1
|
Jones I, Marsh K, Handby TM, Hopkins K, Slezacek J, Bearhop S, Harrison XA. The influence of diet on gut microbiome and body mass dynamics in a capital-breeding migratory bird. PeerJ 2023; 11:e16682. [PMID: 38130921 PMCID: PMC10734429 DOI: 10.7717/peerj.16682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Gut-associated microbial communities are known to play a vital role in the health and fitness of their hosts. Though studies investigating the factors associated with among-individual variation in microbiome structure in wild animal species are increasing, knowledge of this variation at the individual level is scarce, despite the clear link between microbiome and nutritional status uncovered in humans and model organisms. Here, we combine detailed observational data on life history and foraging preference with 16S rRNA profiling of the faecal microbiome to investigate the relationship between diet, microbiome stability and rates of body mass gain in a migratory capital-breeding bird, the light-bellied Brent goose (Branta bernicla hrota). Our findings suggest that generalist feeders have microbiomes that are intermediate in diversity and composition between two foraging specialisms, and also show higher within-individual plasticity. We also suggest a link between foraging phenotype and the rates of mass gain during the spring staging of a capital breeder. This study offers rare insight into individual-level temporal dynamics of the gut microbiome of a wild host. Further work is needed to uncover the functional link between individual dietary choices, gut microbiome structure and stability, and the implications this has for the reproductive success of this capital breeder.
Collapse
Affiliation(s)
- Isabelle Jones
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Kirsty Marsh
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Tess M. Handby
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Socety of London, London, United Kingdom
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Stuart Bearhop
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Xavier A. Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
2
|
Diez-Méndez D, Bodawatta KH, Freiberga I, Klečková I, Jønsson KA, Poulsen M, Sam K. Indirect maternal effects via nest microbiome composition drive gut colonization in altricial chicks. Mol Ecol 2023. [PMID: 37096441 DOI: 10.1111/mec.16959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
Gut microbial communities are complex and heterogeneous and play critical roles for animal hosts. Early-life disruptions to microbiome establishment can negatively impact host fitness and development. However, the consequences of such early-life disruptions remain unknown in wild birds. To help fill this gap, we investigated the effect of continuous early-life gut microbiome disruptions on the establishment and development of gut communities in wild Great tit (Parus major) and Blue tit (Cyanistes caeruleus) nestlings by applying antibiotics and probiotics. Treatment neither affected nestling growth nor their gut microbiome composition. Independent of treatment, nestling gut microbiomes of both species grouped by brood, which shared the highest numbers of bacterial taxa with both nest environment and their mother. Although fathers showed different gut communities than their nestlings and nests, they still contributed to structuring chick microbiomes. Lastly, we observed that the distance between nests increased inter-brood microbiome dissimilarity, but only in Great tits, indicating that species-specific foraging behaviour and/or microhabitat influence gut microbiomes. Overall, the strong maternal effect, driven by continuous recolonization from the nest environment and vertical transfer of microbes during feeding, appears to provide resilience towards early-life disruptions in nestling gut microbiomes.
Collapse
Affiliation(s)
- David Diez-Méndez
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
- Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Inga Freiberga
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Irena Klečková
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Sam
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
3
|
Joakim RL, Irham M, Haryoko T, Rowe KMC, Dalimunthe Y, Anita S, Achmadi AS, McGuire JA, Perkins S, Bowie RCK. Geography and elevation as drivers of cloacal microbiome assemblages of a passerine bird distributed across Sulawesi, Indonesia. Anim Microbiome 2023; 5:4. [PMID: 36647179 PMCID: PMC9841722 DOI: 10.1186/s42523-022-00219-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 12/13/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Empirical field studies allow us to view how ecological and environmental processes shape the biodiversity of our planet, but collecting samples in situ creates inherent challenges. The majority of empirical vertebrate gut microbiome research compares multiple host species against abiotic and biotic factors, increasing the potential for confounding environmental variables. To minimize these confounding factors, we focus on a single species of passerine bird found throughout the geologically complex island of Sulawesi, Indonesia. We assessed the effects of two environmental factors, geographic Areas of Endemism (AOEs) and elevation, as well as host sex on the gut microbiota assemblages of the Sulawesi Babbler, Pellorneum celebense, from three different mountains across the island. Using cloacal swabs, high-throughput-amplicon sequencing, and multiple statistical models, we identified the core microbiome and determined the signal of these three factors on microbial composition. RESULTS The five most prevalent bacterial phyla within the gut microbiome of P. celebense were Proteobacteria (32.6%), Actinobacteria (25.2%), Firmicutes (22.1%), Bacteroidetes (8.7%), and Plantomycetes (2.6%). These results are similar to those identified in prior studies of passeriform microbiomes. Overall, microbiota diversity decreased as elevation increased, irrespective of sex or AOE. A single ASV of Clostridium was enriched in higher elevation samples, while lower elevation samples were enriched with the genera Perlucidibaca (Family Moraxellaceae), Lachnoclostridium (Family Lachnospiraceae), and an unidentified species in the Family Pseudonocardiaceae. CONCLUSIONS While the core microbiota families recovered here are consistent with other passerine studies, the decreases in diversity as elevation increases has only been seen in non-avian hosts. Additionally, the increased abundance of Clostridium at high elevations suggests a potential microbial response to lower oxygen levels. This study emphasizes the importance of incorporating multiple statistical models and abiotic factors such as elevation in empirical microbiome research, and is the first to describe an avian gut microbiome from the island of Sulawesi.
Collapse
Affiliation(s)
- Rachael L Joakim
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA.
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
- The Richard Gilder Graduate School, American Museum of Natural History, New York, NY, 10024, USA.
| | - Mohammad Irham
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Tri Haryoko
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Karen M C Rowe
- Sciences Department, Museums Victoria, Carlton, VIC, Australia
- BioSciences Department, University of Melbourne, Parkville, VIC, Australia
| | - Yohanna Dalimunthe
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Syahfitri Anita
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Anang S Achmadi
- Museum Zoologicum Bogoriense, Research Centre for Biology, National Research and Innovation Agency, Jl. Raya Jakarta - Bogor Km 46, Cibinong, 16911, Indonesia
| | - Jimmy A McGuire
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Susan Perkins
- Department of Biology, The City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
- The Graduate Center of The City University of New York, Biology Program, 365 5Th Ave, New York, NY, 10016, USA
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
4
|
Gil JC, Hird SM. Multiomics Characterization of the Canada Goose Fecal Microbiome Reveals Selective Efficacy of Simulated Metagenomes. Microbiol Spectr 2022; 10:e0238422. [PMID: 36318011 PMCID: PMC9769641 DOI: 10.1128/spectrum.02384-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
16S rRNA amplicon sequences are predominantly used to identify the taxonomic composition of a microbiome, but they can also be used to generate simulated metagenomes to circumvent costly empirical shotgun sequencing. The effectiveness of using "simulated metagenomes" (shotgun metagenomes simulated from 16S rRNA amplicons using a database of full genomes closely related to the amplicons) in nonmodel systems is poorly known. We sought to determine the accuracy of simulated metagenomes in a nonmodel organism, the Canada goose (Branta canadensis), by comparing metagenomes and metatranscriptomes to simulated metagenomes derived from 16S amplicon sequencing. We found significant differences between the metagenomes, metatranscriptomes, and simulated metagenomes when comparing enzymes, KEGG orthologies (KO), and metabolic pathways. The simulated metagenomes accurately identified the majority (>70%) of the total enzymes, KOs, and pathways. The simulated metagenomes accurately identified the majority of the short-chain fatty acid metabolic pathways crucial to folivores. When narrowed in scope to specific genes of interest, the simulated metagenomes overestimated the number of antimicrobial resistance genes and underestimated the number of genes related to the breakdown of plant matter. Our results suggest that simulated metagenomes should not be used in lieu of empirical sequencing when studying the functional potential of a nonmodel organism's microbiome. Regarding the function of the Canada goose microbiome, we found unexpected amounts of fermentation pathways, and we found that a few taxa are responsible for large portions of the functional potential of the microbiome. IMPORTANCE The taxonomic composition of a microbiome is predominately identified using amplicon sequencing of 16S rRNA genes, but as a single marker, it cannot identify functions (genes). Metagenome and metatranscriptome sequencing can determine microbiome function but can be cost prohibitive. Therefore, computational methods have been developed to generate simulated metagenomes derived from 16S rRNA sequences and databases of full-length genomes. Simulated metagenomes can be an effective alternative to empirical sequencing, but accuracy depends on the genomic database used and whether the database contains organisms closely related to the 16S sequences. These tools are effective in well-studied systems, but the accuracy of these predictions in a nonmodel system is less known. Using a nonmodel bird species, we characterized the function of the microbiome and compared the accuracy of 16S-derived simulated metagenomes to sequenced metagenomes. We found that the simulated metagenomes reflect most but not all functions of empirical metagenome sequencing.
Collapse
Affiliation(s)
- Joshua C. Gil
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Sarah M. Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
5
|
Oliveira IMFD, Ng DYK, van Baarlen P, Stegger M, Andersen PS, Wells JM. Comparative genomics of Rothia species reveals diversity in novel biosynthetic gene clusters and ecological adaptation to different eukaryotic hosts and host niches. Microb Genom 2022; 8. [PMID: 36165601 DOI: 10.1099/mgen.0.000854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rothia species are understudied members of the phylum Actinobacteria and prevalent colonizers of the human and animal upper respiratory tract and oral cavity. The oral cavity, including the palatine tonsils, is colonized by a complex microbial community, which compete for resources, actively suppress competitors and influence host physiology. We analysed genomic data from 43 new porcine Rothia isolates, together with 112 publicly available draft genome sequences of Rothia isolates from humans, animals and the environment. In all Rothia genomes, we identified biosynthetic gene clusters predicted to produce antibiotic non-ribosomal peptides, iron scavenging siderophores and other secondary metabolites that modulate microbe-microbe and potentially microbe-host interactions. In vitro overlay inhibition assays corroborated the hypothesis that specific strains produce natural antibiotics. Rothia genomes encode a large number of carbohydrate-active enzymes (CAZy), with varying CAZy activities among the species found in different hosts, host niches and environments. These findings reveal competition mechanisms and metabolic specializations linked to ecological adaptation of Rothia species in different hosts.
Collapse
Affiliation(s)
| | - Duncan Y K Ng
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Peter van Baarlen
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research, Wageningen, Netherlands
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Paal Skytt Andersen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut (SSI), Copenhagen, Denmark
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Spence AR, LeWinter H, Tingley MW. Anna's hummingbird (Calypte anna) physiological response to novel thermal and hypoxic conditions at high elevations. J Exp Biol 2022; 225:275376. [PMID: 35617822 DOI: 10.1242/jeb.243294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/09/2022] [Indexed: 12/19/2022]
Abstract
Many species have not tracked their thermal niches upslope as predicted by climate change, potentially because higher elevations are associated with abiotic challenges beyond temperature. To better predict whether organisms can continue to move upslope with rising temperatures, we need to understand their physiological performance when subjected to novel high-elevation conditions. Here, we captured Anna's hummingbirds - a species expanding their elevational distribution in concordance with rising temperatures - from across their current elevational distribution and tested their physiological response to novel abiotic conditions. First, at a central aviary within their current elevational range, we measured hovering metabolic rate to assess their response to oxygen conditions and torpor use to assess their response to thermal conditions. Second, we transported the hummingbirds to a location 1200 m above their current elevational range limit to test for an acute response to novel oxygen and thermal conditions. Hummingbirds exhibited lower hovering metabolic rates above their current elevational range limit, suggesting lower oxygen availability may reduce performance after an acute exposure. Alternatively, hummingbirds showed a facultative response to thermal conditions by using torpor more frequently and for longer. Finally, post-experimental dissection found that hummingbirds originating from higher elevations within their range had larger hearts, a potential plastic response to hypoxic environments. Overall, our results suggest lower oxygen availability and low air pressure may be difficult challenges to overcome for hummingbirds shifting upslope as a consequence of rising temperatures, especially if there is little to no long-term acclimatization. Future studies should investigate how chronic exposure and acclimatization to novel conditions, as opposed to acute experiments, may result in alternative outcomes that help organisms better respond to abiotic challenges associated with climate-induced range shifts.
Collapse
Affiliation(s)
- Austin R Spence
- Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Hannah LeWinter
- Wildlife Conservation & Management, Humboldt State University, 1 Harpst St. Arcata, CA 95521, USA
| | - Morgan W Tingley
- Ecology & Evolutionary Biology, University of California - Los Angeles, 621 Charles E. Young Dr. S. #951606, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Bodawatta KH, Hird SM, Grond K, Poulsen M, Jønsson KA. Avian gut microbiomes taking flight. Trends Microbiol 2021; 30:268-280. [PMID: 34393028 DOI: 10.1016/j.tim.2021.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Birds harbor complex gut bacterial communities that may sustain their ecologies and facilitate their biological roles, distribution, and diversity. Research on gut microbiomes in wild birds is surging and it is clear that they are diverse and important - but strongly influenced by a series of environmental factors. To continue expanding our understanding of how the internal ecosystems of birds work in their natural settings, we believe the most pressing needs involve studies on the functional and evolutionary aspects of these symbioses. Here we summarize the state of the field and provide a roadmap for future studies on aspects that are pivotal to understanding the biology of avian gut microbiomes, emphasizing prospects for integrating gut microbiome work in avian conservation and host health monitoring.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark.
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Kirsten Grond
- Department of Biological Sciences, University of Alaska, Anchorage, AK, USA
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|