1
|
Soto Gomez M, Brown MJM, Pironon S, Bureš P, Verde Arregoitia LD, Veselý P, Elliott TL, Zedek F, Pellicer J, Forest F, Nic Lughadha E, Leitch IJ. Genome size is positively correlated with extinction risk in herbaceous angiosperms. THE NEW PHYTOLOGIST 2024; 243:2470-2485. [PMID: 39080986 DOI: 10.1111/nph.19947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/02/2024] [Indexed: 08/23/2024]
Abstract
Angiosperms with large genomes experience nuclear-, cellular-, and organism-level constraints that may limit their phenotypic plasticity and ecological niche, which could increase their risk of extinction. Therefore, we test the hypotheses that large-genomed species are more likely to be threatened with extinction than those with small genomes, and that the effect of genome size varies across three selected covariates: life form, endemism, and climatic zone. We collated genome size and extinction risk information for a representative sample of angiosperms comprising 3250 species, which we analyzed alongside life form, endemism, and climatic zone variables using a phylogenetic framework. Genome size is positively correlated with extinction risk, a pattern driven by a signal in herbaceous but not woody species, regardless of climate and endemism. The influence of genome size is stronger in endemic herbaceous species, but is relatively homogenous across different climates. Beyond its indirect link via endemism and climate, genome size is associated with extinction risk directly and significantly. Genome size may serve as a proxy for difficult-to-measure parameters associated with resilience and vulnerability in herbaceous angiosperms. Therefore, it merits further exploration as a useful biological attribute for understanding intrinsic extinction risk and augmenting plant conservation efforts.
Collapse
Affiliation(s)
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Petr Bureš
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | | | - Pavel Veselý
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Tammy L Elliott
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
- Department of Biological Sciences, University of Cape Town, Cape Town, 7700, South Africa
| | - František Zedek
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, 61137, Czech Republic
| | - Jaume Pellicer
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
- Institut Botanic de Barcelona (IBB), CSIC-CMCNB, Barcelona, 08038, Spain
| | - Félix Forest
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | | | - Ilia J Leitch
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| |
Collapse
|
2
|
Messerschmid TFE, Abrahamczyk S, Bañares-Baudet Á, Brilhante MA, Eggli U, Hühn P, Kadereit JW, dos Santos P, de Vos JM, Kadereit G. Inter- and intra-island speciation and their morphological and ecological correlates in Aeonium (Crassulaceae), a species-rich Macaronesian radiation. ANNALS OF BOTANY 2023; 131:697-721. [PMID: 36821492 PMCID: PMC10147336 DOI: 10.1093/aob/mcad033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 02/22/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS The most species-rich and ecologically diverse plant radiation on the Canary Islands is the Aeonium alliance (Crassulaceae). In island radiations like this, speciation can take place either within islands or following dispersal between islands. Aiming at quantifying intra- and inter-island speciation events in the evolution of Aeonium, and exploring their consequences, we hypothesized that (1) intra-island diversification resulted in stronger ecological divergence of sister lineages, and that (2) taxa on islands with a longer history of habitation by Aeonium show stronger ecological differentiation and produce fewer natural hybrids. METHODS We studied the biogeographical and ecological setting of diversification processes in Aeonium with a fully sampled and dated phylogeny inferred using a ddRADseq approach. Ancestral areas and biogeographical events were reconstructed in BioGeoBEARS. Eleven morphological characters and three habitat characteristics were taken into account to quantify the morphological and ecological divergence between sister lineages. A co-occurrence matrix of all Aeonium taxa is presented to assess the spatial separation of taxa on each island. KEY RESULTS We found intra- and inter-island diversification events in almost equal numbers. In lineages that diversified within single islands, morphological and ecological divergence was more pronounced than in lineages derived from inter-island diversification, but only the difference in morphological divergence was significant. Those islands with the longest history of habitation by Aeonium had the lowest percentages of co-occurring and hybridizing taxon pairs compared with islands where Aeonium arrived later. CONCLUSIONS Our findings illustrate the importance of both inter- and intra-island speciation, the latter of which is potentially sympatric speciation. Speciation on the same island entailed significantly higher levels of morphological divergence compared with inter-island speciation, but ecological divergence was not significantly different. Longer periods of shared island habitation resulted in the evolution of a higher degree of spatial separation and stronger reproductive barriers.
Collapse
Affiliation(s)
- Thibaud F E Messerschmid
- Botanischer Garten München-Nymphenburg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80638 München, Germany
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, 80638 München, Germany
| | - Stefan Abrahamczyk
- Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- Abteilung Botanik, Staatliches Museum für Naturkunde Stuttgart, 70191 Stuttgart, Germany
| | - Ángel Bañares-Baudet
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, E-38200 La Laguna, Tenerife, Spain
| | - Miguel A Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, 1340-017 Lisboa, Portugal
| | - Urs Eggli
- Sukkulenten-Sammlung Zürich/Grün Stadt Zürich, 8002 Zürich, Switzerland
| | - Philipp Hühn
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Joachim W Kadereit
- Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
| | - Patrícia dos Santos
- Centre for Ecology, Evolution and Environmental Changes (cE3c) and Global Change and Sustainability Institute (CHANGE), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Department of Environmental Sciences – Botany, University of Basel, 4056 Basel, Switzerland
| | - Jurriaan M de Vos
- Department of Environmental Sciences – Botany, University of Basel, 4056 Basel, Switzerland
| | - Gudrun Kadereit
- Botanischer Garten München-Nymphenburg, Staatliche Naturwissenschaftliche Sammlungen Bayerns, 80638 München, Germany
- Prinzessin Therese von Bayern-Lehrstuhl für Systematik, Biodiversität & Evolution der Pflanzen, Ludwig-Maximilians-Universität München, 80638 München, Germany
| |
Collapse
|
3
|
Roxo G, Brilhante M, Moura M, de Sequeira MM, Silva L, Costa JC, Vasconcelos R, Talhinhas P, Romeiras MM. Genome size variation within Crithmum maritimum: Clues on the colonization of insular environments. Ecol Evol 2023; 13:e10009. [PMID: 37091572 PMCID: PMC10116024 DOI: 10.1002/ece3.10009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Angiosperms present an astonishing diversity of genome sizes that can vary intra- or interspecifically. The remarkable new cytogenomic data shed some light on our understanding of evolution, but few studies were performed with insular and mainland populations to test possible correlations with dispersal, speciation, and adaptations to insular environments. Here, patterns of cytogenomic diversity were assessed among geographic samples (ca. 114) of Crithmum maritimum (Apiaceae), collected across the Azores and Madeira archipelagos, as well as in adjacent continental areas of Portugal. Using flow cytometry, the results indicated a significant intraspecific genome size variation, spanning from reduced sizes in the insular populations to larger ones in the mainland populations. Moreover, there was a tendency for an increase in genome size along the mainland populations, associated with lower temperatures, higher precipitation, and lower precipitation seasonality. However, this gradient might be the result of historic phylogeographical events associated with previous dispersal and extinction of local populations. Overall, our findings provided evidence that smaller genome sizes might play a critical role in the colonization of islands, corroborating other studies that argue that organisms with smaller genomes use fewer resources, having a selective advantage under insular environments. Although further studies are needed to improve our understanding of the mechanisms underlying genome size evolution on islands, conservation strategies must be promoted to protect the rich cytogenomic diversity found among C. maritimum populations, which occur in coastal areas that are particularly threatened by human activity, pollution, invasive species, and climate changes.
Collapse
Affiliation(s)
- Guilherme Roxo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - Miguel Brilhante
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Mónica Moura
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | | | - Luís Silva
- CIBIO‐Azores, Departamento de BiologiaUniversidade dos AçoresPonta DelgadaPortugal
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - José Carlos Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Raquel Vasconcelos
- BIOPOLIS Program in Genomics, Biodiversity and Land PlanningCIBIO Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus de VairãoVairãoPortugal
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
| | - Maria M. Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Associated Laboratory TERRA, Instituto Superior de Agronomia (ISA)Universidade de Lisboa, Tapada da AjudaLisbonPortugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c) & CHANGE—Global Change and Sustainability Institute, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
| |
Collapse
|
4
|
Roxo G, Moura M, Talhinhas P, Costa JC, Silva L, Vasconcelos R, de Sequeira MM, Romeiras MM. Diversity and Cytogenomic Characterization of Wild Carrots in the Macaronesian Islands. PLANTS 2021; 10:plants10091954. [PMID: 34579486 PMCID: PMC8473144 DOI: 10.3390/plants10091954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022]
Abstract
The Macaronesian islands constitute an enormous reservoir of genetic variation of wild carrots (subtribe Daucinae; Apiaceae), including 10 endemic species, but an accurate understanding of the diversification processes within these islands is still lacking. We conducted a review of the morphology, ecology, and conservation status of the Daucinae species and, on the basis of a comprehensive dataset, we estimated the genome size variation for 16 taxa (around 320 samples) occurring in different habitats across the Macaronesian islands in comparison to mainland specimens. Results showed that taxa with larger genomes (e.g., Daucus crinitus: 2.544 pg) were generally found in mainland regions, while the insular endemic taxa from Azores and Cabo Verde have smaller genomes. Melanoselinum decipiens and Monizia edulis, both endemic to Madeira Island, showed intermediate values. Positive correlations were found between mean genome size and some morphological traits (e.g., spiny or winged fruits) and also with habit (herbaceous or woody). Despite the great morphological variation found within the Cabo Verde endemic species, the 2C-values obtained were quite homogeneous between these taxa and the subspecies of Daucus carota, supporting the close relationship among these taxa. Overall, this study improved the global knowledge of DNA content for Macaronesian endemics and shed light into the mechanisms underpinning diversity patterns of wild carrots in the western Mediterranean region.
Collapse
Affiliation(s)
- Guilherme Roxo
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Mónica Moura
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Pedro Talhinhas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - José Carlos Costa
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
| | - Luís Silva
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
| | - Raquel Vasconcelos
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, 4485-661 Vairão, Portugal;
| | - Miguel Menezes de Sequeira
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO-Azores, Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal; (M.M.); (L.S.); (M.M.d.S.)
- Madeira Botanical Group, Faculty of Life Sciences, University of Madeira, 9020-105 Funchal, Portugal
| | - Maria Manuel Romeiras
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1340-017 Lisbon, Portugal; (G.R.); (P.T.); (J.C.C.)
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Correspondence:
| |
Collapse
|