1
|
Upadhyaya P, Milillo C, Bruno A, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Nicotine-induced Genetic and Epigenetic Modifications in Primary Human Amniotic Fluid Stem Cells. Curr Pharm Des 2024; 30:1995-2006. [PMID: 38867535 PMCID: PMC11348467 DOI: 10.2174/0113816128305232240607084420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Smoking during pregnancy has been linked to adverse health outcomes in offspring, but the underlying mechanisms are not fully understood. To date, the effect of maternal smoking has been tested in primary tissues and animal models, but the scarcity of human tissues limits experimental studies. Evidence regarding smoking-related molecular alteration and gene expression profiles in stem cells is still lacking. METHODS We developed a cell culture model of human amniotic fluid stem cells (hAFSCs) of nicotine (NIC) exposure to examine the impact of maternal smoking on epigenetic alterations of the fetus. RESULTS NIC 0.1 μM (equivalent to "light" smoking, i.e., 5 cigarettes/day) did not significantly affect cell viability; however, significant alterations in DNA methylation and N6-methyladenosine (m6A) RNA methylation in hAFSCs occurred. These epigenetic changes may influence the gene expression and function of hAFSCs. Furthermore, NIC exposure caused time-dependent alterations of the expression of pluripotency genes and cell surface markers, suggesting enhanced cell stemness and impaired differentiation potential. Furthermore, NICtreated cells showed reduced mRNA levels of key adipogenic markers and hypomethylation of the promoter region of the imprinted gene H19 during adipogenic differentiation, potentially suppressing adipo/lipogenesis. Differential expression of 16 miRNAs, with predicted target genes involved in various metabolic pathways and linked to pathological conditions, including cognitive delay and fetal growth retardation, has been detected. CONCLUSION Our findings highlight multi-level effects of NIC on hAFSCs, including epigenetic modifications, altered gene expression, and impaired cellular differentiation, which may contribute to long-term consequences of smoking in pregnancy and its potential impact on offspring health and development.
Collapse
Affiliation(s)
- Prabin Upadhyaya
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti 66100, Italy
| |
Collapse
|
2
|
Alluli A, Fonseca G, Matthews J, Eidelman DH, Baglole CJ. Regulation of long non-coding RNA expression by aryl hydrocarbon receptor activation. Toxicol Lett 2024; 391:13-25. [PMID: 38036013 DOI: 10.1016/j.toxlet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
3
|
Clausen AR, Durand S, Petersen RL, Staunstrup NH, Qvist P. Circulating miRNAs as Potential Biomarkers for Patient Stratification in Bipolar Disorder: A Combined Review and Data Mining Approach. Genes (Basel) 2022; 13:1038. [PMID: 35741801 PMCID: PMC9222282 DOI: 10.3390/genes13061038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
Bipolar disorder is a debilitating psychiatric condition that is shaped in a concerted interplay between hereditary and triggering risk factors. Profound depression and mania define the disorder, but high clinical heterogeneity among patients complicates diagnosis as well as pharmacological intervention. Identification of peripheral biomarkers that capture the genomic response to the exposome may thus progress the development of personalized treatment. MicroRNAs (miRNAs) play a prominent role in of post-transcriptional gene regulation in the context of brain development and mental health. They are coordinately modulated by multifarious effectors, and alteration in their expression profile has been reported in a variety of psychiatric conditions. Intriguingly, miRNAs can be released from CNS cells and enter circulatory bio-fluids where they remain remarkably stable. Hence, peripheral circulatory miRNAs may act as bio-indicators for the combination of genetic risk, environmental exposure, and/or treatment response. Here we provide a comprehensive literature search and data mining approach that summarize current experimental evidence supporting the applicability of miRNAs for patient stratification in bipolar disorder.
Collapse
Affiliation(s)
- Alexandra R. Clausen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Simon Durand
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Rasmus L. Petersen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
| | - Nicklas H. Staunstrup
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Blood Bank and Immunology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.R.C.); (S.D.); (R.L.P.); (N.H.S.)
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, 8000 Aarhus, Denmark
- Centre for Integrative Sequencing, iSEQ, Aarhus University, 8000 Aarhus, Denmark
- Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, 8000 Aarhus, Denmark
- Department of Health Science and Technology, Aalborg University, 9200 Aalborg, Denmark
| |
Collapse
|
4
|
Nakamura A, François O, Lepeule J. Epigenetic Alterations of Maternal Tobacco Smoking during Pregnancy: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5083. [PMID: 34064931 PMCID: PMC8151244 DOI: 10.3390/ijerph18105083] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
In utero exposure to maternal tobacco smoking is the leading cause of birth complications in addition to being associated with later impairment in child's development. Epigenetic alterations, such as DNA methylation (DNAm), miRNAs expression, and histone modifications, belong to possible underlying mechanisms linking maternal tobacco smoking during pregnancy and adverse birth outcomes and later child's development. The aims of this review were to provide an update on (1) the main results of epidemiological studies on the impact of in utero exposure to maternal tobacco smoking on epigenetic mechanisms, and (2) the technical issues and methods used in such studies. In contrast with miRNA and histone modifications, DNAm has been the most extensively studied epigenetic mechanism with regard to in utero exposure to maternal tobacco smoking. Most studies relied on cord blood and children's blood, but placenta is increasingly recognized as a powerful tool, especially for markers of pregnancy exposures. Some recent studies suggest reversibility in DNAm in certain genomic regions as well as memory of smoking exposure in DNAm in other regions, upon smoking cessation before or during pregnancy. Furthermore, reversibility could be more pronounced in miRNA expression compared to DNAm. Increasing evidence based on longitudinal data shows that maternal smoking-associated DNAm changes persist during childhood. In this review, we also discuss some issues related to cell heterogeneity as well as downstream statistical analyses used to relate maternal tobacco smoking during pregnancy and epigenetics. The epigenetic effects of maternal smoking during pregnancy have been among the most widely investigated in the epigenetic epidemiology field. However, there are still huge gaps to fill in, including on the impact on miRNA expression and histone modifications to get a better view of the whole epigenetic machinery. The consistency of maternal tobacco smoking effects across epigenetic marks and across tissues will also provide crucial information for future studies. Advancement in bioinformatic and biostatistics approaches is key to develop a comprehensive analysis of these biological systems.
Collapse
Affiliation(s)
- Aurélie Nakamura
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France;
| | - Olivier François
- Université Grenoble Alpes, Laboratoire TIMC, CNRS UMR 5525, 38000 Grenoble, France;
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000 Grenoble, France;
| |
Collapse
|
5
|
Seelan RS, Greene RM, Pisano MM. MicroRNAs as Epigenetic Targets of Cigarette Smoke During Embryonic Development. Microrna 2020; 9:168-173. [PMID: 31556862 PMCID: PMC7365999 DOI: 10.2174/2211536608666190926114704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023]
Abstract
The adverse developmental effects of exposure to Cigarette Smoke (CS) during pregnancy are documented in this paper. These include low birth weight, congenital anomalies, preterm birth, fetal mortality and morbidity. The current biological thought now recognizes that epigenetics represents a fundamental contributing process in embryogenesis, and that the environment can have a profound effect on shaping the epigenome. It has become increasingly recognized that genes encoding microRNAs (miRNAs) might be potential loci for congenital disabilities. One means by which CS can cause developmental anomalies may be through epigenetic mechanisms involving altered miRNA expression. While several studies have focused on genes affected by CS during embryonic/ fetal development, there is a paucity of knowledge on the involvement of miRNAs in this process. This brief review summarizes the current state of knowledge in this area.
Collapse
Affiliation(s)
- Ratnam S. Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| | - Robert M. Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| | - Michele M. Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies,
University of Louisville School of Dentistry, Louisville, KY40202, USA
| |
Collapse
|
6
|
Zhou G. Tobacco, air pollution, environmental carcinogenesis, and thoughts on conquering strategies of lung cancer. Cancer Biol Med 2019; 16:700-713. [PMID: 31908889 PMCID: PMC6936241 DOI: 10.20892/j.issn.2095-3941.2019.0180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Each year there will be an estimated 2.1 million new lung cancer cases and 1.8 million lung cancer deaths worldwide. Tobacco smoke is the No.1 risk factors of lung cancer, accounting for > 85% lung cancer deaths. Air pollution, or haze, comprises ambient air pollution and household air pollution, which are reported to cause 252,000 and 304,000 lung cancer deaths each year, respectively. Tobacco smoke and haze (hereafter, smohaze) contain fine particles originated from insufficient combustion of biomass or coal, have quite similar carcinogens, and cause similar diseases. Smohaze exert hazardous effects on exposed populations, including induction of a large amount of mutations in the genome, alternative splicing of mRNAs, abnormalities in epigenomics, initiation of tumor-promoting chronic inflammation, and facilitating immune escape of transformed cells. Tackling smohaze and development of multi-targets-based preventive and therapeutic approaches targeting smohaze-induced carcinogenesis are the key to conquer lung cancer in the future.
Collapse
Affiliation(s)
- Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
7
|
Pinson MR, Miranda RC. Noncoding RNAs in development and teratology, with focus on effects of cannabis, cocaine, nicotine, and ethanol. Birth Defects Res 2019; 111:1308-1319. [PMID: 31356004 DOI: 10.1002/bdr2.1559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Completion of the Human Genome Project has led to the identification of a large number of transcription start sites that are not paired with protein-coding genes, supporting the growing recognition of the abundance of encoded nonprotein-coding RNAs (ncRNAs) and their importance for speciation and species-specific development. Present in both plants and animals, ncRNAs vary in size, function, primary sequence, and secondary structure. While microRNAs (miRNAs) are the best known, there are a number of other ncRNAs (long[er] nonprotein-coding RNA, pseudogenes, circular RNAs, and so on) that have been shown to play an important role in the development either directly or via networks of proteins and other ncRNAs, including modulating the impact of miRNAs. Furthermore, these ncRNAs and their developmental regulatory networks are sensitive to teratogens such as ethanol, cannabis, cocaine, and nicotine. A better understanding of the developmental role of ncRNAs and their capacity to mediate teratogenesis is a necessary step in efforts to minimize the long-term consequences of developmental exposures to drugs-of-abuse. Moreover, with increasing awareness of the prevalence of polydrug use, experimental models will need to incorporate more complex drug exposure paradigms into meaningful assessments of developmental ncRNA function.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, 8447 Riverside Pkwy Suite 1005 MREB, Bryan, Texas
| |
Collapse
|
8
|
Perera BPU, Svoboda L, Dolinoy DC. Genomic Tools for Environmental Epigenetics and Implications for Public Health. CURRENT OPINION IN TOXICOLOGY 2019; 18:27-33. [PMID: 31763499 DOI: 10.1016/j.cotox.2019.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Epigenetics refers to the study of mitotically heritable and potentially reversible changes in gene expression unrelated to the DNA sequence itself, influenced by epigenetic marks including chromatin modifications, non-coding RNA and alterations to DNA itself via methylation and hydroxymethylation. Epigenetics has taken center stage in the study of diseases such as cancer, diabetes, and neurodegeneration; however, its integration into the field of environmental health sciences and toxicology (e.g. Toxicoepigenetics) is in its infancy. This review highlights the need to evaluate surrogate and target tissues in the field of toxicoepigenetics as the National Institute of Environmental Health Sciences (NIEHS) multi-phased Toxicant Exposure and Response by Genomic and Epigenomic Regulators of Transcription (TaRGET) consortia make headway, and the emergence of non-coding RNA biomarkers. The review also discusses lead (Pb) as a potential toxicoepigenetic exposure, where pre- and post-natal Pb exposure is associated with reprogramming of DNA methylation, histone modifications, and microRNA expression, representing potential biomarkers or predictors for Pb-induced health outcomes. Finally, new advances in epigenome editing, highlighting the potential of small ncRNA, will be explored for environmental health sciences research.
Collapse
Affiliation(s)
- Bambarendage P U Perera
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Laurie Svoboda
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
| | - Dana C Dolinoy
- University of Michigan School of Public Health, Department of Environmental Health Sciences, Ann Arbor, MI
- University of Michigan School of Public Health, Department of Nutritional Sciences, Ann Arbor, MI
| |
Collapse
|
9
|
Liu B, Hu X, Li Y, Ke J, Dasgupta C, Huang X, Walayat A, Zhang L, Xiao D. Epigenetic down-regulation of BK Ca channel by miR-181a contributes to the fetal and neonatal nicotine-mediated exaggerated coronary vascular tone in adult life. Int J Cardiol 2019; 281:82-89. [PMID: 30738609 DOI: 10.1016/j.ijcard.2019.01.099] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/07/2019] [Accepted: 01/29/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fetal origin of adult cardiovascular disease is one of the most pressing public concerns and economic problem in modern life. Maternal cigarette smoking/nicotine abuse increases the risk of cardiovascular disease in offspring. However, the underlying mechanisms and theranostics remain unclear. We hypothesized that fetal and neonatal nicotine exposure enhances microRNA-181a (miR-181a) which targets large-conductance Ca2+-activated K+ (BKCa) channels, resulting in increased coronary vascular tone in adult offspring. METHODS Nicotine or saline was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. Experiments were conducted in adult (~6 month old) male offspring. RESULTS Nicotine enhanced pressure-induced coronary vascular tone, which was abrogated by BKCa channel blocker. Nicotine selectively attenuated coronary BKCa β1 but not α subunit expression. Functionally, nicotine suppressed BKCa current density and inhibited BKCa activator NS1619-induced coronary relaxations. Furthermore, activation of BKCa increased coronary flow and improved heart ischemia/reperfusion-induced infarction. Nicotine selectively enhanced miR-181a expression. MiR-181a mimic inhibited BKCa β1 expression/channel current and decreased NS1619-induced coronary relaxation. Antioxidant eliminated the difference of BKCa current density between the saline and nicotine-treated groups and partially restored NS1619-induced relaxation in nicotine group. MiR-181a antisense decreased vascular tone and eliminated the differences between nicotine exposed and control groups. CONCLUSION Fetal and neonatal nicotine exposure-mediated miR-181a overexpression plays an important role in nicotine-enhanced coronary vascular tone via epigenetic down-regulation of BKca channel mechanism, which provides a potentially novel therapeutic molecular target of miR-181a/BKca channels for the treatment of coronary heart ischemic disease.
Collapse
Affiliation(s)
- Bailin Liu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xiangqun Hu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Jun Ke
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Chiranjib Dasgupta
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xiaohui Huang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Andrew Walayat
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Daliao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
10
|
Saad MA, Ku J, Kuo SZ, Li PX, Zheng H, Yu MA, Wang-Rodriguez J, Ongkeko WM. Identification and characterization of dysregulated P-element induced wimpy testis-interacting RNAs in head and neck squamous cell carcinoma. Oncol Lett 2019; 17:2615-2622. [PMID: 30854037 PMCID: PMC6365962 DOI: 10.3892/ol.2019.9913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
It is clear that alcohol consumption is a major risk factor in the pathogenesis of head and neck squamous cell carcinoma (HNSCC); however, the molecular mechanism underlying the pathogenesis of alcohol-associated HNSCC remains poorly understood. The aim of the present study was to identify and characterize P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) and PIWI proteins dysregulated in alcohol-associated HNSCC to elucidate their function in the development of this cancer. Using next generation RNA-sequencing (RNA-seq) data obtained from 40 HNSCC patients, the piRNA and PIWI protein expression of HNSCC samples was compared between alcohol drinkers and non-drinkers. A separate piRNA expression RNA-seq analysis of 18 non-smoker HNSCC patients was also conducted. To verify piRNA expression, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed on the most differentially expressed alcohol-associated piRNAs in ethanol and acetaldehyde-treated normal oral keratinocytes. The correlation between piRNA expression and patient survival was analyzed using Kaplan-Meier estimators and multivariate Cox proportional hazard models. A comparison between alcohol drinking and non-drinking HNSCC patients demonstrated that a panel of 3,223 piRNA transcripts were consistently detected and differentially expressed. RNA-seq analysis and in vitro RT-qPCR verification revealed that 4 of these piRNAs, piR-35373, piR-266308, piR-58510 and piR-38034, were significantly dysregulated between drinking and non-drinking cohorts. Of these four piRNAs, low expression of piR-58510 and piR-35373 significantly correlated with improved patient survival. Furthermore, human PIWI-like protein 4 was consistently upregulated in ethanol and acetaldehyde-treated normal oral keratinocytes. These results demonstrate that alcohol consumption may cause dysregulation of piRNA expression in HNSCC and in vitro verifications identified 4 piRNAs that may be involved in the pathogenesis of alcohol-associated HNSCC.
Collapse
Affiliation(s)
- Maarouf A Saad
- School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Jonjei Ku
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Selena Z Kuo
- School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Pin Xue Li
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hao Zheng
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Andrew Yu
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica Wang-Rodriguez
- Veterans Administration Medical Center and Department of Pathology, University of California, San Diego, La Jolla, CA 92161, USA
| | - Weg M Ongkeko
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Al-Obaide MAI, Abdel-Salam ASG, Al-Hmoud ND, Hassani HH, Verma JP. Editorial: Bioinformatics and Biostatistics Applications in Tobacco Smoking Research. Front Public Health 2019; 6:366. [PMID: 30619807 PMCID: PMC6297381 DOI: 10.3389/fpubh.2018.00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | | | - Hayfa H Hassani
- Department of Biology, College of Science, University of Baghdad, Baghdad, Iraq
| | - J P Verma
- Department of Sport Psychology, Lakshmibai National Institute of Physical Education, Gwalior, India
| |
Collapse
|
12
|
Gunes S, Metin Mahmutoglu A, Arslan MA, Henkel R. Smoking-induced genetic and epigenetic alterations in infertile men. Andrologia 2018; 50:e13124. [DOI: 10.1111/and.13124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine; Ondokuz Mayis University; Samsun Turkey
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute; Ondokuz Mayis University; Samsun Turkey
| | - Asli Metin Mahmutoglu
- Department of Medical Biology, Faculty of Medicine; Ondokuz Mayis University; Samsun Turkey
| | - Mehmet Alper Arslan
- Department of Medical Biology, Faculty of Medicine; Ondokuz Mayis University; Samsun Turkey
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute; Ondokuz Mayis University; Samsun Turkey
| | - Ralf Henkel
- Department of Medical Bioscience; University of the Western Cape; Bellville South Africa
| |
Collapse
|
13
|
Strategies to reduce non-communicable diseases in the offspring: negative and positive in utero programming. J Dev Orig Health Dis 2018; 9:642-652. [PMID: 30111388 DOI: 10.1017/s2040174418000569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-communicable diseases (NCDs) are a major problem as they are the leading cause of death and represent a substantial economic cost. The 'Developmental Origins of Health and Disease Hypothesis' proposes that adverse stimuli at different life stages can increase the predisposition to these diseases. In fact, adverse in utero programming is a major origin of these diseases due to the high malleability of embryonic development. This review provides a comprehensive analysis of the scientific literature on in utero programming and NCDs highlighting potential medical strategies to prevent these diseases based upon this programming. We fully address the concept and mechanisms involved in this programming (anatomical disruptions, epigenetic modifications and microbiota alterations). We also examine the negative role of in utero programming on the increased predisposition of NCDs in the offspring, which introduces the passive medical approach that consists of avoiding adverse stimuli including an unhealthy diet and environmental chemicals. Finally, we extensively discuss active medical approaches that target the causes of NCDs and have the potential to significantly and rapidly reduce the incidence of NCDs. These approaches can be classified as direct in utero programming modifications and personalized lifestyle pregnancy programs; they could potentially provide transgenerational NCDs protection. Active strategies against NCDs constitute a promising tool for the reduction in NCDs.
Collapse
|
14
|
Cui M, Chang Y, Du W, Liu S, Qi J, Luo R, Luo S. Upregulation of lncRNA-ATB by Transforming Growth Factor β1 (TGF-β1) Promotes Migration and Invasion of Papillary Thyroid Carcinoma Cells. Med Sci Monit 2018; 24:5152-5158. [PMID: 30042377 PMCID: PMC6071509 DOI: 10.12659/msm.909420] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background lncRNA-ATB plays an oncogenic role in various types of malignancies, but its involvement in papillary thyroid carcinoma (PTC) cells, which is a main type of thyroid cancer, is unknown. Material/Methods A total of 76 patients with PTC and 28 people with normal physiological conditions were included in this study. Tumor tissues and adjacent healthy tissues were collected from PTC patients and blood was extracted from both patients and healthy controls. Expression of lncRNA-ATB in those tissues was detected by qRT-PCR. All patients were followed up for 5 years and diagnostic and prognostic values of serum lncRNA-ATB for PTC were investigated by ROC curve analysis and survival curve analysis, respectively. lncRNA-ATB overexpression PTC cell lines were established and effects of lncRNA-ATB overexpression on cell migration and invasion were investigated by Transwell cell migration and invasion assay, respectively. Effects of lncRNA-ATB overexpression on TGF-β1 expression were investigated by Western blot. Results lncRNA-ATB expression level was higher in tumor tissues than in adjacent healthy tissues in most PTC patients. Serum level of lncRNA-ATB was higher in cancer patients than in healthy control. Serum lncRNA-ATB can be used to accurately predict PTC and its prognosis. lncRNA-ATB overexpression promoted tumor cell migration and invasion, lncRNA-ATB overexpression showed no significant effects on TGF-β1 expression, and TGF-β1 treatment increased the expression level of lncRNA-ATB. Conclusion Upregulation of lncRNA-ATB by TGF-β1 promotes migration and invasion of PTC cells.
Collapse
Affiliation(s)
- Meng Cui
- Department of Head and Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yu Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Wei Du
- Department of Head and Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shanting Liu
- Department of Head and Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Jinxing Qi
- Department of Head and Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Ruihua Luo
- Department of Head and Neck and Thyroid, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Suxia Luo
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
15
|
Krishnan AR, Korrapati A, Zou AE, Qu Y, Wang XQ, Califano JA, Wang-Rodriguez J, Lippman SM, Hovell MF, Ongkeko WM. Smoking status regulates a novel panel of PIWI-interacting RNAs in head and neck squamous cell carcinoma. Oral Oncol 2016; 65:68-75. [PMID: 28109471 DOI: 10.1016/j.oraloncology.2016.12.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/30/2016] [Accepted: 12/17/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Smoking remains a primary etiological factor in head and neck squamous cell carcinoma (HNSCC). Given that non-coding RNAs (ncRNAs), including PIWI-interacting RNAs (piRNAs), have emerged as mediators of initiation and progression in head and neck malignancies, we undertook a global study of piRNA expression patterns in smoking-associated HNSCC. MATERIALS AND METHODS Using RNA-sequencing data from 256 current smoker and lifelong nonsmoker samples in The Cancer Genome Atlas (TCGA), we analyzed the differential expression patterns of 27,127 piRNAs across patient cohorts stratified by tobacco use, with HPV16 status and tumor status taken into account. We correlated their expression to clinical characteristics and to smoking-induced alterations of PIWI proteins, the functional counterparts of piRNAs. Finally, we correlated our identified piRNAs and PIWI proteins to known chromosomal aberrations in HNSCC to understand their wider-ranging genomic effects. RESULTS AND CONCLUSION Our analyses implicated a 13-member piRNA panel in smoking-related HNSCC, among which NONHSAT123636 and NONHSAT113708 associated with tumor stage, NONHSAT067200 with patient survival, and NONHSAT081250 with smoking-altered PIWIL1 protein expression. 6 piRNAs as well as PIWIL1 correlated with genomic alterations common to HNSCC, including TP53 mutation, TP53-3p co-occurrence, and 3q26, 8q24, and 11q13 amplification. Collectively, our findings provide novel insights into the etiology-specific piRNA landscape of smoking-induced HNSCC.
Collapse
Affiliation(s)
- Aswini R Krishnan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Avinaash Korrapati
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Angela E Zou
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Yuanhao Qu
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Joseph A Califano
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| | - Jessica Wang-Rodriguez
- Veterans Administration Medical Center and Department of Pathology, University of California, San Diego, La Jolla, CA, United States.
| | - Scott M Lippman
- Department of Medicine and Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States.
| | - Melbourne F Hovell
- Graduate School of Public Health, San Diego State University, San Diego, CA, United States.
| | - Weg M Ongkeko
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
16
|
Emma R, Caruso M, Polosa R. Smoking history can influence the epigenetic and gene expression profile. Am J Physiol Lung Cell Mol Physiol 2016; 311:L525. [DOI: 10.1152/ajplung.00285.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rosalia Emma
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Riccardo Polosa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Sanders AP, Burris HH, Just AC, Motta V, Amarasiriwardena C, Svensson K, Oken E, Solano-Gonzalez M, Mercado-Garcia A, Pantic I, Schwartz J, Tellez-Rojo MM, Baccarelli AA, Wright RO. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure. Epigenomics 2015; 7:885-96. [PMID: 26418635 DOI: 10.2217/epi.15.54] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIM Toxic metals including lead and mercury are associated with adverse pregnancy outcomes. This study aimed to assess the association between miRNA expression in the cervix during pregnancy with lead and mercury levels. MATERIALS & METHODS We obtained cervical swabs from pregnant women (n = 60) and quantified cervical miRNA expression. Women's blood lead, bone lead and toenail mercury levels were analyzed. We performed linear regression to examine the association between metal levels and expression of 74 miRNAs adjusting for covariates. RESULTS Seventeen miRNAs were negatively associated with toenail mercury levels, and tibial bone lead levels were associated with decreased expression of miR-575 and miR-4286. CONCLUSION The findings highlight miRNAs in the human cervix as novel responders to maternal chemical exposure during pregnancy.
Collapse
Affiliation(s)
- Alison P Sanders
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Heather H Burris
- Department of Neonatology, Beth Israel Deaconess Medical Center & Division of Newborn Medicine, Boston Children's Hospital & Harvard Medical School, 330 Brookline Ave, RO 318, Boston, MA 02215, USA
| | - Allan C Just
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Valeria Motta
- Laboratory of Environmental Epigenetics, Exposure Epidemiology & Risk Program, Harvard TH Chan School of Public Health, Boston, MA 02115, USA.,Department of Clinical Sciences & Community Health University of Milan - Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chitra Amarasiriwardena
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Laboratory of Environmental Epigenetics, Exposure Epidemiology & Risk Program, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Katherine Svensson
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School & Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Maritsa Solano-Gonzalez
- Center for Nutrition & Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Adriana Mercado-Garcia
- Center for Nutrition & Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Ivan Pantic
- Laboratory of Environmental Epigenetics, Exposure Epidemiology & Risk Program, Harvard TH Chan School of Public Health, Boston, MA 02115, USA.,Division of Research in Public Health, National Institute of Perinatology, Mexico City, Mexico
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition & Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA.,Laboratory of Environmental Epigenetics, Exposure Epidemiology & Risk Program, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Robert O Wright
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Krauss-Etschmann S, Meyer KF, Dehmel S, Hylkema MN. Inter- and transgenerational epigenetic inheritance: evidence in asthma and COPD? Clin Epigenetics 2015; 7:53. [PMID: 26052354 PMCID: PMC4456695 DOI: 10.1186/s13148-015-0085-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Evidence is now emerging that early life environment can have lifelong effects on metabolic, cardiovascular, and pulmonary function in offspring, a concept also known as fetal or developmental programming. In mammals, developmental programming is thought to occur mainly via epigenetic mechanisms, which include DNA methylation, histone modifications, and expression of non-coding RNAs. The effects of developmental programming can be induced by the intrauterine environment, leading to intergenerational epigenetic effects from one generation to the next. Transgenerational epigenetic inheritance may be considered when developmental programming is transmitted across generations that were not exposed to the initial environment which triggered the change. So far, inter- and transgenerational programming has been mainly described for cardiovascular and metabolic disease risk. In this review, we discuss available evidence that epigenetic inheritance also occurs in respiratory diseases, using asthma and chronic obstructive pulmonary disease (COPD) as examples. While multiple epidemiological as well as animal studies demonstrate effects of 'toxic' intrauterine exposure on various asthma-related phenotypes in the offspring, only few studies link epigenetic marks to the observed phenotypes. As epigenetic marks may distinguish individuals most at risk of later disease at early age, it will enable early intervention strategies to reduce such risks. To achieve this goal further, well designed experimental and human studies are needed.
Collapse
Affiliation(s)
- Susanne Krauss-Etschmann
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
- />Priority Area Asthma & Allergy, Leibniz Center for Medicine and Biosciences, Research Center Borstel and Christian Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research, Parkallee 1-40, Borstel, Germany
| | - Karolin F Meyer
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Stefan Dehmel
- />Comprehensive Pneumology Center, Helmholtz Center Munich and Children’s Hospital of Ludwig-Maximilians University, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Machteld N Hylkema
- />Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
- />University of Groningen, GRIAC Research Institute, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| |
Collapse
|
19
|
Nuclear and mitochondrial DNA alterations in newborns with prenatal exposure to cigarette smoke. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:1135-55. [PMID: 25648174 PMCID: PMC4344659 DOI: 10.3390/ijerph120201135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/13/2015] [Indexed: 12/17/2022]
Abstract
Newborns exposed to maternal cigarette smoke (CS) in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal) and assesses how such changes may have consequences for both fetal growth and development.
Collapse
|
20
|
Mazzio EA, Soliman KFA. Epigenetics and nutritional environmental signals. Integr Comp Biol 2014; 54:21-30. [PMID: 24861811 DOI: 10.1093/icb/icu049] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All terrestrial life is influenced by multi-directional flows of information about its environment, enabling malleable phenotypic change through signals, chemical processes, or various forms of energy that facilitate acclimatization. Billions of biological co-inhabitants of the earth, including all plants and animals, collectively make up a genetic/epigenetic ecosystem by which adaptation/survival (inputs and outputs) are highly interdependent on one another. As an ecosystem, the solar system, rotation of the planets, changes in sunlight, and gravitational pull influence cyclic epigenetic transitions and chromatin remodeling that constitute biological circadian rhythms controlling senescence. In humans, adverse environmental conditions such as poverty, stress, alcohol, malnutrition, exposure to pollutants generated from industrialization, man-made chemicals, and use of synthetic drugs can lead to maladaptive epigenetic-related illnesses with disease-specific genes being atypically activated or silenced. Nutrition and dietary practices are one of the largest facets in epigenetic-related metabolism, where specific "epi-nutrients" can stabilize the genome, given established roles in DNA methylation, histone modification, and chromatin remodeling. Moreover, food-based "epi-bioactive" constituents may reverse maladaptive epigenetic patterns, not only prior to conception and during fetal/early postnatal development but also through adulthood. In summary, in contrast to a static genomic DNA structure, epigenetic changes are potentially reversible, raising the hope for therapeutic and/or dietary interventions that can reverse deleterious epigenetic programing as a means to prevent or treat major illnesses.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Florida A&M University, College of Pharmacy & Pharmaceutical Sciences, 1520 S MLK Jr. Blvd Tallahassee, FL 32307, USA
| |
Collapse
|
21
|
Chaudhry MA. Small Nucleolar RNA Host Genes and Long Non-Coding RNA Responses in Directly Irradiated and Bystander Cells. Cancer Biother Radiopharm 2014; 29:135-41. [DOI: 10.1089/cbr.2013.1574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
22
|
Wang J, Chen Y, Lin C, Jia J, Tian L, Yang K, Zhao L, Lai N, Jiang Q, Sun Y, Zhong N, Ran P, Lu W. Effects of chronic exposure to cigarette smoke on canonical transient receptor potential expression in rat pulmonary arterial smooth muscle. Am J Physiol Cell Physiol 2013; 306:C364-73. [PMID: 24336649 DOI: 10.1152/ajpcell.00048.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the possible mechanism of cigarette smoke (CS)-induced pulmonary hypertension and furthermore provide effective targets for prevention and treatment, the effects of chronic CS on rat pulmonary arterial smooth muscle in vivo and nicotine treatment on rat pulmonary arterial smooth muscle cells (PASMCs) in vitro were investigated. In this study, we demonstrated that chronic CS exposure led to rat weight loss, right ventricular hypertrophy, and pulmonary arterial remodeling. A fluorescence microscope was used to measure intracellular calcium concentration ([Ca(2+)]i) in rat distal PASMCs. Results showed that basal [Ca(2+)]i and store-operated calcium entry (SOCE) levels in PASMCs from 3- and 6-mo CS-exposed rats were markedly higher than those in cells from the unexposed control animals (the increases in 6-mo CS group were more significant than that in 3-mo group), accompanied with increased canonical transient receptor potential 1 (TRPC1) and TRPC6 expression at both mRNA and protein levels in isolated distal PA. Simultaneously, in vitro study showed that nicotine treatment (10 nM) significantly increased basal [Ca(2+)]i and SOCE and upregulated TRPC1 and TRPC6 expression in cultured rat distal PASMCs. TRPC siRNA knockdown strategies revealed that the elevations of basal [Ca(2+)]i and SOCE induced by nicotine in PASMCs were TRPC1 and TRPC6 dependent. These results suggested that chronic CS-induced changes in vascular tone and structure in PA and the development of pulmonary hypertension might be largely due to upregulation of TRPC1 and TRPC6 expression in PASMCs, in which nicotine played an important role.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Phenotypes determined by cluster analysis in severe or difficult-to-treat asthma. J Allergy Clin Immunol 2013; 133:1549-56. [PMID: 24315502 DOI: 10.1016/j.jaci.2013.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 08/16/2013] [Accepted: 10/08/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Asthma phenotyping can facilitate understanding of disease pathogenesis and potential targeted therapies. OBJECTIVE To further characterize the distinguishing features of phenotypic groups in difficult-to-treat asthma. METHODS Children ages 6-11 years (n = 518) and adolescents and adults ages ≥12 years (n = 3612) with severe or difficult-to-treat asthma from The Epidemiology and Natural History of Asthma: Outcomes and Treatment Regimens (TENOR) study were evaluated in this post hoc cluster analysis. Analyzed variables included sex, race, atopy, age of asthma onset, smoking (adolescents and adults), passive smoke exposure (children), obesity, and aspirin sensitivity. Cluster analysis used the hierarchical clustering algorithm with the Ward minimum variance method. The results were compared among clusters by χ(2) analysis; variables with significant (P < .05) differences among clusters were considered as distinguishing feature candidates. Associations among clusters and asthma-related health outcomes were assessed in multivariable analyses by adjusting for socioeconomic status, environmental exposures, and intensity of therapy. RESULTS Five clusters were identified in each age stratum. Sex, atopic status, and nonwhite race were distinguishing variables in both strata; passive smoke exposure was distinguishing in children and aspirin sensitivity in adolescents and adults. Clusters were not related to outcomes in children, but 2 adult and adolescent clusters distinguished by nonwhite race and aspirin sensitivity manifested poorer quality of life (P < .0001), and the aspirin-sensitive cluster experienced more frequent asthma exacerbations (P < .0001). CONCLUSION Distinct phenotypes appear to exist in patients with severe or difficult-to-treat asthma, which is related to outcomes in adolescents and adults but not in children. The study of the therapeutic implications of these phenotypes is warranted.
Collapse
|
24
|
Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 2013; 133:543-50. [PMID: 23978443 DOI: 10.1016/j.jaci.2013.06.036] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/21/2013] [Accepted: 06/28/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is evidence that microRNAs (miRNAs) are sensitive to environmental stressors, including tobacco smoke. On the other hand, miRNAs are involved in immune regulation, such as regulatory T (Treg) cell differentiation. The aim of the present study was to investigate the association between prenatal tobacco smoke exposure, miRNAs, and Treg cell numbers. METHODS Within a prospective mother-child study (Lifestyle and Environmental Factors and Their Influence on Newborns Allergy Risk), we analyzed the expression of miR-155 and miR-223 together with Treg cell numbers in maternal blood during pregnancy, as well as in cord blood (n = 441). Tobacco smoke exposure was assessed based on questionnaire answers and maternal urine cotinine levels. Additionally, the concentration of smoking-related volatile organic compounds was measured in dwellings of study participants. RESULTS Both maternal and cord blood miR-223 expressions were positively correlated with maternal urine cotinine levels. An association was also found between maternal miR-223 expression and indoor concentrations of benzene and toluene. High miR-223 expression was associated with lower Treg cell numbers in maternal and cord blood. Furthermore, children with lower Treg cell numbers at birth had a higher risk of atopic dermatitis during the first 3 years of life. The concentration of the toluene metabolite S-benzylmercapturic acid in maternal urine was associated with decreased cord blood, but not maternal blood, miR-155 expression. A relationship between miR-155 expression and Treg cell numbers was not found. CONCLUSIONS For the first time, we show that maternal tobacco smoke exposure during pregnancy correlates with the level of miRNA-223 expression in blood, with an effect on children's cord blood Treg cell numbers and subsequent allergy risk.
Collapse
|
25
|
Jackson FLC, Niculescu MD, Jackson RT. Conceptual shifts needed to understand the dynamic interactions of genes, environment, epigenetics, social processes, and behavioral choices. Am J Public Health 2013; 103 Suppl 1:S33-42. [PMID: 23927503 DOI: 10.2105/ajph.2013.301221] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Social and behavioral research in public health is often intimately tied to profound, but frequently neglected, biological influences from underlying genetic, environmental, and epigenetic events. The dynamic interplay between the life, social, and behavioral sciences often remains underappreciated and underutilized in addressing complex diseases and disorders and in developing effective remediation strategies. Using a case-study format, we present examples as to how the inclusion of genetic, environmental, and epigenetic data can augment social and behavioral health research by expanding the parameters of such studies, adding specificity to phenotypic assessments, and providing additional internal control in comparative studies. We highlight the important roles of gene-environment interactions and epigenetics as sources of phenotypic change and as a bridge between the life and social and behavioral sciences in the development of robust interdisciplinary analyses.
Collapse
Affiliation(s)
- Fatimah L C Jackson
- Fatimah L. C. Jackson, and Mihai D. Niculescu are with the University of North Carolina at Chapel Hill. Robert T. Jackson is with the University of Maryland at College Park
| | | | | |
Collapse
|
26
|
Tang JY, Lee JC, Chang YT, Hou MF, Huang HW, Liaw CC, Chang HW. Long noncoding RNAs-related diseases, cancers, and drugs. ScientificWorldJournal 2013; 2013:943539. [PMID: 23843741 PMCID: PMC3690748 DOI: 10.1155/2013/943539] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/20/2013] [Indexed: 12/20/2022] Open
Abstract
Long noncoding RNA (lncRNA) function is described in terms of related gene expressions, diseases, and cancers as well as their polymorphisms. Potential modulators of lncRNA function, including clinical drugs, natural products, and derivatives, are discussed, and bioinformatic resources are summarized. The improving knowledge of the lncRNA regulatory network has implications not only in gene expression, diseases, and cancers, but also in the development of lncRNA-based pharmacology.
Collapse
Affiliation(s)
- Jen-Yang Tang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Ting Chang
- Doctor Degree Program in Marine Biotechnology, National Sun Yat-sen University/Academia Sinica, Kaohsiung, Taiwan
| | - Ming-Feng Hou
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Hurng-Wern Huang
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Chuang Liaw
- Doctor Degree Program in Marine Biotechnology, National Sun Yat-sen University/Academia Sinica, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Wang H, Mattes WB, Richter P, Mendrick DL. An omics strategy for discovering pulmonary biomarkers potentially relevant to the evaluation of tobacco products. Biomark Med 2013; 6:849-60. [PMID: 23227851 DOI: 10.2217/bmm.12.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Smoking is known to cause serious lung diseases including chronic bronchitis, chronic obstructive lung disease, obstruction of small airways, emphysema and cancer. Tobacco smoke is a complex chemical aerosol containing at least 8000 chemical constituents, either tobacco derived or added by tobacco product manufacturers. Identification of all of the toxic agents in tobacco smoke is challenging, and efforts to understand the mechanisms by which tobacco use causes disease will be informed by new biomarkers of exposure and harm. In 2009, President Obama signed into law the Family Smoking Prevention and Tobacco Control Act granting the US FDA the authority to regulate tobacco products to protect public health. This perspective article presents the background, rationale and strategy for using omics technologies to develop new biomarkers, which may be of interest to the FDA when implementing the Family Smoking Prevention and Tobacco Control Act.
Collapse
Affiliation(s)
- Honggang Wang
- Food & Drug Administration, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
28
|
Expression pattern of small nucleolar RNA host genes and long non-coding RNA in X-rays-treated lymphoblastoid cells. Int J Mol Sci 2013; 14:9099-110. [PMID: 23698766 PMCID: PMC3676775 DOI: 10.3390/ijms14059099] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/02/2023] Open
Abstract
A wide variety of biological effects are induced in cells that are exposed to ionizing radiation. The expression changes of coding mRNA and non-coding micro-RNA have been implicated in irradiated cells. The involvement of other classes of non-coding RNAs (ncRNA), such as small nucleolar RNAs (snoRNAs), long ncRNAs (lncRNAs), and PIWI-interacting RNAs (piRNAs) in cells recovering from radiation-induced damage has not been examined. Thus, we investigated whether these ncRNA were undergoing changes in cells exposed to ionizing radiation. The modulation of ncRNAs expression was determined in human TK6 (p53 positive) and WTK1 (p53 negative) cells. The snoRNA host genes SNHG1, SNHG6, and SNHG11 were induced in TK6 cells. In WTK1 cells, SNHG1 was induced but SNHG6, and SNHG11 were repressed. SNHG7 was repressed in TK6 cells and was upregulated in WTK1 cells. The lncRNA MALAT1 and SOX2OT were induced in both TK6 and WTK1 cells and SRA1 was induced in TK6 cells only. Interestingly, the MIAT and PIWIL1 were not expressed in TK6 cells before or after the ionizing radiation treatment. The MIAT and PIWIL1 were upregulated in WTK1 cells. This data provides evidence that altered ncRNA expression is a part of the complex stress response operating in radiation-treated cells and this response depends on functional p53.
Collapse
|
29
|
The epigenetics of maternal cigarette smoking during pregnancy and effects on child development. Dev Psychopathol 2013; 24:1377-90. [PMID: 23062304 DOI: 10.1017/s0954579412000776] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The period of in utero development is one of the most critical windows during which adverse intrauterine conditions and exposures can influence the growth and development of the fetus as well as the child's future postnatal health and behavior. Maternal cigarette smoking during pregnancy remains a relatively common but nonetheless hazardous in utero exposure. Previous studies have associated prenatal smoke exposure with reduced birth weight, poor developmental and psychological outcomes, and increased risk for diseases and behavioral disorders later in life. Researchers are now learning that many of the mechanisms whereby maternal smoke exposure may affect key pathways crucial for proper fetal growth and development are epigenetic in nature. Maternal cigarette smoking during pregnancy has been associated with altered DNA methylation and dysregulated expression of microRNA, but a deeper understanding of the epigenetics of maternal cigarette smoking during pregnancy as well as how these epigenetic changes may affect later health and behavior remain to be elucidated. This article seeks to explore many of the previously described epigenetic alterations associated with maternal cigarette smoking during pregnancy and assess how such changes may have consequences for both fetal growth and development, as well as later child health, behavior, and well-being. We also outline future directions for this new and exciting field of research.
Collapse
|
30
|
Long-term health consequences of early-life exposure to substance abuse: an epigenetic perspective. J Dev Orig Health Dis 2013; 4:269-79. [DOI: 10.1017/s2040174413000123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing body of evidence highlights the importance of the nutritional or other environmental stimuli during critical periods of development in the long-term programming of organ systems and homeostatic pathways of the organism. The adverse influences early in development and particularly during intrauterine life have been shown to programme the risks for adverse health outcomes in adult life. The mechanisms underlying developmental programming remain still unclear. However, increasing evidence has been accumulated indicating the important role of epigenetic regulation including DNA methylation, histone modifications and non-coding RNAs in the developmental programming of late-onset pathologies, including cancer, neurodegenerative diseases, and type 2 diabetes. The maternal substance abuse during pregnancy, including smoking, drinking and psychoactive drug intake, is one of the important factors determining the process of developmental programming in modern human beings. The impact of prenatal drug/substance exposure on infant and early childhood development is currently in the main focus. The long-term programming effects of such exposures on aging and associated pathologies, however, have been reported only rarely. The purpose of this review is to provide a summary of recent research findings which indicate that maternal substance abuse during pregnancy and/or neonatal period can programme not only a child's health status, but also can cause long-term or even life-long health outcomes via mechanisms of epigenetic memory.
Collapse
|
31
|
Pietrzykowski AZ. Coinciding revolutions: how discovery of non-coding DNA and RNA can change our understanding of addiction. Front Genet 2012; 3:271. [PMID: 23189086 PMCID: PMC3505015 DOI: 10.3389/fgene.2012.00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/07/2012] [Indexed: 12/01/2022] Open
Affiliation(s)
- Andrzej Z Pietrzykowski
- Laboratory of Adaptation, Reward, and Addiction, Department of Animal Sciences, Department of Genetics, Rutgers University , New Brunswick, NJ, USA
| |
Collapse
|
32
|
Wang J, Cui Q. Specific Roles of MicroRNAs in Their Interactions with Environmental Factors. J Nucleic Acids 2012; 2012:978384. [PMID: 23209884 PMCID: PMC3502025 DOI: 10.1155/2012/978384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/26/2012] [Indexed: 01/12/2023] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression by modulating numerous target mRNAs expression at posttranscriptional level. Extensive studies have shown that miRNAs are critical in various important biological processes, including cell growth, proliferation, differentiation, development, and apoptosis. In terms of their importance, miRNA dysfunction has been associated with a broad range of diseases. Increased number of studies have shown that miRNAs can functionally interact with a wide spectrum of environmental factors (EFs) including drugs, industrial materials, virus and bacterial pathogens, cigarette smoking, alcohol, nutrition, sleep, exercise, stress, and radiation. More importantly, the interactions between miRNAs and EFs have been shown to play critical roles in determining abnormal phenotypes and diseases. In this paper, we propose an outline of the current knowledge about specific roles of miRNAs in their interactions with various EFs and analyze the literatures detailing miRNAs-EFs interactions in the context of various of diseases.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biomedical Informatics, Peking University Health Science Center, Beijing 100191, China ; MOE Key Lab of Cardiovascular Sciences, Peking University, Beijing 100191, China ; Institute of Systems Biomedicine, Peking University, Beijing 100191, China
| | | |
Collapse
|
33
|
Ehringer MA. Connecting ncRNA Cigarette Smoking Studies with Tobacco Use Behaviors and Health Outcomes. Front Genet 2012; 3:49. [PMID: 22679449 PMCID: PMC3366720 DOI: 10.3389/fgene.2012.00049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/20/2012] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marissa A Ehringer
- Institute for Behavioral Genetics, Department of Integrative Physiology, University of Colorado Boulder, CO, USA
| |
Collapse
|