1
|
Traeger-Synodinos J, Vrettou C, Sofocleous C, Zurlo M, Finotti A, Gambari R. Impact of α-Globin Gene Expression and α-Globin Modifiers on the Phenotype of β-Thalassemia and Other Hemoglobinopathies: Implications for Patient Management. Int J Mol Sci 2024; 25:3400. [PMID: 38542374 PMCID: PMC10969871 DOI: 10.3390/ijms25063400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 11/03/2024] Open
Abstract
In this short review, we presented and discussed studies on the expression of globin genes in β-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of β-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of β-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by β-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with β-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.
Collapse
Affiliation(s)
- Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Christina Vrettou
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, 11527 Athens, Greece; (C.V.); (C.S.)
| | - Matteo Zurlo
- Department of Life Sciences and Biotechnology, 40124 Ferrara, Italy; (M.Z.); (A.F.)
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, 40124 Ferrara, Italy; (M.Z.); (A.F.)
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center “Chiara Gemmo and Elio Zago” for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Simbula M, Manchinu MF, Mingoia M, Pala M, Asunis I, Caria CA, Perseu L, Shah M, Crossley M, Moi P, Ristaldi MS. miR-365-3p mediates BCL11A and SOX6 erythroid-specific coregulation: A new player in HbF activation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102025. [PMID: 37744176 PMCID: PMC10514143 DOI: 10.1016/j.omtn.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Hemoglobin switching is a complex biological process not yet fully elucidated. The mechanism regulating the suppression of fetal hemoglobin (HbF) expression is of particular interest because of the positive impact of HbF on the course of diseases such as β-thalassemia and sickle cell disease, hereditary hemoglobin disorders that affect the health of countless individuals worldwide. Several transcription factors have been implicated in the control of HbF, of which BCL11A has emerged as a major player in HbF silencing. SOX6 has also been implicated in silencing HbF and is critical to the silencing of the mouse embryonic hemoglobins. BCL11A and SOX6 are co-expressed and physically interact in the erythroid compartment during differentiation. In this study, we observe that BCL11A knockout leads to post-transcriptional downregulation of SOX6 through activation of microRNA (miR)-365-3p. Downregulating SOX6 by transient ectopic expression of miR-365-3p or gene editing activates embryonic and fetal β-like globin gene expression in erythroid cells. The synchronized expression of BCL11A and SOX6 is crucial for hemoglobin switching. In this study, we identified a BCL11A/miR-365-3p/SOX6 evolutionarily conserved pathway, providing insights into the regulation of the embryonic and fetal globin genes suggesting new targets for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Michela Simbula
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maria Francesca Manchinu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Maura Mingoia
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Mauro Pala
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Isadora Asunis
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Cristian Antonio Caria
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Lucia Perseu
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| | - Manan Shah
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Paolo Moi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09121 Cagliari, Italy
| | - Maria Serafina Ristaldi
- Istituto Di Ricerca Genetica e Biomedica del Consiglio Nazionale Delle Ricerche (IRGB-CNR), 09042 Monserrato, Italy
| |
Collapse
|
3
|
Lauridsen KM, Kristiansen HP, Winther-Larsen A. Pediatric reference intervals of the hemoglobin fractions HbA 2, HbF and HbA 0 using high-performance liquid chromatography and capillary electrophoresis. Clin Chim Acta 2023; 549:117557. [PMID: 37709111 DOI: 10.1016/j.cca.2023.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
INTRODUCTION β-thalassemia is a common genetic disorder with an estimated prevalence of 80-90 million carriers worldwide. As elevated hemoglobin A2 (HbA2) is a primary feature of carriers, hemoglobin fraction analysis is a common technique used for initial screening. However, pediatric reference intervals (RIs) are scarce. Hence, the aim was to establish pediatric RIs of hemoglobin fractions using high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE). METHODS Samples were collected from assumed healthy children and adolescents of 1-18 years. Analyses were conducted using the Tosoh Automated Glycohemoglobin Analyzer HLC-723®G11 (Tosoh G11, HPLC) and the Capillarys 3 Octa (CE). Data were investigated for need of partitioning by both age (1-6 years vs. 6-18 years) and sex. RESULTS In total, 189 and 196 subjects were included in the statistical analysis of HPLC and CE, respectively. The 95% RI of HbA2 was 2.00-2.90% by HPLC and 2.2-3.0% by CE. Partitioning of data was not clinically relevant by HPLC. However, partitioning by age was suggested by CE. CONCLUSION RIs of hemoglobin fractions in individuals of 1-18 years using commercially available HPLC and CE equipment were reported. This is the first report of a pediatric RI of HbA2 using the Tosoh G11.
Collapse
Affiliation(s)
- Kasper Munch Lauridsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus N, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Palle Juul-Jensens Boulevard 11, Entrance A, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 118200 Aarhus N, Denmark.
| | - Helle Pilgaard Kristiansen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus N, Denmark.
| | - Anne Winther-Larsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus N, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard, 118200 Aarhus N, Denmark.
| |
Collapse
|
4
|
Piel FB, Rees DC, DeBaun MR, Nnodu O, Ranque B, Thompson AA, Ware RE, Abboud MR, Abraham A, Ambrose EE, Andemariam B, Colah R, Colombatti R, Conran N, Costa FF, Cronin RM, de Montalembert M, Elion J, Esrick E, Greenway AL, Idris IM, Issom DZ, Jain D, Jordan LC, Kaplan ZS, King AA, Lloyd-Puryear M, Oppong SA, Sharma A, Sung L, Tshilolo L, Wilkie DJ, Ohene-Frempong K. Defining global strategies to improve outcomes in sickle cell disease: a Lancet Haematology Commission. Lancet Haematol 2023; 10:e633-e686. [PMID: 37451304 PMCID: PMC11459696 DOI: 10.1016/s2352-3026(23)00096-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023]
Abstract
All over the world, people with sickle cell disease (an inherited condition) have premature deaths and preventable severe chronic complications, which considerably affect their quality of life, career progression, and financial status. In addition, these people are often affected by stigmatisation or structural racism, which can contribute to stress and poor mental health. Inequalities affecting people with sickle cell disease are also reflected in the distribution of the disease—mainly in sub-Saharan Africa, India, and the Caribbean—whereas interventions, clinical trials, and funding are mostly available in North America, Europe, and the Middle East. Although some of these characteristics also affect people with other genetic diseases, the fate of people with sickle cell disease seems to be particularly unfair. Simple, effective interventions to reduce the mortality and morbidity associated with sickle cell disease are available. The main obstacle preventing better outcomes in this condition, which is a neglected disease, is associated with inequalities impacting the patient populations. The aim of this Commission is to highlight the problems associated with sickle cell disease and to identify achievable goals to improve outcomes both in the short and long term. The ambition for the management of people with sickle cell disease is that curative treatments become available to every person with the condition. Although this would have seemed unrealistic a decade ago, developments in gene therapy make this potentially achievable, albeit in the distant future. Until these curative technologies are fully developed and become widely available, health-care professionals (with the support of policy makers, funders, etc) should make sure that a minimum standard of care (including screening, prophylaxis against infection, acute medical care, safe blood transfusion, and hydroxyurea) is available to all patients. In considering what needs to be achieved to reduce the global burden of sickle cell disease and improve the quality of life of patients, this Commission focuses on five key areas: the epidemiology of sickle cell disease (Section 1 ); screening and prevention (Section 2 ); established and emerging treatments for the management of the disease (Section 3 ); cellular therapies with curative potential (Section 4 ); and training and education needs (Section 5 ). As clinicians, researchers, and patients, our objective to reduce the global burden of sickle cell disease aligns with wider public health aims to reduce inequalities, improve health for all, and develop personalised treatment options. We have observed in the past few years some long-awaited momentum following the development of innovative point-of-care testing devices, new approved drugs, and emerging curative options. Reducing the burden of sickle cell disease will require substantial financial and political commitment, but it will impact the lives of millions of patients and families worldwide and the lessons learned in achieving this goal would unarguably benefit society as a whole.
Collapse
Affiliation(s)
- Frédéric B Piel
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
| | - David C Rees
- Department of Paediatric Haematology, King's College London, King's College Hospital, London, UK
| | - Michael R DeBaun
- Department of Pediatrics, Vanderbilt-Meharry Center of Excellence for Sickle Cell Disease, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Obiageli Nnodu
- Department of Haematology and Blood Transfusion, College of Health Sciences and Centre of Excellence for Sickle Cell Disease Research and Training, University of Abuja, Abuja, Nigeria
| | - Brigitte Ranque
- Department of Internal Medicine, Georges Pompidou European Hospital, Assistance Publique-Hopitaux de Paris Centre, University of Paris Cité, Paris, France
| | - Alexis A Thompson
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Russell E Ware
- Division of Hematology and Global Health Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miguel R Abboud
- Department of Pediatrics and Adolescent Medicine, and Sickle Cell Program, American University of Beirut, Beirut, Lebanon
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Hospital, Washington, DC, USA
| | - Emmanuela E Ambrose
- Department of Paediatrics and Child Health, Bugando Medical Centre, Mwanza, Tanzania
| | - Biree Andemariam
- New England Sickle Cell Institute, University of Connecticut Health, Connecticut, USA
| | - Roshan Colah
- Department of Haematogenetics, Indian Council of Medical Research National Institute of Immunohaematology, Mumbai, India
| | - Raffaella Colombatti
- Pediatric Oncology Hematology Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Nicola Conran
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando F Costa
- Department of Clinical Medicine, School of Medical Sciences, Center of Hematology and Hemotherapy (Hemocentro), University of Campinas-UNICAMP, Campinas, Brazil
| | - Robert M Cronin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Mariane de Montalembert
- Department of Pediatrics, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris Centre, Paris, France
| | - Jacques Elion
- Paris Cité University and University of the Antilles, Inserm, BIGR, Paris, France
| | - Erica Esrick
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Anthea L Greenway
- Department Clinical Haematology, Royal Children's Hospital, Parkville and Department Haematology, Monash Health, Clayton, VIC, Australia
| | - Ibrahim M Idris
- Department of Hematology, Aminu Kano Teaching Hospital/Bayero University Kano, Kano, Nigeria
| | - David-Zacharie Issom
- Department of Business Information Systems, School of Management, HES-SO University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | - Dipty Jain
- Department of Paediatrics, Government Medical College, Nagpur, India
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zane S Kaplan
- Department of Clinical Haematology, Monash Health and Monash University, Melbourne, VIC, Australia
| | - Allison A King
- Departments of Pediatrics and Internal Medicine, Divisions of Pediatric Hematology and Oncology and Hematology, Washington University School of Medicine, St Louis, MO, USA
| | - Michele Lloyd-Puryear
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Samuel A Oppong
- Department of Obstetrics and Gynecology, University of Ghana Medical School, Accra, Ghana
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lillian Sung
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Leon Tshilolo
- Institute of Biomedical Research/CEFA Monkole Hospital Centre and Official University of Mbuji-Mayi, Mbuji-Mayi, Democratic Republic of the Congo
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, College of Nursing, University of Florida, Gainesville, FL, USA
| | - Kwaku Ohene-Frempong
- Division of Hematology, Children's Hospital of Philadelphia, Pennsylvania, USA; Sickle Cell Foundation of Ghana, Kumasi, Ghana
| |
Collapse
|
5
|
Saeidnia M, Fazeli P, Farzi A, Atefy Nezhad M, Shabani-Borujeni M, Erfani M, Tamaddon G, Karimi M. An Expert Overview on Therapies in Non-Transfusion-Dependent Thalassemia: Classical to Cutting Edge in Treatment. Hemoglobin 2023:1-15. [PMID: 37325871 DOI: 10.1080/03630269.2022.2158099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The thalassemia issue is a growing worldwide health concern that anticipates the number of patients suffering from the disease will soon increase significantly. Patients with β-thalassemia intermedia (β-TI) manifest mild to intermediate levels of anemia, which is a reason for it to be clinically located between thalassemia minor and β-thalassemia major (β-TM). Notably, the determination of the actual rate of β-TI is more complicated than β-TM. The leading cause of this illness could be partial repression of β-globin protein production; accordingly, the rate of β-globin gene repression is different in patients, and the gene repression intensity creates a different clinical status. This review article provides an overview of functional mechanisms, advantages, and disadvantages of the classic to latest new treatments for this group of patients, depending on the disease severity divided into the typical management strategies for patients with β-TI such as fetal hemoglobin (Hb) induction, splenectomy, bone marrow transplantation (BMT), transfusion therapy, and herbal and chemical iron chelators. Recently, novel erythropoiesis-stimulating agents have been added. Novel strategies are subclassified into molecular and cellular interventions. Genome editing is one of the efficient molecular therapies for improving hemoglobinopathies, especially β-TI. It encompasses high-fidelity DNA repair (HDR), base and prime editing, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 procedure, nuclease-free strategies, and epigenetic modulation. In cellular interventions, we mentioned the approach pattern to improve erythropoiesis impairments in translational models and patients with β-TI that involve activin II receptor traps, Janus-associated kinase 2 (JAK2) inhibitors, and iron metabolism regulation.
Collapse
Affiliation(s)
- Mohammadreza Saeidnia
- Department of Hematology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Unit, Emam Khomeini Hospital, Ilam University of Medical Sciences, Ilam, Iran
| | - Pooria Fazeli
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Trauma Research Center, Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arghavan Farzi
- School of Medicine, International Department Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Atefy Nezhad
- Department of Biology, Sciences Faculty, Science and Research Branch, Islamic Azad University, of Zarqān, Zarqān, Iran
| | - Mojtaba Shabani-Borujeni
- Department of Pharmacotherapy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Erfani
- Department of Laboratory Sciences, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Gholamhossein Tamaddon
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehran Karimi
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Ureña-Bailén G, Block M, Grandi T, Aivazidou F, Quednau J, Krenz D, Daniel-Moreno A, Lamsfus-Calle A, Epting T, Handgretinger R, Wild S, Mezger M. Automated Good Manufacturing Practice-Compatible CRISPR-Cas9 Editing of Hematopoietic Stem and Progenitor Cells for Clinical Treatment of β-Hemoglobinopathies. CRISPR J 2023; 6:5-16. [PMID: 36662546 PMCID: PMC9986018 DOI: 10.1089/crispr.2022.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cellular therapies hold enormous potential for the cure of severe hematological and oncological disorders. The forefront of innovative gene therapy approaches including therapeutic gene editing and hematopoietic stem cell transplantation needs to be processed by good manufacturing practice to ensure safe application in patients. In the present study, an effective transfection protocol for automated clinical-scale production of genetically modified hematopoietic stem and progenitor cells (HSPCs) using the CliniMACS Prodigy® system including the CliniMACS Electroporator (Miltenyi Biotec) was established. As a proof-of-concept, the enhancer of the BCL11A gene, clustered regularly interspaced short palindromic repeat (CRISPR) target in ongoing clinical trials for β-thalassemia and sickle-cell disease treatment, was disrupted by the CRISPR-Cas9 system simulating a large-scale clinical scenario, yielding 100 million HSPCs with high editing efficiency. In vitro erythroid differentiation and high-performance liquid chromatography analyses corroborated fetal hemoglobin resurgence in edited samples, supporting the feasibility of running the complete process of HSPC gene editing in an automated closed system.
Collapse
Affiliation(s)
- Guillermo Ureña-Bailén
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| | - Milena Block
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tommaso Grandi
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | | | - Jona Quednau
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Dariusz Krenz
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Alberto Daniel-Moreno
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| | - Andrés Lamsfus-Calle
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| | - Thomas Epting
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital, Freiburg, Germany
| | - Rupert Handgretinger
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany.,Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Stefan Wild
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Markus Mezger
- Department of General Pediatrics, Oncology and Hematology, University Children's Hospital, Tübingen, Germany
| |
Collapse
|
7
|
Zarghamian P, Klermund J, Cathomen T. Clinical genome editing to treat sickle cell disease-A brief update. Front Med (Lausanne) 2023; 9:1065377. [PMID: 36698803 PMCID: PMC9868311 DOI: 10.3389/fmed.2022.1065377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common hemoglobinopathies. Due to its high prevalence, with about 20 million affected individuals worldwide, the development of novel effective treatments is highly warranted. While transplantation of allogeneic hematopoietic stem cells (HSC) is the standard curative treatment approach, a variety of gene transfer and genome editing strategies have demonstrated their potential to provide a prospective cure for SCD patients. Several stratagems employing CRISPR-Cas nucleases or base editors aim at reactivation of γ-globin expression to replace the faulty β-globin chain. The fetal hemoglobin (HbF), consisting of two α-globin and two γ-globin chains, can compensate for defective adult hemoglobin (HbA) and reverse the sickling of hemoglobin-S (HbS). Both disruption of cis-regulatory elements that are involved in inhibiting γ-globin expression, such as BCL11A or LRF binding sites in the γ-globin gene promoters (HBG1/2), or the lineage-specific disruption of BCL11A to reduce its expression in human erythroblasts, have been demonstrated to reestablish HbF expression. Alternatively, the point mutation in the HBB gene has been corrected using homology-directed repair (HDR)-based methodologies. In general, genome editing has shown promising results not only in preclinical animal models but also in clinical trials, both in terms of efficacy and safety. This review provides a brief update on the recent clinical advances in the genome editing space to offer cure for SCD patients, discusses open questions with regard to off-target effects induced by the employed genome editors, and gives an outlook of forthcoming developments.
Collapse
Affiliation(s)
- Parinaz Zarghamian
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,*Correspondence: Toni Cathomen,
| |
Collapse
|
8
|
Vernaz G, Hudson AG, Santos ME, Fischer B, Carruthers M, Shechonge AH, Gabagambi NP, Tyers AM, Ngatunga BP, Malinsky M, Durbin R, Turner GF, Genner MJ, Miska EA. Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish. Nat Ecol Evol 2022; 6:1940-1951. [PMID: 36266459 PMCID: PMC9715432 DOI: 10.1038/s41559-022-01894-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/26/2022] [Indexed: 12/15/2022]
Abstract
Epigenetic variation can alter transcription and promote phenotypic divergence between populations facing different environmental challenges. Here, we assess the epigenetic basis of diversification during the early stages of speciation. Specifically, we focus on the extent and functional relevance of DNA methylome divergence in the very young radiation of Astatotilapia calliptera in crater Lake Masoko, southern Tanzania. Our study focuses on two lake ecomorphs that diverged approximately 1,000 years ago and a population in the nearby river from which they separated approximately 10,000 years ago. The two lake ecomorphs show no fixed genetic differentiation, yet are characterized by different morphologies, depth preferences and diets. We report extensive genome-wide methylome divergence between the two lake ecomorphs, and between the lake and river populations, linked to key biological processes and associated with altered transcriptional activity of ecologically relevant genes. Such genes differing between lake ecomorphs include those involved in steroid metabolism, hemoglobin composition and erythropoiesis, consistent with their divergent habitat occupancy. Using a common-garden experiment, we found that global methylation profiles are often rapidly remodeled across generations but ecomorph-specific differences can be inherited. Collectively, our study suggests an epigenetic contribution to the early stages of vertebrate speciation.
Collapse
Affiliation(s)
- Grégoire Vernaz
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| | - Alan G Hudson
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bettina Fischer
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | | | | | - Alexandra M Tyers
- School of Natural Sciences, Bangor University, Bangor, UK
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Milan Malinsky
- Wellcome Sanger Institute, Hinxton, UK
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | | | - Martin J Genner
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - Eric A Miska
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
9
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
10
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|
11
|
Prosdocimi M, Zuccato C, Cosenza LC, Borgatti M, Lampronti I, Finotti A, Gambari R. A Rational Approach to Drug Repositioning in β-thalassemia: Induction of Fetal Hemoglobin by Established Drugs. Wellcome Open Res 2022; 7:150. [PMID: 36110836 PMCID: PMC9453112 DOI: 10.12688/wellcomeopenres.17845.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 12/27/2022] Open
Abstract
Drug repositioning and the relevance of orphan drug designation for β-thalassemia is reviewed. Drug repositioning and similar terms ('drug repurposing', 'drug reprofiling', 'drug redirecting', 'drug rescue', 'drug re-tasking' and/or 'drug rediscovery') have gained great attention, especially in the field or rare diseases (RDs), and represent relevant novel drug development strategies to be considered together with the "off-label" use of pharmaceutical products under clinical trial regimen. The most significant advantage of drug repositioning over traditional drug development is that the repositioned drug has already passed a significant number of short- and long-term toxicity tests, as well as it has already undergone pharmacokinetic and pharmacodynamic (PK/PD) studies. The established safety of repositioned drugs is known to significantly reduce the probability of project failure. Furthermore, development of repurposed drugs can shorten much of the time needed to bring a drug to market. Finally, patent filing of repurposed drugs is expected to catch the attention of pharmaceutical industries interested in the development of therapeutic protocols for RDs. Repurposed molecules that could be proposed as potential drugs for β-thalassemia, will be reported, with some of the most solid examples, including sirolimus (rapamycin) that recently has been tested in a pilot clinical trial.
Collapse
Affiliation(s)
- Marco Prosdocimi
- Rare Partners srl Impresa Sociale, Via G.Boccaccio 20, 20123 Milano, Italy,
| | - Cristina Zuccato
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Lucia Carmela Cosenza
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Monica Borgatti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Alessia Finotti
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Roberto Gambari
- Center ‘Chiara Gemmo and Elio Zago’ for the Research on Thalassemia, Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 74, 44121 Ferrara, Italy
| |
Collapse
|