1
|
Cui J, Yao X, Ni Z, Zhao H, Yang Y, Xu H, Lu Z, Zhu P. Identification of salivary proteins in the rice leaf folder Cnaphalocrocis medinalis by transcriptome and LC-MS/MS analyses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104191. [PMID: 39393440 DOI: 10.1016/j.ibmb.2024.104191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Salivary proteins in the oral secretion (OS) of chewing insects play a crucial role in insect-plant interactions during feeding. The rice leaf folder Cnaphalocrocis medinalis, a notorious pest in global rice production, triggers defense responses during feeding, but little is known about its salivary proteins. In this study, we confirmed that C. medinalis releases OS during feeding. By employing transcriptomic analysis and liquid chromatography-tandem mass spectroscopy (LC-MS/MS), we examined the salivary proteins from labial salivary glands and OS from C. medinalis. A total of 14,397 genes were expressed at the RNA level and 229 salivary proteins were identified. Comparative analysis with other 25 arthropod species revealed that 43 proteins were unique to C. medinalis. Expression pattern analysis revealed that most of the selected genes were highly expressed in the gut and the larval stages (4th-5th instar). These findings provide a comprehensive resource for future functional studies of salivary proteins, offering new insights into the molecular mechanisms by which C. medinalis modulates plant defenses and potential applications in pest management.
Collapse
Affiliation(s)
- Jiarong Cui
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Xianjing Yao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihan Ni
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongfeng Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Pingyang Zhu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Wang XJ, Li Q, Ye ZX, Huang HJ. A pipeline contributes to efficient identification of salivary proteins in short-headed planthopper, Epeurysa nawaii. Sci Rep 2024; 14:6225. [PMID: 38486094 PMCID: PMC10940699 DOI: 10.1038/s41598-024-56896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Saliva, an oral secretion primarily originating from salivary glands (SGs), exert critical roles in the ongoing evolutionary interaction between insects and plants. However, identifying insect salivary components poses challenges due to the tiny size of insects, low secretion amounts, and the propensity for degradation after secretion. In this study, we developed a transcriptome-based approach to comprehensively analyze the salivary proteins of the short-headed planthopper, Epeurysa nawaii, a species with unique feeding habits on bamboo. A total of 165 salivary proteins were identified, with 114 secretory genes highly and specifically expressed in SGs. Consistent with most phloem-feeding insects, digestive enzymes, calcium-binding proteins, oxidoreductases, and a few previously reported salivary effectors were ubiquitously distributed in E. nawaii saliva. However, we also identified a substantial portion of salivary proteins exhibiting taxonomy specificity, including 60 E. nawaii-specific and 62 Delphacidae-specific proteins. These taxonomy-restricted proteins potentially play a role in insect adaptation to specific host plants. Our study provides an efficient pipeline for salivary protein identification and serves as a valuable resource for the functional characterization of effectors.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qiao Li
- Animal and Plant Quarantine Service, Technology Center of Wuhan Customs District, Wuhan, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China.
- Animal and Plant Quarantine Service, Technology Center of Wuhan Customs District, Wuhan, China.
| |
Collapse
|
3
|
Xu H, Chen S, Wang Y, Pan J, Liu X, Wang C, Wang X, Cui X, Chen X, Li J, Rasmann S. A Faboideae-Specific Floral Scent Betrays Seeds to an Important Granivore Pest. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12668-12677. [PMID: 37590199 DOI: 10.1021/acs.jafc.3c03196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Seed predation by insect herbivores reduces crop production worldwide. Foraging on seeds at pre-dispersal generally means that females need to find the suitable host plant within a relatively short timeframe in order to synchronize larval development with seed production. The mechanistic understanding of host finding by seed pests can be harnessed for more sustainable pest management strategies. We here studied the chemical communication between the bean bug Riptortus pedestris, a major pest of legumes, and several crop species and cultivars in the Fabaceae. Via a comparative chemical analysis, we found that 1-octen-3-ol is the principal constituent of the floral scents of most species tested in the subfamily Faboideae, including soybean and faba bean. With field trapping and laboratory bioassays, including electroantennography, we further revealed that this compound can be perceived, and stimulate attraction responses, by R. pedestris nymphs and adults. The addition of 1-octen-3-ol to pheromone traps might therefore improve trapping efficacy for controlling populations of this important granivore pest on legumes.
Collapse
Affiliation(s)
- Hao Xu
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shuwei Chen
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yueying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Jinzhi Pan
- Centre of Plant Protection, Fuyang Academy of Agricultural Sciences, Fuyang, Anhui 236000, China
| | - Xingzhou Liu
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Chaowei Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
| | - Xinxia Wang
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210095, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu 210095, China
| | - Jinbu Li
- College of Plant Protection, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu 210095, China
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, Anhui 234000, China
- Suzhou Vocational and Technical College, Suzhou, Anhui 234000, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue-Emile-Argand 11, Neuchâtel 2000, Switzerland
| |
Collapse
|
4
|
Shan S, Huang Y, Guo C, Hu B, Zhang H, Li Y, Chen J, Wei Z, Sun Z. A salivary secretory protein from Riptortus pedestris facilitates pest infestation and soybean staygreen syndrome. MOLECULAR PLANT PATHOLOGY 2023; 24:560-569. [PMID: 36916884 DOI: 10.1111/mpp.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 05/18/2023]
Abstract
The bean bug (Riptortus pedestris), one of the most important pests of soybean, causes staygreen syndrome, delaying plant maturation and affecting pod development, resulting in severe crop yield loss. However, little is known about the underlying mechanism of this pest. In this study, we found that a salivary secretory protein, Rp614, induced cell death in nonhost Nicotiana benthamiana leaves. NbSGT1 and NbNDR1 are involved in Rp614-induced cell death. Tissue specificity analysis showed that Rp614 is mainly present in salivary glands and is highly induced during pest feeding. RNA interference experiments showed that staygreen syndrome caused by R. pedestris was significantly attenuated when Rp614 was silenced. Together, our results indicate that Rp614 plays an essential role in R. pedestris infestation and provide a promising RNA interference target for pest control.
Collapse
Affiliation(s)
- Shiqi Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yue Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chunyun Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Biao Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hehong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yanjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhongyan Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Qu Y, Walker AA, Meng L, Herzig V, Li B. The Predatory Stink Bug Arma custos (Hemiptera: Pentatomidae) Produces a Complex Proteinaceous Venom to Overcome Caterpillar Prey. BIOLOGY 2023; 12:biology12050691. [PMID: 37237505 DOI: 10.3390/biology12050691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Predatory stink bugs capture prey by injecting salivary venom from their venom glands using specialized stylets. Understanding venom function has been impeded by a scarcity of knowledge of their venom composition. We therefore examined the proteinaceous components of the salivary venom of the predatory stink bug Arma custos (Fabricius, 1794) (Hemiptera: Pentatomidae). We used gland extracts and venoms from fifth-instar nymphs or adult females to perform shotgun proteomics combined with venom gland transcriptomics. We found that the venom of A. custos comprised a complex suite of over a hundred individual proteins, including oxidoreductases, transferases, hydrolases, ligases, protease inhibitors, and recognition, transport and binding proteins. Besides the uncharacterized proteins, hydrolases such as venom serine proteases, cathepsins, phospholipase A2, phosphatases, nucleases, alpha-amylases, and chitinases constitute the most abundant protein families. However, salivary proteins shared by and unique to other predatory heteropterans were not detected in the A. custos venom. Injection of the proteinaceous (>3 kDa) venom fraction of A. custos gland extracts or venom into its prey, the larvae of the oriental armyworm Mythimna separata (Walker, 1865), revealed insecticidal activity against lepidopterans. Our data expand the knowledge of heteropteran salivary proteins and suggest predatory asopine bugs as a novel source for bioinsecticides.
Collapse
Affiliation(s)
- Yuli Qu
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Brisbane, QLD 4072, Australia
| | - Ling Meng
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Volker Herzig
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Baoping Li
- Department of Entomology, School of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Cui JR, Bing XL, Tang YJ, Liu F, Ren L, Zhou JY, Liu HH, Wang MK, Hoffmann AA, Hong XY. A conserved protein disulfide isomerase enhances plant resistance against herbivores. PLANT PHYSIOLOGY 2023; 191:660-678. [PMID: 36269175 PMCID: PMC9806597 DOI: 10.1093/plphys/kiac489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/05/2022] [Indexed: 05/22/2023]
Abstract
Herbivore-associated molecular patterns (HAMPs) enable plants to recognize herbivores and may help plants adjust their defense responses. Here, we report on herbivore-induced changes in a protein disulfide isomerase (PDI) widely distributed across arthropods. PDI from the spider mite Tetranychus evansi (TePDI), a mesophyll-feeding agricultural pest worldwide, triggered immunity in multiple Solanaceae plants. TePDI-mediated cell death in Nicotiana benthamiana required the plant signaling proteins SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90), but was suppressed by spider mite effectors Te28 and Te84. Moreover, PDIs from phylogenetically distinct herbivorous and nonherbivorous arthropods triggered plant immunity. Finally, although PDI-induced plant defenses impaired the performance of spider mites on plants, RNAi experiments revealed that PDI genes are essential for the survival of mites and whiteflies. Our findings indicate that plants recognize evolutionarily conserved HAMPs to activate plant defense and resist pest damage, pointing to opportunities for broad-spectrum pest management.
Collapse
Affiliation(s)
- Jia-Rong Cui
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Li Bing
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Jing Tang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lu Ren
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Yi Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan-Huan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Meng-Ke Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Xiao-Yue Hong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
7
|
Zhang H, Wang Y, Wang Z, Ding W, Xu K, Li L, Wang Y, Li J, Yang M, Liu X, Huang X. Modelling the current and future potential distribution of the bean bug Riptortus pedestris with increasingly serious damage to soybean. PEST MANAGEMENT SCIENCE 2022; 78:4340-4352. [PMID: 35754391 DOI: 10.1002/ps.7053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The bean bug, Riptortus pedestris, has received intense attention in recent years because of its involvement in increasing outbreaks of staygreen syndrome in soybean (Glycine max (L.)), often causing almost 100% loss of soybean yield in China. However, for this pest of great economic importance, potential current and future distribution patterns and their underlying driving factors remain unclear. RESULTS Maxent modelling under climate, elevation and land-use (including the distribution information of G. max) variables showed that the current potential distribution covered a vast geographic range, primarily including most parts of south, South East and east Asia. Under future environmental scenarios, suitable habitat expanded markedly. Areas that would become highly suitable for R. pedestris were primarily located in north-east China and west India. Five bioclimatic (BIO13, BIO08, BIO18, BIO02 and BIO07) and one land-use (C3 annual crops) predictors contributed approximately 95% to the modelling, and analyses of curve responses showed that to a certain extent, R. pedestris preferred relatively high temperature and precipitation. Our results indicate that a high risk of R. pedestris outbreaks is present in parts of Asia, especially in the soybean-growing regions of China, and this risk will continue in the future. CONCLUSION The predicted distribution pattern and key regulating factors identified herein could provide a vital reference for developing pest management policies and further alleviate the incidence of staygreen syndrome in soybean. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hongfei Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Ying Wang
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Zhengbing Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Weili Ding
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, P. R. China
| | - Lili Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, P. R. China
| | - Yueying Wang
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, P. R. China
| | - Jinbu Li
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou, P. R. China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
- College of Life Sciences, Capital Normal University, Beijing, P. R. China
| | - Xiaomeng Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, P. R. China
| | - Xinzheng Huang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| |
Collapse
|