1
|
Hosseini-Kharat M, Bremmell KE, Grubor-Bauk B, Prestidge CA. Enhancing non-viral DNA delivery systems: Recent advances in improving efficiency and target specificity. J Control Release 2024; 378:170-194. [PMID: 39647508 DOI: 10.1016/j.jconrel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
DNA-based therapies are often limited by challenges such as stability, long-term integration, low transfection efficiency, and insufficient targeted DNA delivery. This review focuses on recent progress in the design of non-viral delivery systems for enhancing targeted DNA delivery and modulation of therapeutic efficiency. Cellular uptake and intracellular trafficking mechanisms play a crucial role in optimizing gene delivery efficiency. There are two main strategies employed to improve the efficiency of gene delivery vectors: (i) explore different administration routes (e.g., mucosal, intravenous, intramuscular, subcutaneous, intradermal, intratumoural, and intraocular) that best facilitates optimal uptake into the targeted cells and organs and (ii) modify the delivery vectors with cell-specific ligands (e.g., natural ligands, antibodies, peptides, carbohydrates, or aptamers) that enable targeted uptake to specific cells with higher specificity and improved biodistribution. We describe how recent progress in employing these DNA delivery strategies is advancing the field and increasing the clinical translation and ultimate clinical application of DNA therapies.
Collapse
Affiliation(s)
- Mahboubeh Hosseini-Kharat
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Kristen E Bremmell
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, Centre for Pharmaceutical Innovation, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
2
|
Mo L, Sia C, Lin W, Zheng X, Peng K. Describing and Mapping the Research Trend of Scientific Publications on Arrhythmogenic Right Ventricular Cardiomyopathy Across Four Decades: A Bibliometric Analysis. Clin Cardiol 2024; 47:e70051. [PMID: 39600076 PMCID: PMC11599429 DOI: 10.1002/clc.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES To perform a bibliometric analysis of publications of arrhythmogenic right ventricular cardiomyopathy (ARVC) from 1981 to 2023 to summarize the current publications and explore frontiers on this topic. METHODS We integrated the scientific publications on ARVC in the Web of Science (WOS) Core Collection database from January 1981 to September 2023, using the retrieval strategy of medical subject headings combined with keywords. We focused on articles and reviews that were published in English. Relevant information such as the journal and publisher, the title, authors, organizations, abstract, keywords, published date, and number of citations, were collected. Bibliometric analysis was performed and visualized by the R software and Microsoft Excel. RESULTS The results revealed a total of 4792 records related to ARVC from the WOS database, and 2992 original articles or reviews which were selected for bibliometric analysis. There were 79 countries and regions, 3724 research institutions, and 12 157 scholars who have published in this topic. The number of scientific publications of ARVC increased year-by-year, with an annual growth rate of 12.12%. We also investigated the top 10 contributing countries, organizations with affiliations, most influential researchers, highest-cited articles, and highest-frequency keywords. In addition, the most active areas of research on ARVC included that of fatal complications, molecular pathological mechanisms, diagnosis, therapy, and prognosis respectively according to the keywords trend analysis. CONCLUSIONS Our study reports the publication landscape of ARVC during the past four decades based on bibliometric analysis. This study provides a deeper understanding of the published literature on ARVC.
Collapse
Affiliation(s)
- Leitong Mo
- Department of Coronary Care UnitMaoming People's HospitalMaomingGuangdongChina
| | - Ching‐Hui Sia
- Department of CardiologyNational University Heart Centre SingaporeSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Weiqin Lin
- Department of CardiologyNational University Heart Centre SingaporeSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xifeng Zheng
- Department of Internal MedicineHospital of Guangdong University of TechnologyGuangzhouGuangdongChina
| | - Kaiyi Peng
- Department of Critical Care MedicineMaoming People's HospitalMaomingGuangdongChina
| |
Collapse
|
3
|
Zeglinski K, Montellese C, Ritchie ME, Alhamdoosh M, Vonarburg C, Bowden R, Jordi M, Gouil Q, Aeschimann F, Hsu A. An optimized protocol for quality control of gene therapy vectors using nanopore direct RNA sequencing. Genome Res 2024; 34:1966-1975. [PMID: 39467647 DOI: 10.1101/gr.279405.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
Despite recent advances made toward improving the efficacy of lentiviral gene therapies, a sizeable proportion of produced vector contains an incomplete and thus potentially nonfunctional RNA genome. This can undermine gene delivery by the lentivirus as well as increase manufacturing costs and must be improved to facilitate the widespread clinical implementation of lentiviral gene therapies. Here, we compare three long-read sequencing technologies for their ability to detect issues in vector design and determine nanopore direct RNA sequencing to be the most powerful. We show how this approach identifies and quantifies incomplete RNA caused by cryptic splicing and polyadenylation sites, including a potential cryptic polyadenylation site in the widely used Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE). Using artificial polyadenylation of the lentiviral RNA, we also identify multiple hairpin-associated truncations in the analyzed lentiviral vectors (LVs), which account for most of the detected RNA fragments. Finally, we show that these insights can be used for the optimization of LV design. In summary, nanopore direct RNA sequencing is a powerful tool for the quality control and optimization of LVs, which may help to improve lentivirus manufacturing and thus the development of higher quality lentiviral gene therapies.
Collapse
Affiliation(s)
- Kathleen Zeglinski
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia;
| | - Christian Montellese
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Monther Alhamdoosh
- Research Data Science Group, R&D, CSL, Parkville, Victoria 3000, Australia
| | - Cédric Vonarburg
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Monika Jordi
- CSL Behring, Research, CH-3014 Bern, Switzerland
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Florian Aeschimann
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Arthur Hsu
- Research Data Science Group, R&D, CSL, Parkville, Victoria 3000, Australia
| |
Collapse
|
4
|
Corazolla EM, Eskes ECB, Veldwijk J, Brands MMMG, Dekker H, van de Mheen E, Langeveld M, Hollak CEM, Sjouke B. Different diseases, different needs: Patient preferences for gene therapy in lysosomal storage disorders, a probabilistic threshold technique survey. Orphanet J Rare Dis 2024; 19:367. [PMID: 39363355 PMCID: PMC11451020 DOI: 10.1186/s13023-024-03371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Gene therapy is currently in development for several monogenetic diseases including lysosomal storage disorders. Limited evidence is available on patient preferences for gene therapy in this population. In this study, we compare gene therapy-related risk tolerance between people affected by three lysosomal storage diseases currently faced with different therapeutic options and prognoses. METHODS A survey including the probabilistic threshold technique was developed in which respondents were asked to choose between gene therapy and the current standard of care. The attributes included to establish participants' risk tolerance were previously identified in focus groups of affected people or their representatives, namely: risk of mild side effects, severe side effects, the need for additional medication, and the likelihood of long-term effectiveness. The survey was distributed among people receiving outpatient care for type 1 Gaucher disease (good prognosis with current treatment options), Fabry disease (varying prognosis with current treatment options, XY-genotype on average more severely affected than XX), and parents representing people with severe forms of mucopolysaccharidosis type III A/B (poor prognosis, no disease-specific therapy available). RESULTS A total of 85 surveys were completed (15 Gaucher disease respondents, 62 Fabry disease respondents (17 self-identifying male), eight parents of ten people with mucopolysaccharidosis type III). Disease groups with higher disease severity trended towards higher risk tolerance: Gaucher disease respondents were most cautious and predominantly preferred the current standard of care as opposed to MPS III representatives who were more risk tolerant. Respondents with Fabry disease were most heterogeneous in their risk tolerance, with male participants being more risk tolerant than female participants. Long-term effectiveness was the attribute in which respondents tolerated the least risk. CONCLUSIONS People affected by a lysosomal storage disease associated with a poorer prognosis and less effective current treatment options trended towards more risk tolerance when choosing between gene therapy and the current standard of care. This study shows the importance of involvement of patient preferences before and during the development process of new treatment modalities such as gene therapy for rare diseases, to ensure that innovative therapies align with the wishes and needs of people affected by these diseases.
Collapse
Affiliation(s)
- Eleonore M Corazolla
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Eline C B Eskes
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Jorien Veldwijk
- Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Erasmus Choice Modelling Centre, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Marion M M G Brands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pediatrics, Division of Metabolic Diseases, Emma Children's Hospital, Amsterdam UMC, Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Hanka Dekker
- The Dutch Patient Association for Inherited Metabolic Diseases (VKS), Zwolle, The Netherlands
| | - Erica van de Mheen
- Fabry Support and Information Group the Netherlands (FSIGN), Drachten, The Netherlands
| | - Mirjam Langeveld
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carla E M Hollak
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands
| | - Barbara Sjouke
- Inborn Errors of Metabolism, Research Institute of Amsterdam Gastroenterology Endocrinology and Metabolism, Meibergdreef 9, Amsterdam, The Netherlands.
- Department of Internal Medicine, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Smith TD, Riedl MA. The future of therapeutic options for hereditary angioedema. Ann Allergy Asthma Immunol 2024; 133:380-390. [PMID: 38679158 DOI: 10.1016/j.anai.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
Hereditary angioedema (HAE) is a rare genetic condition causing unpredictable and severe episodes of angioedema that are debilitating and life-threatening. Moreover, HAE can be classified into HAE due to C1-esterase inhibitor deficiency (HAE-C1INH) or HAE with normal C1INH. Moreover, HAE-C1INH is subcategorized as types I and II based on deficient or dysfunctional circulating C1INH protein resulting from inherited or spontaneous mutations in the SERPING1 gene leading to uncontrolled factor XII/plasma kallikrein activation and excessive bradykinin production. Bradykinin-2 receptor activation leads to vasodilation, increased vascular permeability, and smooth muscle contractions, resulting in subcutaneous or submucosal fluid extravasation that can affect the face, extremities, airway, and gastrointestinal and genitourinary systems. Furthermore, HAE with normal C1INH is caused by either a known or unknown genetic mutation, and the mechanisms are less well-established but most forms are thought to be related to bradykinin signaling with a similar presentation as HAE-C1INH despite normal levels of C1INH protein and function. Current HAE management strategies include on-demand and prophylactic treatments which replace C1INH, reduce kallikrein activity, or block bradykinin binding to the bradykinin B2 receptor. With the advent of additional small molecule inhibitors, monoclonal antibodies, RNA-targeted therapies, gene therapies, and gene modification approaches, preclinical studies and human clinical trials are underway to further expand therapeutic options in HAE. This review article will briefly summarize current HAE treatments and provide an overview of potential future therapies for HAE.
Collapse
Affiliation(s)
- Tukisa D Smith
- Division of Allergy, and Immunology, University of California, San Diego, La Jolla, California
| | - Marc A Riedl
- Division of Allergy, and Immunology, University of California, San Diego, La Jolla, California.
| |
Collapse
|
6
|
Chan CH, Pearce DA. Demystifying gene(tic) therapies. Eur J Med Genet 2024; 71:104963. [PMID: 39069254 DOI: 10.1016/j.ejmg.2024.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
This article summarizes the discussion from a session entitled "Demystifying gene therapies" that was held at the joint RE(ACT) congress and IRDiRC conference, 14-15 March 2023 in Berlin, Germany. The focus of this session was to discuss the changing landscape of genetic therapies and whether current resources exist to provide adequate education to stakeholders, such as researchers, clinicians, patient advocates, legislators, as well as the patients and their families. The goal of this article is not to provide a comprehensive overview of the current landscape in genetic therapies, but rather to highlight resources that may be useful to help "demystify" the myriad of genetic therapeutic approaches.
Collapse
Affiliation(s)
| | - David A Pearce
- Sanford Research, Sioux Falls, SD, USA; Sanford Health, Sioux Falls, SD, USA; Dept. of Pediatrics, Sanford School of Medicine, University of South Dakota, USA.
| |
Collapse
|
7
|
Makhmudova U, Steinhagen-Thiessen E, Volpe M, Landmesser U. Advances in nucleic acid-targeted therapies for cardiovascular disease prevention. Cardiovasc Res 2024; 120:1107-1125. [PMID: 38970537 DOI: 10.1093/cvr/cvae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 07/08/2024] Open
Abstract
Nucleic acid-based therapies are being rapidly developed for prevention and management of cardiovascular diseases (CVD). Remarkable advancements have been achieved in the delivery, safety, and effectiveness of these therapeutics in the past decade. These therapies can also modulate therapeutic targets that cannot be sufficiently addressed using traditional drugs or antibodies. Among the nucleic acid-targeted therapeutics under development for CVD prevention are RNA-targeted approaches, including antisense oligonucleotides (ASO), small interfering RNAs (siRNA), and novel genome editing techniques. Genetic studies have identified potential therapeutic targets that are suggested to play a causative role in development and progression of CVD. RNA- and DNA-targeted therapeutics can be particularly well delivered to the liver, where atherogenic lipoproteins and angiotensinogen (AGT) are produced. Current targets in lipid metabolism include proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein A (ApoA), apolipoprotein C3 (ApoC3), angiopoietin-like 3 (ANGPTL3). Several large-scale clinical development programs for nucleic acid-targeted therapies in cardiovascular prevention are under way, which may also be attractive from a therapy adherence point of view, given the long action of these therapeutics. In addition to genome editing, the concept of gene transfer is presently under assessment in preclinical and clinical investigations as a potential approach for addressing low-density lipoprotein receptor deficiency. Furthermore, ongoing research is exploring the use of RNA-targeted therapies to treat arterial hypertension by reducing hepatic angiotensinogen (AGT) production. This review summarizes the rapid translation of siRNA and ASO therapeutics as well as gene editing into clinical studies to treat dyslipidemia and arterial hypertension for CVD prevention. It also outlines potential innovative therapeutic options that are likely relevant to the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Umidakhon Makhmudova
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Department of Endocrinology and Metabolic Diseases, Charite Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Massimo Volpe
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Via di Grottarossa 1035-1039, Rome 00189, Italy
- Cardiology Department, IRCCS San Raffaele Roma, Via di Valcannuta 250, Rome 00166, Italy
| | - Ulf Landmesser
- Department of Cardiology, Angiology, and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Hindenburgdamm 30, 12203 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Klinik/Centrum, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Cardiovascular Research, DZHK, Partner Site Berlin, Germany
| |
Collapse
|
8
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
9
|
Zaydon YA, Tsang SH. The ABCs of Stargardt disease: the latest advances in precision medicine. Cell Biosci 2024; 14:98. [PMID: 39060921 PMCID: PMC11282698 DOI: 10.1186/s13578-024-01272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Stargardt disease (STGD) is the most common form of inherited juvenile macular dystrophy and is caused by sequence variants in the ABCA4 gene. Due to its genetic complexity and phenotypic variability, STGD poses significant therapeutic challenges. In the past decade, a lot of progress has been made regarding our understanding of the molecular and clinical aspects of STGD, along with its mechanisms. This has led to the development of new therapies, and there are human clinical trials currently ongoing. This paper evaluates the emergence of pharmacological approaches targeting the visual cycle to mitigate retinal damage, the role of gene therapy in correcting specific genetic defects, and the use of stem cell therapies aimed at retinal regeneration by showcasing the latest clinical trials and precision medicine approaches.
Collapse
Affiliation(s)
- Yasmine A Zaydon
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Stephen H Tsang
- Departments of Ophthalmology, Pathology and Cell Biology, Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA
- Department of Pathology and Cell Biology, The Herbert Irving Comprehensive Cancer Center, Institute of Human Nutrition, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Singh N, Singh A, Dhanka M, Bhatia D. DNA functionalized programmable hybrid biomaterials for targeted multiplexed applications. J Mater Chem B 2024. [PMID: 38973587 DOI: 10.1039/d4tb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the advent of DNA nanotechnology, DNA-based biomaterials have emerged as a unique class of materials at the center of various biological advances. Owing to DNA's high modification capacity via programmable Watson-Crick base-pairing, DNA structures of desired design with increased complexity have been developed. However, the limited scalability, along with poor mechanical properties, high synthesis costs, and poor stability, reduced the adaptability of DNA-based materials to complex biological applications. DNA-based hybrid biomaterials were designed to overcome these limitations by conjugating DNA with functional materials. Today, DNA-based hybrid materials have attracted significant attention in biological engineering with broad application prospects in biomedicine, clinical diagnosis, and nanodevices. Here, we summarize the recent advances in DNA-based hybrid materials with an in-depth understanding of general molecular design principles, functionalities, and applications. Finally, the challenges and prospects associated with DNA-based hybrid materials are discussed at the end of this review.
Collapse
Affiliation(s)
- Nihal Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Ankur Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Mukesh Dhanka
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Dhiraj Bhatia
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| |
Collapse
|
11
|
Som M, Gikanga B, Kanapuram V, Yadav S. Drug product Formulation and Fill/Finish Manufacturing Process Considerations for AAV-Based Genomic Medicines. J Pharm Sci 2024; 113:1711-1725. [PMID: 38570073 DOI: 10.1016/j.xphs.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Adeno-associated viruses (AAVs) have become the delivery medium of choice for a variety of genomic medicine applications i.e., gene therapy, gene editing/regulation, and ex-vivo cell therapy. AAVs are protein-DNA complexes which have unique stability characteristics that are susceptible to various stress exposure conditions commonly seen in the drug product (DP) life cycle. This review takes a comprehensive look at AAV DP formulation and process development considerations that could impact critical quality attributes (CQAs) during manufacturing, packaging, shipping, and clinical use. Additional aspects related to AAV development reviewed herein are: (1) Different AAV serotypes with unique protein sequences and charge characteristics potentially leading to discrete stability profiles; (2) Manufacturing process challenges and optimization efforts to improve yield, recovery and purity especially during early development activities; and (3) Defining and identifying CQAs with analytical methods which are constantly evolving and present unique characterization challenges for AAV-based products.
Collapse
Affiliation(s)
- Madhura Som
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| | - Benson Gikanga
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Varna Kanapuram
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States
| | - Sandeep Yadav
- Sangamo Therapeutics, 7000 Marina Boulevard, Brisbane, CA 94005, United States.
| |
Collapse
|
12
|
Ossandon H, Armijo N, Vargas C, Repetto GM, Espinoza MA. Challenges for gene therapy in the financial sustainability of health systems: a scoping review. Orphanet J Rare Dis 2024; 19:243. [PMID: 38915120 PMCID: PMC11197217 DOI: 10.1186/s13023-024-03249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
AIM To review the available evidence about the strategies implemented or proposed for coverage or reimbursement for currently approved gene therapies. METHODS A scoping review was conducted to analyze the evidence published during the years 2016 to 2023. The main search criteria were coverage or reimbursement of gene therapy by healthcare systems. The eligible articles were those that described or proposed a financing model used to provide coverage in the various systems around the world. RESULTS The study identified 279 publications, and after removing duplicates and screening for eligibility, 10 were included in the study. The results show that various financing models have been proposed, including subscription-based payment models, outcome-based payment models, and amortization strategies. However, several barriers to implementing these models were identified, such as deficiencies in informatics systems for data collection, changes in laws or regulations, the lack of accessible clinical endpoints and administrative costs. CONCLUSION This scoping review provides an overview of financing strategies for gene therapies. Gene therapies can cure rare or previously intractable diseases, but their high cost can make access difficult. Publishing experiences with these models can help evaluate their use and gather more evidence for their effectiveness.
Collapse
Affiliation(s)
- Hugo Ossandon
- Departamento de Coordinación de Garantías y Prestaciones de Salud, División de Planificación Sanitaria, Ministerio de Salud de Chile, Enrique McIver 421, Santiago, Chile
| | - Nicolás Armijo
- Centro de Investigación Clínica, Unidad de Evaluación de Tecnologías en Salud (ETESA UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro Para la Prevención y Control del cáncer, Santiago, Chile
| | - Constanza Vargas
- Centre for Health Economics Research and Evaluation (CHERE), University of Technology Sydney, Sydney, Australia
| | - Gabriela M Repetto
- Rare Diseases Program, Institute of Science and Innovation in Medicine, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Manuel Antonio Espinoza
- Centro de Investigación Clínica, Unidad de Evaluación de Tecnologías en Salud (ETESA UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro Para la Prevención y Control del cáncer, Santiago, Chile.
- Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Mundisugih J, Ravindran D, Kizana E. Exploring the Therapeutic Potential of Gene Therapy in Arrhythmogenic Right Ventricular Cardiomyopathy. Biomedicines 2024; 12:1351. [PMID: 38927558 PMCID: PMC11201581 DOI: 10.3390/biomedicines12061351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Right dominant arrhythmogenic cardiomyopathy, commonly known as Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC), represents a formidable challenge in cardiovascular medicine, as conventional therapies are commonly ineffective in impeding disease progression and the development of end-stage heart failure. Recombinant adeno-associated virus (AAV)-mediated gene therapy presents a promising avenue for targeted therapeutic interventions, potentially revolutionising treatment approaches for ARVC patients. Encouraging results from preclinical studies have sparked optimism about the possibility of curing specific subtypes of ARVC in the near future. This narrative review delves into the dynamic landscape of genetic therapy for ARVC, elucidating its underlying mechanisms and developmental stages, and providing updates on forthcoming trials. Additionally, it examines the hurdles and complexities impeding the successful translation of ARVC genetic therapies into clinical practice. Despite notable scientific advancements, the journey towards implementing genetic therapies for ARVC patients in real-world clinical settings is still in its early phases.
Collapse
Affiliation(s)
- Juan Mundisugih
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Dhanya Ravindran
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Eddy Kizana
- Centre for Heart Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia
- Department of Cardiology, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
14
|
D'Atri V, Imiołek M, Quinn C, Finny A, Lauber M, Fekete S, Guillarme D. Size exclusion chromatography of biopharmaceutical products: From current practices for proteins to emerging trends for viral vectors, nucleic acids and lipid nanoparticles. J Chromatogr A 2024; 1722:464862. [PMID: 38581978 DOI: 10.1016/j.chroma.2024.464862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
The 21st century has been particularly productive for the biopharmaceutical industry, with the introduction of several classes of innovative therapeutics, such as monoclonal antibodies and related compounds, gene therapy products, and RNA-based modalities. All these new molecules are susceptible to aggregation and fragmentation, which necessitates a size variant analysis for their comprehensive characterization. Size exclusion chromatography (SEC) is one of the reference techniques that can be applied. The analytical techniques for mAbs are now well established and some of them are now emerging for the newer modalities. In this context, the objective of this review article is: i) to provide a short historical background on SEC, ii) to suggest some clear guidelines on the selection of packing material and mobile phase for successful method development in modern SEC; and iii) to highlight recent advances in SEC, such as the use of narrow-bore and micro-bore columns, ultra-wide pore columns, and low-adsorption column hardware. Some important innovations, such as recycling SEC, the coupling of SEC with mass spectrometry, and the use of alternative detectors such as charge detection mass spectrometry and mass photometry are also described. In addition, this review discusses the use of SEC in multidimensional setups and shows some of the most recent advances at the preparative scale. In the third part of the article, the possibility of SEC for the characterization of new modalities is also reviewed. The final objective of this review is to provide a clear summary of opportunities and limitations of SEC for the analysis of different biopharmaceutical products.
Collapse
Affiliation(s)
- Valentina D'Atri
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland
| | | | | | - Abraham Finny
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | - Matthew Lauber
- Waters Corporation, Wyatt Technology, Santa Barbara, CA, USA
| | | | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel Servet 1,4, 1211 Geneva, Switzerland.
| |
Collapse
|
15
|
Duran T, Naik S, Sharifi L, DiLuzio WR, Chanda A, Chaudhuri B. Studying the ssDNA loaded adeno-associated virus aggregation using coarse-grained molecular dynamics simulations. Int J Pharm 2024; 655:123985. [PMID: 38484860 DOI: 10.1016/j.ijpharm.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The aggregation of adeno-associated viral (AAV) capsids in an aqueous environment was investigated via coarse-grained molecular dynamics (CG-MD) simulations. The primary driving force and mechanism of the aggregation were investigated with or without single-strand DNA (ssDNA) loaded at various process temperatures. Capsid aggregation appeared to involve multiple residue interactions (i.e., hydrophobic, polar and charged residues) leading to complex protein aggregation. In addition, two aggregation mechanisms (i.e., the fivefold face-to-face contact and the edge-to-edge contact) were identified from this study. The ssDNA with its asymmetric structure could be the reason for destabilizing protein subunits and enhancing the interaction between the charged residues, and further result in the non-reversible face-to-face contact. At higher temperature, the capsid structure was found to be unstable with the significant size expansion of the loaded ssDNA which could be attributed to reduced number of intramolecular hydrogen bonds, the increased conformational deviations of protein subunits and the higher residue fluctuations. The CG-MD model was further validated with previous experimental and simulation data, including the full capsid size measurement and the capsid internal pressure. Thus, a good understanding of AAV capsid aggregation, instability and the role of ssDNA were revealed by applying the developed computational model.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Shivangi Naik
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Leila Sharifi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Willow R DiLuzio
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Arani Chanda
- Technical Operations, Sarepta Therapeutics, Cambridge, MA 02142, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
16
|
Danaeifar M, Najafi A. Artificial Intelligence and Computational Biology in Gene Therapy: A Review. Biochem Genet 2024:10.1007/s10528-024-10799-1. [PMID: 38635012 DOI: 10.1007/s10528-024-10799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
One of the trending fields in almost all areas of science and technology is artificial intelligence. Computational biology and artificial intelligence can help gene therapy in many steps including: gene identification, gene editing, vector design, development of new macromolecules and modeling of gene delivery. There are various tools used by computational biology and artificial intelligence in this field, such as genomics, transcriptomic and proteomics data analysis, machine learning algorithms and molecular interaction studies. These tools can introduce new gene targets, novel vectors, optimized experiment conditions, predict the outcomes and suggest the best solutions to avoid undesired immune responses following gene therapy treatment.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, P.O. Box 19395-5487, Tehran, Iran
| | - Ali Najafi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Science, P.O. Box 19395-5487, Tehran, Iran.
| |
Collapse
|
17
|
Gholap AD, Kapare HS, Pagar S, Kamandar P, Bhowmik D, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Rojekar S, Hatvate N, Mohanto S. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements. Int J Biol Macromol 2024; 260:129581. [PMID: 38266848 DOI: 10.1016/j.ijbiomac.2024.129581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Sakshi Pagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pallavi Kamandar
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Deblina Bhowmik
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru, Karnataka 575018, India
| |
Collapse
|
18
|
Luo N, Chen X, Li J, Huynh D, Li Y, Ou L, Liu S. Evaluation of recombinant baculovirus clearance during rAAV production in Sf9 cells using a newly developed fluorescent-TCID 50 assay. Front Med (Lausanne) 2024; 11:1302648. [PMID: 38318248 PMCID: PMC10839039 DOI: 10.3389/fmed.2024.1302648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Recombinant adeno-associated virus (rAAV) vectors provide a safe and efficient means for in vivo gene delivery, although its large-scale production remains challenging. Featuring high manufacturing speed, flexible product design, and inherent safety and scalability, the baculovirus/Sf9 cell system offers a practical solution to the production of rAAV vectors in large quantities and high purity. Nonetheless, removal and inactivation of recombinant baculoviruses during downstream purification of rAAV vectors remain critical prior to clinical application. Methods The present study utilized a newly developed fluorescent-TCID50 (F-TCID50) assay to determine the infectious titer of recombinant baculovirus (rBV) stock after baculovirus removal and inactivation, and to evaluate the impact of various reagents and solutions on rBV infectivity. Results and discussion The results showed that a combination of sodium lauryl sulfate (SLS) and Triton X-100 lysis, AAVx affinity chromatography, low pH hold (pH3.0), CsCl ultracentrifugation, and NFR filtration led to effective removal and/or inactivation of recombinant baculoviruses, and achieved a log reduction value (LRV) of more than 18.9 for the entire AAV purification process. In summary, this study establishes a standard protocol for downstream baculovirus removal and inactivation and a reliable F-TCID50 assay to detect rBV infectivity, which can be widely applied in AAV manufacturing using the baculovirus system.
Collapse
|
19
|
Allahham N, Colic I, Rayner MLD, Gurnani P, Phillips JB, Rahim AA, Williams GR. Advanced Formulation Approaches for Emerging Therapeutic Technologies. Handb Exp Pharmacol 2024; 284:343-365. [PMID: 37733107 DOI: 10.1007/164_2023_695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
In addition to proteins, discussed in the Chapter "Advances in Vaccine Adjuvants: Nanomaterials and Small Molecules", there are a wide range of alternatives to small molecule active ingredients. Cells, extracellular vesicles, and nucleic acids in particular have attracted increasing research attention in recent years. There are now a number of products on the market based on these emerging technologies, the most famous of which are the mRNA-based vaccines against SARS-COV-2. These advanced therapeutic moieties are challenging to formulate however, and there remain significant challenges for their more widespread use. In this chapter, we consider the potential and bottlenecks for developing further medical products based on these systems. Cells, extracellular vesicles, and nucleic acids will be discussed in terms of their mechanism of action, the key requirements for translation, and how advanced formulation approaches can aid their future development. These points will be presented with selected examples from the literature, and with a focus on the formulations which have made the transition to clinical trials and clinical products.
Collapse
Affiliation(s)
- Nour Allahham
- UCL School of Pharmacy, University College London, London, UK
| | - Ines Colic
- UCL School of Pharmacy, University College London, London, UK
| | | | - Pratik Gurnani
- UCL School of Pharmacy, University College London, London, UK
| | | | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, UK
| | | |
Collapse
|
20
|
Knöbel S, Bosio A. Scaling of cell and gene therapies to population. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:145-154. [PMID: 39341651 DOI: 10.1016/b978-0-323-90120-8.00012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Cell and gene therapies (CGTs) are intended to address many different diseases, including widespread diseases with millions of patients. The success of CGTs thus depends on the practicability of scaling cell manufacturing to population. It is obvious that process integration and automation are key for the reproducibility, quality, cost-effectiveness, and scalability of cell manufacturing. Still, different manufacturing concepts can be considered depending on the characteristics of cell therapies such as the degree of ex vivo manipulation of cells, the intended treatment scheme for the underlying medical indication, the prevalence of the indication, and the cell dose per final drug product. Here, we explain the characteristics of cellular products and their implications from the perspective of a manufacturer. We outline and exemplify with a list of devices' different strategies and scaling options for CGT manufacturing considering technical and regulatory aspects in the early and late clinical development of cellular products. Finally, we address the need for appropriate in-process and quality controls and the regulatory requirements and options for improvements of a cellular product at different manufacturing stages.
Collapse
Affiliation(s)
- Sebastian Knöbel
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Andreas Bosio
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany.
| |
Collapse
|
21
|
Hahn R, Avraham KB. Gene Therapy for Inherited Hearing Loss: Updates and Remaining Challenges. Audiol Res 2023; 13:952-966. [PMID: 38131808 PMCID: PMC10740825 DOI: 10.3390/audiolres13060083] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
Hearing loss stands as the most prevalent sensory deficit among humans, posing a significant global health challenge. Projections indicate that by 2050, approximately 10% of the world's population will grapple with disabling hearing impairment. While approximately half of congenital hearing loss cases have a genetic etiology, traditional interventions such as hearing aids and cochlear implants do not completely restore normal hearing. The absence of biological treatment has prompted significant efforts in recent years, with a strong focus on gene therapy to address hereditary hearing loss. Although several studies have exhibited promising recovery from common forms of genetic deafness in mouse models, existing challenges must be overcome to make gene therapy applicable in the near future. Herein, we summarize the primary gene therapy strategies employed over past years, provide an overview of the recent achievements in preclinical studies for genetic hearing loss, and outline the current key obstacles to cochlear gene therapy.
Collapse
Affiliation(s)
| | - Karen B. Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
22
|
Vervoorn MT, Amelink JJGJ, Ballan EM, Doevendans PA, Sluijter JPG, Mishra M, Boink GJJ, Bowles DE, van der Kaaij NP. Gene therapy during ex situ heart perfusion: a new frontier in cardiac regenerative medicine? Front Cardiovasc Med 2023; 10:1264449. [PMID: 37908499 PMCID: PMC10614057 DOI: 10.3389/fcvm.2023.1264449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Ex situ organ preservation by machine perfusion can improve preservation of organs for transplantation. Furthermore, machine perfusion opens up the possibilities for selective immunomodulation, creation of tolerance to ischemia-reperfusion injury and/or correction of a pathogenic genetic defect. The application of gene modifying therapies to treat heart diseases caused by pathogenic mutations during ex situ heart perfusion seems promising, especially given the limitations related to delivery of vectors that were encountered during clinical trials using in vivo cardiac gene therapy. By isolating the heart in a metabolically and immunologically favorable environment and preventing off-target effects and dilution, it is possible to directly control factors that enhance the success rate of cardiac gene therapy. A literature search of PubMed and Embase databases was performed to identify all relevant studies regarding gene therapy during ex situ heart perfusion, aiming to highlight important lessons learned and discuss future clinical prospects of this promising approach.
Collapse
Affiliation(s)
- Mats T. Vervoorn
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jantijn J. G. J. Amelink
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| | - Elisa M. Ballan
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
- Laboratory of Experimental Cardiology, Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Netherlands Heart Institute, Utrecht, Netherlands
| | - Pieter A. Doevendans
- Netherlands Heart Institute, Utrecht, Netherlands
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joost P. G. Sluijter
- Laboratory of Experimental Cardiology, Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
- Regenerative Medicine Utrecht, Circulatory Health Research Center, University Utrecht, Utrecht, Netherlands
| | - Mudit Mishra
- Laboratory of Experimental Cardiology, Division Heart & Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Gerard J. J. Boink
- Amsterdam Cardiovascular Sciences, Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Department of Cardiology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Dawn E. Bowles
- Divison of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Niels P. van der Kaaij
- Division of Heart & Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
23
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
24
|
Moran AL, Fehilly JD, Blacque O, Kennedy BN. Gene therapy for RAB28: What can we learn from zebrafish? Vision Res 2023; 210:108270. [PMID: 37321111 DOI: 10.1016/j.visres.2023.108270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
The eye is particularly suited to gene therapy due to its accessibility, immunoprivileged state and compartmentalised structure. Indeed, many clinical trials are underway for therapeutic gene strategies for inherited retinal degenerations (IRDs). However, as there are currently 281 genes associated with IRD, there is still a large unmet need for effective therapies for the majority of IRD-causing genes. In humans, RAB28 null and hypomorphic alleles cause autosomal recessive cone-rod dystrophy (arCORD). Previous work demonstrated that restoring wild type zebrafish Rab28 via germline transgenesis, specifically in cone photoreceptors, is sufficient to rescue the defects in outer segment phagocytosis (OSP) observed in zebrafish rab28-/- knockouts (KO). This rescue suggests that gene therapy for RAB28-associated CORD may be successful by RAB28 gene restoration to cones. It also inspired us to critically consider the scenarios in which zebrafish can provide informative preclinical data for development of gene therapies. Thus, this review focuses on RAB28 biology and disease, and delves into both the opportunities and limitations of using zebrafish as a model for both gene therapy development and as a diagnostic tool for patient variants of unknown significance (VUS).
Collapse
Affiliation(s)
- Ailis L Moran
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - John D Fehilly
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Oliver Blacque
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
25
|
Jong ED, Hacibekiroglu S, Guo L, Sawula E, Li B, Li C, Ho MT, Shoichet MS, Wallace VA, Nagy A. Soluble CX3CL1-expressing retinal pigment epithelium cells protect rod photoreceptors in a mouse model of retinitis pigmentosa. Stem Cell Res Ther 2023; 14:212. [PMID: 37605279 PMCID: PMC10441732 DOI: 10.1186/s13287-023-03434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is an inherited retinal disease that results in photoreceptor degeneration, leading to severe vision loss or blindness. Due to its genetic heterogeneity, developing a new gene therapy to correct every genetic mutation contributing to its progression is infeasible. Photoreceptor transplantation can be harnessed to restore vision; however, this approach is limited by poor cell survival and synaptic integration into the neural retina. Thus, we developed a combined cell and gene therapy that is expected to protect photoreceptors in most, if not all, cases of RP. METHODS Human embryonic stem cells (hESCs) modified with our FailSafe™ system were genetically engineered to overexpress sCX3CL1, an inhibitor of microglia activation that has been shown to preserve photoreceptor survival and function in mouse models of RP, independent of the genetic cause. These cells were differentiated into human retinal pigment epithelium (hRPE) cells and used as therapeutic cells due to their longevity and safety, both of which have been demonstrated in preclinical and clinical studies. Transgenic hRPE were delivered into the subretinal space of immunodeficient mice and the rd10 mouse model of RP to evaluate donor cell survival and retention of transgene expression. The outer nuclear layer was quantified to assess photoreceptor protection. RESULTS Transgenic FailSafe™ hRPE (FS-hRPE) cells can survive for at least four months in the retina of immunodeficient mice and retain transgene expression. However, these cells do not persist beyond two weeks post-injection in the retina of immunocompetent rd10 recipients, despite Cyclosporine A treatment. Nevertheless, sCX3CL1-expressing FailSafe™ hRPE cells prevented photoreceptor degeneration in a local acting manner during the duration of their presence in the subretinal space. CONCLUSIONS Transgenic hESCs differentiate into hRPE cells and retain sCX3CL1 transgene expression both in vitro and in vivo. Moreover, hRPE cells delivered to the subretinal space of rd10 mice prevented photoreceptor degeneration in a local-acting manner, suggesting that this approach could have applications for preserving photoreceptors in specific subregions of the retina, such as the macula. Overall, our study not only reveals the potential of a combined cell and gene therapy for the treatment of RP, but also the possibility of using hRPE cells to deliver therapeutic biologics in situ to treat diseases over long-term.
Collapse
Affiliation(s)
- Eric D Jong
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sabiha Hacibekiroglu
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Lily Guo
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Evan Sawula
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Biao Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Chengjin Li
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada
| | - Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Department of Chemistry, University of Toronto, Toronto, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto25 Orde St, 5Th Floor, Room 5-1015, Toronto, ON, M5T 3H7, Canada.
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia.
- Department of Obstetrics & Gynecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Karayianni M, Sentoukas T, Skandalis A, Pippa N, Pispas S. Chitosan-Based Nanoparticles for Nucleic Acid Delivery: Technological Aspects, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1849. [PMID: 37514036 PMCID: PMC10383118 DOI: 10.3390/pharmaceutics15071849] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Chitosan is a naturally occurring polymer derived from the deacetylation of chitin, which is an abundant carbohydrate found mainly in the shells of various marine and terrestrial (micro)organisms. Chitosan has been extensively used to construct nanoparticles (NPs), which are biocompatible, biodegradable, non-toxic, easy to prepare, and can function as effective drug delivery systems. Moreover, chitosan NPs have been employed in gene and vaccine delivery, as well as advanced cancer therapy, and they can also serve as new therapeutic tools against viral infections. In this review, we summarize the most recent developments in the field of chitosan-based NPs intended as nucleic acid delivery vehicles and gene therapy vectors. Special attention is given to the technological aspects of chitosan complexes for nucleic acid delivery.
Collapse
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34, M. Curie-Sklodowska St., 41-819 Zabrze, Poland
| | - Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Faculty of Pharmacy, Panepistimioupolis Zografou, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
27
|
Takatsuka S, Kubota T, Kurashina Y, Kurihara S, Hirabayashi M, Fujioka M, Okano HJ, Onoe H. Controlled release of adeno-associated virus from alginate hydrogel microbeads with enhanced sensitivity to ultrasound. Biotechnol Bioeng 2023. [PMID: 37366284 DOI: 10.1002/bit.28482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Adeno-associated virus (AAV)-based gene therapy holds promise as a fundamental treatment for genetic disorders. For clinical applications, it is necessary to control AAV release timing to avoid an immune response to AAV. Here we propose an ultrasound (US)-triggered on-demand AAV release system using alginate hydrogel microbeads (AHMs) with a release enhancer. By using a centrifuge-based microdroplet shooting device, the AHMs encapsulating AAV with tungsten microparticles (W-MPs) are fabricated. Since W-MPs work as release enhancers, the AHMs have high sensitivity to the US with localized variation in acoustic impedance for improving the release of AAV. Furthermore, AHMs were coated with poly-l-lysine (PLL) to adjust the release of AAV. By applying US to the AAV encapsulating AHMs with W-MPs, the AAV was released on demand, and gene transfection to cells by AAV was confirmed without loss of AAV activity. This proposed US-triggered AAV release system expands methodological possibilities in gene therapy.
Collapse
Affiliation(s)
- Shuhei Takatsuka
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Takeshi Kubota
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama, Japan
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Sho Kurihara
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Motoki Hirabayashi
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Masato Fujioka
- Department of Molecular Genetics, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- Clinical and Translational Research Center, Keio University Hospital, Tokyo, Japan
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroaki Onoe
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, Yokohama, Japan
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Japan
| |
Collapse
|
28
|
Kadian M, Kok CY, Ravindran D, Passam F, Pasalic L, Kizana E. Focal Anticoagulation by Somatic Gene Transfer: Towards Preventing Cardioembolic Stroke. Heart Lung Circ 2023:S1443-9506(23)00509-7. [PMID: 37316436 DOI: 10.1016/j.hlc.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/16/2023]
Abstract
Cardioembolic stroke (CS) has emerged as a leading cause of ischaemic stroke (IS); distinguished by thrombi embolising to the brain from cardiac origins; most often from the left atrial appendage (LAA). Contemporary therapeutic options are largely dependent on systemic anticoagulation as a blanket preventative strategy, yet this does not represent a nuanced or personalised solution. Contraindications to systemic anticoagulation create significant unmedicated and high-risk cohorts, leaving these patients at risk of significant morbidity and mortality. Atrial appendage occlusion devices are increasingly used to mitigate stroke risk from thrombi emerging from the LAA in patients ineligible for oral anticoagulants (OACs). Their use, however, is not without risk or significant cost, and does not address the underlying aetiology of thrombosis and CS. Viral vector-based gene therapy has emerged as a novel strategy to target a spectrum of haemostatic disorders, achieving success through the adeno-associated virus (AAV) based therapy of haemophilia. Yet, thrombotic disorders, such as CS, have had limited exploration within the realm of AAV gene therapy approaches-presenting a gap in the literature and an opportunity for further research. Gene therapy has the potential to directly address the cause of CS by localised targeting of the molecular remodelling that serves to promote thrombosis.
Collapse
Affiliation(s)
- Megha Kadian
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; The University of Sydney, Sydney, NSW, Australia; Faculty of Medicine, The University of Queensland, St Lucia, Qld, Australia
| | - Cindy Y Kok
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Dhanya Ravindran
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
| | - Freda Passam
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; The Heart Research Institute, Charles Perkins Centre, Sydney, NSW, Australia
| | - Leonardo Pasalic
- Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia; Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital, Sydney, NSW, Australia
| | - Eddy Kizana
- The Centre for Heart Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia; Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia.
| |
Collapse
|
29
|
Paschoudi K, Yannaki E, Psatha N. Precision Editing as a Therapeutic Approach for β-Hemoglobinopathies. Int J Mol Sci 2023; 24:9527. [PMID: 37298481 PMCID: PMC10253463 DOI: 10.3390/ijms24119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Beta-hemoglobinopathies are the most common genetic disorders worldwide, caused by a wide spectrum of mutations in the β-globin locus, and associated with morbidity and early mortality in case of patient non-adherence to supportive treatment. Allogeneic transplantation of hematopoietic stem cells (allo-HSCT) used to be the only curative option, although the indispensable need for an HLA-matched donor markedly restricted its universal application. The evolution of gene therapy approaches made possible the ex vivo delivery of a therapeutic β- or γ- globin gene into patient-derived hematopoietic stem cells followed by the transplantation of corrected cells into myeloablated patients, having led to high rates of transfusion independence (thalassemia) or complete resolution of painful crises (sickle cell disease-SCD). Hereditary persistence of fetal hemoglobin (HPFH), a syndrome characterized by increased γ-globin levels, when co-inherited with β-thalassemia or SCD, converts hemoglobinopathies to a benign condition with mild clinical phenotype. The rapid development of precise genome editing tools (ZFN, TALENs, CRISPR/Cas9) over the last decade has allowed the targeted introduction of mutations, resulting in disease-modifying outcomes. In this context, genome editing tools have successfully been used for the introduction of HPFH-like mutations both in HBG1/HBG2 promoters or/and in the erythroid enhancer of BCL11A to increase HbF expression as an alternative curative approach for β-hemoglobinopathies. The current investigation of new HbF modulators, such as ZBTB7A, KLF-1, SOX6, and ZNF410, further expands the range of possible genome editing targets. Importantly, genome editing approaches have recently reached clinical translation in trials investigating HbF reactivation in both SCD and thalassemic patients. Showing promising outcomes, these approaches are yet to be confirmed in long-term follow-up studies.
Collapse
Affiliation(s)
- Kiriaki Paschoudi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Clinic, George Papanikolaou Hospital, Exokhi, 57010 Thessaloniki, Greece;
- Department of Hematology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Nikoletta Psatha
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
30
|
Ovsepian SV, Waxman SG. Gene therapy for chronic pain: emerging opportunities in target-rich peripheral nociceptors. Nat Rev Neurosci 2023; 24:252-265. [PMID: 36658346 DOI: 10.1038/s41583-022-00673-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 01/20/2023]
Abstract
With sweeping advances in precision delivery systems and manipulation of the genomes and transcriptomes of various cell types, medical biotechnology offers unprecedented selectivity for and control of a wide variety of biological processes, forging new opportunities for therapeutic interventions. This perspective summarizes state-of-the-art gene therapies enabled by recent innovations, with an emphasis on the expanding universe of molecular targets that govern the activity and function of primary sensory neurons and which might be exploited to effectively treat chronic pain.
Collapse
Affiliation(s)
- Saak V Ovsepian
- School of Science, Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, UK.
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Hutanu A, Signori C, Moritz B, Gregoritza M, Rohde A, Schwarz MA. Using Peptide Nucleic Acid Hybridization Probes for Qualitative and Quantitative Analysis of Nucleic Acid Therapeutics by Capillary Electrophoresis. Anal Chem 2023; 95:4914-4922. [PMID: 36888566 PMCID: PMC10034743 DOI: 10.1021/acs.analchem.2c04813] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The space of advanced therapeutic modalities is currently evolving in rapid pace necessitating continuous improvement of analytical quality control methods. In order to evaluate the identity of nucleic acid species in gene therapy products, we propose a capillary electrophoresis-based gel free hybridization assay in which fluorescently labeled peptide nucleic acids (PNAs) are applied as affinity probes. PNAs are engineered organic polymers that share the base pairing properties with DNA and RNA but have an uncharged peptide backbone. In the present study, we conduct various proof-of-concept studies to identify the potential of PNA probes for advanced analytical characterization of novel therapeutic modalities like oligonucleotides, plasmids, mRNA, and DNA released by recombinant adeno-associated virus. For single-stranded nucleic acids up to 1000 nucleotides, the method is an excellent choice that proved to be highly specific by detecting DNA traces in complex samples, while having a limit of quantification in the picomolar range when multiple probes are used. For double-stranded samples, only fragments that are similar in size to the probe could be quantified. This limitation can be circumvented when target DNA is digested and multiple probes are used opening an alternative to quantitative PCR.
Collapse
Affiliation(s)
- Andrei Hutanu
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
- University of Basel, Basel 4056, Switzerland
| | - Chiara Signori
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Bernd Moritz
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Manuel Gregoritza
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Adelheid Rohde
- Analytical Development and Quality Control, Pharma Technical Development Europe, F. Hoffmann-La Roche AG, Basel 4070, Switzerland
| | - Maria A Schwarz
- University of Basel, Basel 4056, Switzerland
- Solvias AG, Kaiseraugst 4303, Switzerland
| |
Collapse
|
32
|
CNS Delivery of Nucleic Acid Therapeutics: Beyond the Blood-Brain Barrier and Towards Specific Cellular Targeting. Pharm Res 2023; 40:77-105. [PMID: 36380168 DOI: 10.1007/s11095-022-03433-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2022]
Abstract
Nucleic acid-based therapeutic molecules including small interfering RNA (siRNA), microRNA(miRNA), antisense oligonucleotides (ASOs), messenger RNA (mRNA), and DNA-based gene therapy have tremendous potential for treating diseases in the central nervous system (CNS). However, achieving clinically meaningful delivery to the brain and particularly to target cells and sub-cellular compartments is typically very challenging. Mediating cell-specific delivery in the CNS would be a crucial advance that mitigates off-target effects and toxicities. In this review, we describe these challenges and provide contemporary evidence of advances in cellular and sub-cellular delivery using a variety of delivery mechanisms and alternative routes of administration, including the nose-to-brain approach. Strategies to achieve subcellular localization, endosomal escape, cytosolic bioavailability, and nuclear transfer are also discussed. Ultimately, there are still many challenges to translating these experimental strategies into effective and clinically viable approaches for treating patients.
Collapse
|
33
|
Pipe SW, Arruda VR, Lange C, Kitchen S, Eichler H, Wadsworth S. Characteristics of BAY 2599023 in the Current Treatment Landscape of Hemophilia A Gene Therapy. Curr Gene Ther 2023; 23:81-95. [PMID: 36111754 DOI: 10.2174/1566523222666220914105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022]
Abstract
Hemophilia A, a single gene disorder leading to deficient Factor VIII (FVIII), is a suitable candidate for gene therapy. The aspiration is for single administration of a genetic therapy that would allow the production of endogenous FVIII sufficient to restore hemostasis and other biological processes. This would potentially result in reliable protection from bleeding and its associated physical and emotional impacts. Gene therapy offers the possibility of a clinically relevant improvement in disease phenotype and transformational improvement in quality of life, including an opportunity to engage in physical activities more confidently. Gene therapy products for hemophilia A in advanced clinical development use adeno-associated viral (AAV) vectors and a codon-optimized B-domain deleted FVIII transgene. However, the different AAV-based gene therapies have distinct design features, such as choice of vector capsid, enhancer and promoter regions, FVIII transgene sequence and manufacturing processes. These, in turn, impact patient eligibility, safety and efficacy. Ideally, gene therapy technology for hemophilia A should offer bleed protection, durable FVIII expression, broad eligibility and limited response variability between patients, and long-term safety. However, several limitations and challenges must be overcome. Here, we introduce the characteristics of the BAY 2599023 (AAVhu37.hFVIIIco, DTX 201) gene therapy product, including the low prevalence in the general population of anti-AAV-hu37 antibodies, as well as other gene therapy AAV products and approaches. We will examine how these can potentially meet the challenges of gene therapy, with the ultimate aim of improving the lives of patients with hemophilia A.
Collapse
Affiliation(s)
- Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Valder R Arruda
- Division of Hematology, Department of Pediatrics, Center for Cell and Molecular Therapeutics at Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Stephen Kitchen
- Sheffield Haemophilia and Thrombosis Centre, Sheffield Teaching Hospitals, Sheffield, UK
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and University Hospital, Homburg/Saar, Germany
| | | |
Collapse
|
34
|
Ko SH, Kang JS, Kim SM, Lee EH, Park CH. Reduced Cytotoxicity by Repetitive mRNA Transfection in Differentiated Neurons. Int J Stem Cells 2022; 16:117-122. [PMID: 36581368 PMCID: PMC9978836 DOI: 10.15283/ijsc22125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Objectives mRNA-based protein expression technology has been used to express functional proteins. We have previously generated dopamine neurons from rat-embryo derived neural precursor cells (NPCs) through repeated transfection of synthetic transcription factor mRNA encoding dopamine-inducible genes. However, NPCs began to die approximately 10 d post-transfection. In this study, we examined a long-term transfection protocol that did not affect cell viability. Methods and Results Experiments were performed in eight groups sorted according to the start date of mRNA transfection. mRNA was transfected into NPCs daily for 21 d and live cell images of each group were recorded. NPCs which were differentiated for more than five days showed sustained gene expression and appreciable viability despite daily mRNA transfection for 21 d. Conclusions Repeated mRNA transfection requires cells with a sufficient differentiation period.
Collapse
Affiliation(s)
- Seung Hwan Ko
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jin Sun Kang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sang-Mi Kim
- Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Eun-Hye Lee
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea,Hanyang Biomedical Research Institute, Hanyang University, Seoul, Korea,Department of Microbiology, College of Medicine, Hanyang University, Seoul, Korea,Correspondence to Chang-Hwan Park, Graduate School of Biomedical Science & Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea, Tel: +82-2-2220-0646, Fax: +82-2-2220-2422, E-mail:
| |
Collapse
|
35
|
Landfeldt E. Gene Therapy for Neuromuscular Diseases: Health Economic Challenges and Future Perspectives. J Neuromuscul Dis 2022; 9:675-688. [DOI: 10.3233/jnd-221540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Highly efficacious, potentially curative gene therapies holds immense clinical promise, but also present complex challenges. At the time of regulatory approval and health technology assessment (HTA), evidence of efficacy and safety of gene therapies is often uncertain. In addition, research, development, and manufacturing costs, small pools of eligible patients, and the fact that many gene therapies are administered only once means that they frequently are associated with very high “one-off” price points. Although only a limited number of products have been brought to market globally, hundreds of clinical trials of gene therapies, including several of monogenetic neuromuscular diseases, are currently ongoing. Over time, as more and more conditions become amendable to gene therapy, the number of transformative, high-cost treatments is likely to increase considerably. For these reasons, concerns have been raised regarding the suitability of current health policy systems, including HTA frameworks, in ensuring appropriate access to these therapeutic innovations while simultaneously safeguarding value for taxpayers’ money, as well as affordability and sustainability. This review provides a summary overview of current challenges and future perspectives of gene therapies for neuromuscular diseases from a health economic point of view.
Collapse
|
36
|
Kheirabadi E, Macia J. Development and evaluation of culture media based on extracts of the cyanobacterium Arthrospira platensis. Front Microbiol 2022; 13:972200. [PMID: 36033853 PMCID: PMC9404535 DOI: 10.3389/fmicb.2022.972200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Continuous advances in the fields of industrial biotechnology and pharmacy require the development of new formulations of culture media based on new nutrient sources. These new sources must be sustainable, high yielding, and non-animal-based, with minimal environmental impact. Thus, culture media prepared from cyanobacterial extracts can be an interesting alternative to the current formulations. In this study, we prepared various minimal formulations of culture media using the extracts of Arthrospira platensis, and analyzed the efficiency of these formulations, based on their effect on the production of biomass and molecules of industrial interest, using different types of bacteria. All media formulations prepared in this study showed better performance than conventional media, including those based on animal ingredients. Thus, based on their versatility and high-yielding capacity, we conclude that culture media prepared from cyanobacterial extracts are a good alternative to conventional media for meeting the current demands of the cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Elaheh Kheirabadi
- Department of Medicine and Life Sciences Universitat Pompeu Fabra, Barcelona, Spain
- BioInspired Materials Company, Barcelona, Spain
| | - Javier Macia
- Department of Medicine and Life Sciences Universitat Pompeu Fabra, Barcelona, Spain
- *Correspondence: Javier Macia,
| |
Collapse
|
37
|
Oliveira C, Ferreira CJO, Sousa M, Paris JL, Gaspar R, Silva BFB, Teixeira JA, Ferreira-Santos P, Botelho CM. A Versatile Nanocarrier-Cubosomes, Characterization, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2224. [PMID: 35808060 PMCID: PMC9268278 DOI: 10.3390/nano12132224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023]
Abstract
The impact of nanotechnology on the exponential growth of several research areas, particularly nanomedicine, is undeniable. The ability to deliver active molecules to the desired site could significantly improve the efficiency of medical treatments. One of the nanocarriers developed which has drawn researchers' attention are cubosomes, which are nanosized dispersions of lipid bicontinuous cubic phases in water, consisting of a lipidic interior and aqueous domains folded in a cubic lattice. They stand out due to their ability to incorporate hydrophobic, hydrophilic, and amphiphilic compounds, their tortuous internal configuration that provides a sustained release, and the capacity to protect and safely deliver molecules. Several approaches can be taken to prepare this structure, as well as different lipids like monoolein or phytantriol. This review paper describes the different methods to prepare nanocarriers. As it is known, the physicochemical properties of nanocarriers are very important, as they influence their pharmacokinetics and their ability to incorporate and deliver active molecules. Therefore, an extensive characterization is essential to obtain the desired effect. As a result, we have extensively described the most common techniques to characterize cubosomes, particularly nanocarriers. The exceptional properties of the cubosomes make them suitable to be used in several applications in the biomedical field, from cancer therapeutics to imaging, which will be described. Taking in consideration the outstanding properties of cubosomes, their application in several research fields is envisaged.
Collapse
Affiliation(s)
- Cristiana Oliveira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Celso J. O. Ferreira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
- CF-UM_UP Department of Physics, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Miguel Sousa
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Juan L. Paris
- Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, 29590 Málaga, Spain;
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga—IBIMA, 29590 Málaga, Spain
| | - Ricardo Gaspar
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - Bruno F. B. Silva
- INL—International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (R.G.); (B.F.B.S.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Claudia M. Botelho
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (C.O.); (C.J.O.F.); (M.S.); (J.A.T.); (P.F.-S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
38
|
Cheung HW, Wong KS, Lin VYC, Farrington AF, Bond A, Wan TSM, Ho ENM. Optimization and implementation of four duplex qPCR assays for gene doping control in horseracing. Drug Test Anal 2022; 14:1587-1598. [PMID: 35633307 DOI: 10.1002/dta.3328] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 11/12/2022]
Abstract
The concern about gene doping has remained high in horseracing and other equestrian competitions. Our laboratory has previously developed a duplex quantitative polymerase chain reaction (qPCR) assay capable of detecting in equine blood the human erythropoietin (hEPO) transgene and equine tubulin α 4a (TUBA4A) gene as an internal control, the latter providing quality control over DNA extraction and qPCR. This study aimed to optimize the method for routine testing of regulatory samples. The use of an automated DNA extraction system has increased the sample throughput, consistency of DNA extraction and recovery of reference materials. The use of reduced concentration of primers and hydrolysis probe for internal control minimized their competition with transgene amplification and improved the assay sensitivity. Spike-in of an exogenous internal control at low concentration for plasma analysis has also been validated. Using the new workflow, four duplex qPCR assays have been developed for the detection of transgenes, namely hEPO, human growth hormone (hGH), insulin-like growth factor 1 (hIGF-1), and equine EPO (eEPO). The estimated limits of detection (LODs) of each transgene were 2,000 copies/mL of blood and 200 copies/mL of plasma. This method could detect the presence of transgene in blood and plasma collected from a horse administered intramuscularly (IM) with recombinant adeno-associated virus (rAAV) carrying the hEPO transgene. A longer detection time was observed in blood than in plasma. The methods have been applied to the screening of over a thousand official racehorse samples since June 2020 for the presence of these transgenes.
Collapse
Affiliation(s)
- Hiu Wing Cheung
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Kin-Sing Wong
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Venus Y C Lin
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Adrian F Farrington
- Veterinary Clinical Services, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Amanda Bond
- Equestrian Affairs, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Terence S M Wan
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| | - Emmie N M Ho
- Racing Laboratory, The Hong Kong Jockey Club, Sha Tin Racecourse, Sha Tin, N. T., Hong Kong, China
| |
Collapse
|
39
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
40
|
Lee HHC, McGinty GE, Pearl PL, Rotenberg A. Understanding the Molecular Mechanisms of Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD): Towards the Development of SSADH-Targeted Medicine. Int J Mol Sci 2022; 23:2606. [PMID: 35269750 PMCID: PMC8910003 DOI: 10.3390/ijms23052606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare genetic disorder caused by inefficient metabolic breakdown of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Pathologic brain accumulation of GABA and γ-hydroxybutyrate (GHB), a neuroactive by-product of GABA catabolism, leads to a multitude of molecular abnormalities beginning in early life, culminating in multifaceted clinical presentations including delayed psychomotor development, intellectual disability, hypotonia, and ataxia. Paradoxically, over half of patients with SSADHD also develop epilepsy and face a significant risk of sudden unexpected death in epilepsy (SUDEP). Here, we review some of the relevant molecular mechanisms through which impaired synaptic inhibition, astrocytic malfunctions and myelin defects might contribute to the complex SSADHD phenotype. We also discuss the gaps in knowledge that need to be addressed for the implementation of successful gene and enzyme replacement SSADHD therapies. We conclude with a description of a novel SSADHD mouse model that enables 'on-demand' SSADH restoration, allowing proof-of-concept studies to fine-tune SSADH restoration in preparation for eventual human trials.
Collapse
Affiliation(s)
- Henry H. C. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Gabrielle E. McGinty
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
| | - Phillip L. Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA; (G.E.M.); (A.R.)
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
41
|
Xie D, Fu D, Fu S, Chen B, He W, Wilson DA, Peng F. Mechanical Activation of Immune T Cells via a Water Driven Nanomotor. Adv Healthc Mater 2022; 11:e2200042. [PMID: 35191615 DOI: 10.1002/adhm.202200042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Indexed: 11/09/2022]
Abstract
As a key step during immune response, antigen recognition requires direct mechanical interaction between T cells and antigen presenting cells. Upon subjection to mechanical forces, mechanotransduction is triggered. In this study, the mechanical forces generated by water driven synthetic Au-Zn nanomotors are used to activate mechanosensitive Jurkat T cells. The triggering and activation of the cellular Ca2 + channel is observed. It is revealed that the mechanosensitive cells experience different degrees of activation upon receiving different mechanical input signals and demonstrate that external mechanical forces can optimize T cell activation. Compared with T cell activation with cytokines which can lead to the risky widespread activation of T cells and systemic immune storm, nanomotors can present mechanical force and achieve localized immune cell stimulation. It is expected that mechano nanomotors will contribute to the emerging T cell immunology field and facilitate more comprehensive understanding of the T cell mechanical response and function.
Collapse
Affiliation(s)
- Dazhi Xie
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Dongmei Fu
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Shaoming Fu
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Science Southern Medical University Guangzhou 510515 China
| | - Weidong He
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| | - Daniela A. Wilson
- Institute for Molecules and Materials Radboud University Nijmegen 6525 AJ The Netherlands
| | - Fei Peng
- School of Materials Science and Engineering Sun Yat‐Sen University Guangzhou 510275 China
| |
Collapse
|
42
|
Morren MA, Legius E, Giuliano F, Hadj-Rabia S, Hohl D, Bodemer C. Challenges in Treating Genodermatoses: New Therapies at the Horizon. Front Pharmacol 2022; 12:746664. [PMID: 35069188 PMCID: PMC8766835 DOI: 10.3389/fphar.2021.746664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/29/2021] [Indexed: 01/28/2023] Open
Abstract
Genodermatoses are rare inherited skin diseases that frequently affect other organs. They often have marked effects on wellbeing and may cause early death. Progress in molecular genetics and translational research has unravelled many underlying pathological mechanisms, and in several disorders with high unmet need, has opened the way for the introduction of innovative treatments. One approach is to intervene where cell-signaling pathways are dysregulated, in the case of overactive pathways by the use of selective inhibitors, or when the activity of an essential factor is decreased by augmenting a molecular component to correct disequilibrium in the pathway. Where inflammatory reactions have been induced by a genetically altered protein, another possible approach is to suppress the inflammation directly. Depending on the nature of the genodermatosis, the implicated protein or even on the particular mutation, to correct the consequences or the genetic defect, may require a highly personalised stratagem. Repurposed drugs, can be used to bring about a "read through" strategy especially where the genetic defect induces premature termination codons. Sometimes the defective protein can be replaced by a normal functioning one. Cell therapies with allogeneic normal keratinocytes or fibroblasts may restore the integrity of diseased skin and allogeneic bone marrow or mesenchymal cells may additionally rescue other affected organs. Genetic engineering is expanding rapidly. The insertion of a normal functioning gene into cells of the recipient is since long explored. More recently, genome editing, allows reframing, insertion or deletion of exons or disruption of aberrantly functioning genes. There are now several examples where these stratagems are being explored in the (pre)clinical phase of therapeutic trial programmes. Another stratagem, designed to reduce the severity of a given disease involves the use of RNAi to attenuate expression of a harmful protein by decreasing abundance of the cognate transcript. Most of these strategies are short-lasting and will thus require intermittent life-long administration. In contrast, insertion of healthy copies of the relevant gene or editing the disease locus in the genome to correct harmful mutations in stem cells is more likely to induce a permanent cure. Here we discuss the potential advantages and drawbacks of applying these technologies in patients with these genetic conditions. Given the severity of many genodermatoses, prevention of transmission to future generations remains an important goal including offering reproductive choices, such as preimplantation genetic testing, which can allow selection of an unaffected embryo for transfer to the uterus.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Departments of Dermatology and Venereology and Pediatrics, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department for Human Genetics, University Hospitals Leuven, KU Leuven, ERN Genturis and ERN Skin, Leuven, Belgium
| | - Fabienne Giuliano
- Department of Medical Genetics, University Hospital Lausanne, Lausanne, Switzerland
| | - Smail Hadj-Rabia
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| | - Daniel Hohl
- Department of Dermatology and Venereology, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Christine Bodemer
- Department of Pediatric Dermatology and Dermatology, National Reference Centre for Genodermatosis and Rare Diseases of the Skin (MAGEC), Hôpital Necker-Enfants Malades, and Assistance Publique-Hôpitaux de Paris, Université Paris Descartes, ERN Skin, Paris, France
| |
Collapse
|
43
|
|