally experience heat shock in the field. These data suggest that there is an unexplored daily/circadian component to the stress response in bees likely similar to that seen in flies, nematodes, and plants which is constitutive or preemptive rather than restorative. Taken together our data indicate that single heat shock events have strong potential to negatively impact multiple life history traits correlated with reproduction and fitness.
Collapse
Affiliation(s)
- Tayia Hayes
- Department of Natural Sciences and Environmental Health, Mississippi Valley State University, Itta Bena, MS 38941
| | | |
Collapse
|
23
|
The Physiological and Biochemical Responses of European Chestnut ( Castanea sativa L.) to Blight Fungus ( Cryphonectria parasitica (Murill) Barr). PLANTS 2021; 10:plants10102136. [PMID: 34685944 PMCID: PMC8537955 DOI: 10.3390/plants10102136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 12/04/2022]
Abstract
The most important disease of European chestnut (Castanea sativa Mill.) is chestnut blight caused by the fungus Cryphonectria parasitica (Murrill) Barr which induces yield reduction in Europe and North America. This study aimed to investigate the impacts of C. parasitica infection on the physiological and biochemical characteristics of European chestnut at two different growth stages, 3 and 6 weeks after the infection. The amount of photosynthetic pigments (chlorophyll-a, chlorophyll-b, and carotenoids), the relative chlorophyll content, and the photochemical efficiency of the photosystem II (PSII) were measured in the leaves above and below the virulent and hypovirulent C. parasitica infections. The highest values were measured in the control leaves, the lowest values were in the leaves of the upper part of virulent necrosis. Antioxidant enzyme activities such as ascorbate peroxidase (APX), guaiacol peroxidase (POD), and superoxide dismutase (SOD), proline, and malondialdehyde concentrations were also investigated. In each of these measured values, the lowest level was measured in the control leaves, while the highest was in leaves infected with the virulent fungal strain. By measuring all of these stress indicator parameters the responses of chestnut to C. parasitica infection can be monitored and determined. The results of this study showed that the virulent strain caused more pronounced defense responses of chestnut’s defense system. The measured parameter above the infection was more exposed to the blight fungus disease relative to the leaves below the infection.
Collapse
|
24
|
Ottenburghs J. The genic view of hybridization in the Anthropocene. Evol Appl 2021; 14:2342-2360. [PMID: 34745330 PMCID: PMC8549621 DOI: 10.1111/eva.13223] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Human impact is noticeable around the globe, indicating that a new era might have begun: the Anthropocene. Continuing human activities, including land-use changes, introduction of non-native species and rapid climate change, are altering the distributions of countless species, often giving rise to human-mediated hybridization events. While the interbreeding of different populations or species can have detrimental effects, such as genetic extinction, it can be beneficial in terms of adaptive introgression or an increase in genetic diversity. In this paper, I first review the different mechanisms and outcomes of anthropogenic hybridization based on literature from the last five years (2016-2020). The most common mechanisms leading to the interbreeding of previously isolated taxa include habitat change (51% of the studies) and introduction of non-native species (34% intentional and 19% unintentional). These human-induced hybridization events most often result in introgression (80%). The high incidence of genetic exchange between the hybridizing taxa indicates that the application of a genic view of speciation (and introgression) can provide crucial insights on how to address hybridization events in the Anthropocene. This perspective considers the genome as a dynamic collection of genetic loci with distinct evolutionary histories, giving rise to a heterogenous genomic landscape in terms of genetic differentiation and introgression. First, understanding this genomic landscape can lead to a better selection of diagnostic genetic markers to characterize hybrid populations. Second, describing how introgression patterns vary across the genome can help to predict the likelihood of negative processes, such as demographic and genetic swamping, as well as positive outcomes, such as adaptive introgression. It is especially important to not only quantify how much genetic material introgressed, but also what has been exchanged. Third, comparing introgression patterns in pre-Anthropocene hybridization events with current human-induced cases might provide novel insights into the likelihood of genetic swamping or species collapse during an anthropogenic hybridization event. However, this comparative approach remains to be tested before it can be applied in practice. Finally, the genic view of introgression can be combined with conservation genomic studies to determine the legal status of hybrids and take appropriate measures to manage anthropogenic hybridization events. The interplay between evolutionary and conservation genomics will result in the constant exchange of ideas between these fields which will not only improve our knowledge on the origin of species, but also how to conserve and protect them.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and ConservationWageningen University & ResearchWageningenThe Netherlands
- Forest Ecology and Forest ManagementWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
25
|
Yang LH, Postema EG, Hayes TE, Lippey MK, MacArthur-Waltz DJ. The complexity of global change and its effects on insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:90-102. [PMID: 34004376 DOI: 10.1016/j.cois.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have documented the complex and counterintuitive effects of these drivers on the behavior, life histories, distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-additive and combined effects. While there is wide consensus that global change is reorganizing communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global change.
Collapse
Affiliation(s)
- Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA.
| | - Elizabeth G Postema
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Animal Behavior Graduate Group, University of California, Davis, CA 95616, USA
| | - Tracie E Hayes
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Mia K Lippey
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Entomology Graduate Group, University of California, Davis, CA 95616, USA
| | - Dylan J MacArthur-Waltz
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
26
|
Barrios-Leal DY, Menezes RST, Ribeiro JV, Bizzo L, Melo de Sene F, Neves-da-Rocha J, Manfrin MH. A holocenic and dynamic hybrid zone between two cactophilic Drosophila species in a coastal lowland plain of the Brazilian Atlantic Forest. J Evol Biol 2021; 34:1737-1751. [PMID: 34538008 DOI: 10.1111/jeb.13934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022]
Abstract
Hybridization and introgression are processes that contribute to shaping biological diversity. The factors promoting the formation of these processes are multiples but poorly explored in a biogeographical and ecological context. In the southeast coastal plain of the Brazilian Atlantic Forest, a hybrid zone was described between two closely related cactophilic species, Drosophila antonietae and D. serido. Here, we revisited and analysed specimens from this hybrid zone to evaluate its temporal and spatial dynamic. We examined allopatric and sympatric populations of the flies using independent sources of data such as mitochondrial and nuclear sequences, microsatellite loci, morphometrics of wings and male genitalia, and climatic niche models. We also verified the emergence of the flies from necrotic tissues of collected cacti to verify the role of host association for the population dynamics. Our results support the existence of a hybrid zone due to secondary contact and limited to the localities where the two species are currently in contact. Furthermore, we detected asymmetric bidirectional introgression and the maintenance of the species integrity, ecological association and morphological characters, suggesting selection and limited introgression. Considering our paleomodels, probably this hybrid zone is recent and the contact occurred during the Holocene to the present day, favoured by range expansion of their populations due to expansion of open and dry areas in eastern South America during palaeoclimatic and geomorphological events.
Collapse
Affiliation(s)
- Dora Yovana Barrios-Leal
- Pós-Graduação, Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Rodolpho S T Menezes
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - João Victor Ribeiro
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Luiz Bizzo
- UNIVALI - Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil.,Centro Universitário - Católica de Santa Catarina, Jaraguá do Sul, Santa Catarina, Brazil
| | - Fabio Melo de Sene
- Pós-Graduação, Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - João Neves-da-Rocha
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Maura Helena Manfrin
- Pós-Graduação, Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
27
|
Enos AN, Kozak GM. Elevated temperature increases reproductive investment in less preferred mates in the invasive European corn borer moth. Ecol Evol 2021; 11:12064-12074. [PMID: 34522361 PMCID: PMC8427566 DOI: 10.1002/ece3.7972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/10/2021] [Accepted: 07/14/2021] [Indexed: 01/26/2023] Open
Abstract
Rapidly changing environments may weaken sexual selection and lead to indiscriminate mating by interfering with the reception of mating signals or by increasing the costs associated with mate choice. If temperature alters sexual selection, it may impact population response and adaptation to climate change. Here, we examine how differences in temperature of the mating environment influence reproductive investment in the European corn borer moth (Ostrinia nubilalis). Mate preference in this species is known to be related to pheromone usage, with assortative mating occurring between genetically distinct E and Z strains that differ in the composition of female and male pheromones. We compared egg production within and between corn borer lines derived from four different populations that vary in pheromone composition and other traits. Pairs of adults were placed in a mating environment that matched the pupal environment (ambient temperature) or at elevated temperature (5°C above the pupal environment). At ambient temperature, we found that within-line pairs produced eggs sooner and produced more egg clusters than between-line pairs. However, at elevated temperature, between-line pairs produced the same number of egg clusters as within-line pairs. These results suggest that elevated temperature increased investment in matings with typically less preferred, between-line mates. This increased investment could result in changes in gene flow among corn borer populations in warming environments.
Collapse
Affiliation(s)
- Arielle N. Enos
- Department of BiologyUniversity of Massachusetts‐DartmouthDartmouthMassachusettsUSA
| | - Genevieve M. Kozak
- Department of BiologyUniversity of Massachusetts‐DartmouthDartmouthMassachusettsUSA
| |
Collapse
|
28
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
29
|
St Leger RJ. Insects and their pathogens in a changing climate. J Invertebr Pathol 2021; 184:107644. [PMID: 34237297 DOI: 10.1016/j.jip.2021.107644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/02/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
The complex nature of climate change-mediated multitrophic interaction is an underexplored area, but has the potential to dramatically shift transmission and distribution of many insects and their pathogens, placing some populations closer to the brink of extinction. However, for individual insect-pathogen interactions climate change will have complicated hard-to-anticipate impacts. Thus, both pathogen virulence and insect host immunity are intrinsically linked with generalized stress responses, and in both pathogen and host have extensive trade-offs with nutrition (e.g., host plant quality), growth and reproduction. Potentially alleviating or exasperating these impacts, some pathogens and hosts respond genetically and rapidly to environmental shifts. This review identifies many areas for future research including a particular need to identify how altered global warming interacts with other environmental changes and stressors, and how consistent these impacts are across pathogens and hosts. With that achieved we would be closer to producing an overarching framework to integrate knowledge on all environmental interplay and infectious disease events.
Collapse
Affiliation(s)
- Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
30
|
Morgan-Richards M, Vilcot M, Trewick SA. Lack of assortative mating might explain reduced phenotypic differentiation where two grasshopper species meet. J Evol Biol 2021; 35:509-519. [PMID: 34091960 PMCID: PMC9290589 DOI: 10.1111/jeb.13879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/20/2021] [Accepted: 06/01/2021] [Indexed: 01/12/2023]
Abstract
Hybridization is an evolutionary process with wide‐ranging potential outcomes, from providing populations with important genetic variation for adaptation to being a substantial fitness cost leading to extinction. Here, we focussed on putative hybridization between two morphologically distinct species of New Zealand grasshopper. We collected Phaulacridium marginale and Phaulacridium otagoense specimens from a region where mitochondrial introgression had been detected and where their habitat has been modified by introduced mammals eating the natural vegetation and by the colonization of many non‐native plant species. In contrast to observations in the 1970s, our sampling of wild pairs of grasshoppers in copula provided no evidence of assortative mating with respect to species. Geometric morphometrics on pronotum shape of individuals from areas of sympatry detected phenotypically intermediate specimens (putative hybrids), and the distribution of phenotypes in most areas of sympatry was found to be unimodal. These results suggest that hybridization associated with anthropogenic habitat changes has led to these closely related species forming a hybrid swarm, with random mating. Without evidence of hybrid disadvantage, we suggest a novel hybrid lineage might eventually result from the merging of these two species.
Collapse
Affiliation(s)
| | - Maurine Vilcot
- Wildlife & Ecology, Massey University, Palmerston North, New Zealand
| | - Steven A Trewick
- Wildlife & Ecology, Massey University, Palmerston North, New Zealand
| |
Collapse
|
31
|
Vilardi JC, Freilij D, Ferreyra LI, Gómez-Cendra P. Ecological phylogeography and coalescent models suggest a linear population expansion of Anastrepha fraterculus (Diptera: Tephritidae) in southern South America. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
This work is a first approach to an integrated view of the genetics, ecology and dispersion patterns of Anastrepha fraterculus in southern South America. We studied the association of genetic variation with geographical patterns and environmental variables to provide insight into the crucial factors that drive the structure and dynamics of fly populations. Data from a 417 bp mitochondrial COII gene fragment from seven Argentinian populations and one South Brazilian population (from five ecoregions grouped in three biomes) were used to identify population clusters using a model-based Bayesian phylogeographical and ecological clustering approach. The sequences were also analysed under a coalescent model to evaluate historical demographic changes. We identified 19 different haplotypes and two clusters differing in all the environmental covariables. The assumption of neutral evolution and constant population size was rejected, and the population growth parameters suggested a linear population expansion starting 2500 years before present. The most likely ancestral location is Posadas, from where A. fraterculus would have expanded southwards and westwards in Argentina. This result is consistent with Holocene changes and anthropic factors related to the expansion of the Tupí–Guaraní culture, 3000–1500 years before present.
Collapse
Affiliation(s)
- Juan César Vilardi
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Damián Freilij
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Laura Inés Ferreyra
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Gómez-Cendra
- Genética de Poblaciones Aplicada (GPA), Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución (IEGEBA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Prinster AJ, Resasco J, Nufio CR. Weather variation affects the dispersal of grasshoppers beyond their elevational ranges. Ecol Evol 2020; 10:14411-14422. [PMID: 33391724 PMCID: PMC7771169 DOI: 10.1002/ece3.7045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/07/2022] Open
Abstract
Understanding how abiotic conditions influence dispersal patterns of organisms is important for understanding the degree to which species can track and persist in the face of changing climate.The goal of this study was to understand how weather conditions influence the dispersal pattern of multiple nonmigratory grasshopper species from lower elevation grassland habitats in which they complete their life-cycles to higher elevations that extend beyond their range limits.Using over a decade of weekly spring to late-summer field survey data along an elevational gradient, we explored how abundance and richness of dispersing grasshoppers were influenced by temperature, precipitation, and wind speed and direction. We also examined how changes in population sizes at lower elevations might influence these patterns.We observed that the abundance of dispersing grasshoppers along the gradient declined 4-fold from the foothills to the subalpine and increased with warmer conditions and when wind flow patterns were mild or in the downslope direction. Thirty-eight unique grasshopper species from lowland sites were detected as dispersers across the survey years, and warmer years and weak upslope wind conditions also increased the richness of these grasshoppers. The pattern of grasshoppers along the gradient was not sex biased. The positive effect of temperature on dispersal rates was likely explained by an increase in dispersal propensity rather than by an increase in the density of grasshoppers at low elevation sites.The results of this study support the hypothesis that the dispersal patterns of organisms are influenced by changing climatic conditions themselves and as such, that this context-dependent dispersal response should be considered when modeling and forecasting the ability of species to respond to climate change.
Collapse
Affiliation(s)
| | - Julian Resasco
- Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderCOUSA
| | - Cesar R. Nufio
- University of Colorado Museum of Natural HistoryUniversity of ColoradoBoulderCOUSA
- Howard Hughes Medical InstituteChevy ChaseMDUSA
| |
Collapse
|
33
|
Prediction of Plant Phenological Shift under Climate Change in South Korea. SUSTAINABILITY 2020. [DOI: 10.3390/su12219276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Information on the phenological shift of plants can be used to detect climate change and predict changes in the ecosystem. In this study, the changes in first flowering dates (FFDs) of the plum tree (Prunus mume), Korean forsythia (Forsythia koreana), Korean rosebay (Rhododendron mucronulatum), cherry tree (Prunus yedoensis), and peach tree (Prunus persica) in Korea during 1920–2019 were investigated. In addition, the changes in the climatic factors (temperature and precipitation) and their relationship with the FFDs were analyzed. The changes in the temperature and precipitation during the January–February–March period and the phenological shifts of all research species during 1920–2019 indicate that warm and dry spring weather advances the FFDs. Moreover, the temperature has a greater impact on this phenological shift than precipitation. Earlier flowering species are more likely to advance their FFDs than later flowering species. Hence, the temporal asynchrony among plant species will become worse with climate change. In addition, the FFDs in 2100 were predicted based on representative concentration pathway (RCP) scenarios. The difference between the predicted FFDs of the RCP 4.5 and RCP 6.0 for 2100 was significant; the effectiveness of greenhouse gas policies will presumably determine the degree of the plant phenological shift in the future. Furthermore, we presented the predicted FFDs for 2100.
Collapse
|
34
|
Shah AA, Dillon ME, Hotaling S, Woods HA. High elevation insect communities face shifting ecological and evolutionary landscapes. CURRENT OPINION IN INSECT SCIENCE 2020; 41:1-6. [PMID: 32553896 DOI: 10.1016/j.cois.2020.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Climate change is proceeding rapidly in high mountain regions worldwide. Rising temperatures will impact insect physiology and associated fitness and will shift populations in space and time, thereby altering community interactions and composition. Shifts in space are expected as insects move upslope to escape warming temperatures and shifts in time will occur with changes in phenology of resident high-elevation insects. Clearly, spatiotemporal shifts will not affect all species equally. Terrestrial insects may have more opportunities than aquatic insects to exploit microhabitats, potentially buffering them from warming. Such responses of insects to warming may also fuel evolutionary change, including hitchhiking of maladaptive alleles and genetic rescue. Together, these considerations suggest a striking restructuring of high-elevation insect communities that remains largely unstudied.
Collapse
Affiliation(s)
- Alisha A Shah
- Division of Biological Sciences, University of Montana, Missoula, MT, USA.
| | - Michael E Dillon
- Department of Zoology and Physiology and Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
35
|
Quilodrán CS, Tsoupas A, Currat M. The Spatial Signature of Introgression After a Biological Invasion With Hybridization. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.569620] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The accumulation of genome-wide molecular data has emphasized the important role of hybridization in the evolution of many organisms, which may carry introgressed genomic segments resulting from past admixture events with other taxa. Despite a number of examples of hybridization occurring during biological invasions, the resulting spatial patterns of genomic introgression remain poorly understood. Preliminary simulation studies have suggested a heterogeneous spatial level of introgression for invasive taxa after range expansion. We investigated in detail the robustness of this pattern and its persistence over time for both invasive and local organisms. Using spatially explicit simulations, we explored the spatial distribution of introgression across the area of colonization of an invasive taxon hybridizing with a local taxon. The general pattern for neutral loci supported by our results is an increasing introgression of local genes into the invasive taxon with the increase in the distance from the source of the invasion and a decreasing introgression of invasive genes into the local taxon. However, we also show there is some variation in this general trend depending on the scenario investigated. Spatial heterogeneity of introgression within a given taxon is thus an expected neutral pattern in structured populations after a biological invasion with a low to moderate amount of hybridization. We further show that this pattern is consistent with published empirical observations. Using additional simulations, we argue that the spatial pattern of Neanderthal introgression in modern humans, which has been documented to be higher in Asia than in Europe, can be explained by a model of hybridization with Neanderthals in Eurasia during the range expansion of modern humans from Africa. Our results support the view that weak hybridization during range expansion may explain spatially heterogeneous introgression patterns without the need to invoke selection.
Collapse
|