1
|
Abstract
Pharmacogenetic testing in patients with cancer requiring cytotoxic chemotherapy offers the potential to predict, prevent, and mitigate chemotherapy-related toxicities. While multiple drug-gene pairs have been identified and studied, few drug-gene pairs are currently used routinely in the clinical status. Here we review what is known, theorized, and unknown regarding the use of pharmacogenetic testing in cancer.
Collapse
Affiliation(s)
- Zahra Talebi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Alex Sparreboom
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Susan I Colace
- Division of Hematology, Oncology, and Blood & Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, USA.
- The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Abstract
Pharmacogenetics is a key component of precision medicine. Genetic variation in drug metabolism enzymes can lead to variable exposure to drugs and metabolites, potentially leading to inefficacy and drug toxicity. Although the evidence for pharmacogenetic associations in children is not as extensive as for adults, there are several drugs across diverse therapeutic areas with robust pediatric data indicating important, and relatively common, drug-gene interactions. Guidelines to assist gene-based dose optimization are available for codeine, thiopurine drugs, selective serotonin reuptake inhibitors, atomoxetine, tacrolimus, and voriconazole. For each of these drugs, there is an opportunity to clinically implement precision medicine approaches with children for whom genetic test results are known or are obtained at the time of prescribing. For many more drugs that are commonly used in pediatric patients, additional investigation is needed to determine the genetic factors influencing appropriate dose.
Collapse
Affiliation(s)
- Laura B Ramsey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
- Divisions of Research in Patient Services and Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jacob T Brown
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota College of Pharmacy, Duluth, Minnesota 55812, USA
| | - Susan I Vear
- Department of Hematology & Oncology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, and Department of Psychiatry, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | - Sara L Van Driest
- Departments of Pediatrics and Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA;
| |
Collapse
|
3
|
Milosevic G, Kotur N, Krstovski N, Lazic J, Zukic B, Stankovic B, Janic D, Katsila T, Patrinos GP, Pavlovic S, Dokmanovic L. Variants in TPMT, ITPA, ABCC4 and ABCB1 Genes As Predictors of 6-mercaptopurine Induced Toxicity in Children with Acute Lymphoblastic Leukemia. J Med Biochem 2018; 37:320-327. [PMID: 30598629 PMCID: PMC6298470 DOI: 10.1515/jomb-2017-0060] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia is the most common childhood malignancy. Optimal use of anti leukemic drugs has led to less toxicity and adverse reactions, and a higher survival rate. Thiopurine drugs, including 6-mercaptopurine, are mostly used as antileukemic medications in the maintenance phase of treatment for children with acute lymphoblastic leukemia. For those patients, TPMT genotype- tailored 6-mercaptopurine therapy is already implemented in the treatment protocols. We investigated the role of TPMT, ITPA, ABCC4 and ABCB1 genetic variants as predictors of outcome and 6-mercaptopurine induced toxicity during the maintenance phase of treatment in pediatric acute lymphoblastic leukemia. METHODS Sixty-eight children with acute lymphoblastic leukemia were enrolled in this study. Patients have been treated according to ALL IC-BFM 2002 or ALL IC-BFM 2009 protocols. Toxicity and adverse events have been monitored via surrogate markers (off-therapy weeks, episodes of leu - ko penia and average 6-mercaptopurine dose) and a prob- abilistic model was employed to predict overall 6-mercaptopurine related toxicity. RESULTS We confirmed that patients with acute lymphoblastic leukemia that carry inactive TPMT allele(s) require 6- mercaptopurine dose reduction. ITPA and ABCC4 genetic variants failed to show an association with 6-mercapto - purine induced toxicity during the maintenance phase. Carriers of ABCB1 variant allele experienced greater hepatotoxicity. The probabilistic model Neural net which considered all the analysed genetic variants was assessed to be the best prediction model. It was able to discriminate ALL patients with good and poor 6-mercaptopurin tolerance in 71% of cases (AUC=0.71). CONCLUSIONS This study contributes to the design of a panel of pharmacogenetic markers for predicting thiopurineinduced toxicity in pediatric ALL.
Collapse
Affiliation(s)
| | - Nikola Kotur
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nada Krstovski
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Jelena Lazic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Branka Zukic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Biljana Stankovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Dragana Janic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| | - Theodora Katsila
- University of Patras School of Health Sciences, Department of Pharmacy, Patras, Greece
| | - George P. Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, Patras, Greece
- United Arab Emirates University, College of Medicine and Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | - Sonja Pavlovic
- Laboratory for Molecular Biomedicine, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Lidija Dokmanovic
- University Children’s Hospital, Belgrade, Serbia
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
| |
Collapse
|
4
|
Rudin S, Marable M, Huang RS. The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:82-93. [PMID: 28391009 PMCID: PMC5414888 DOI: 10.1016/j.gpb.2016.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/19/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Pediatric acute lymphoblastic leukemia (ALL) affects a substantial number of children every year and requires a long and rigorous course of chemotherapy treatments in three stages, with the longest phase, the maintenance phase, lasting 2–3 years. While the primary drugs used in the maintenance phase, 6-mercaptopurine (6-MP) and methotrexate (MTX), are necessary for decreasing risk of relapse, they also have potentially serious toxicities, including myelosuppression, which may be life-threatening, and gastrointestinal toxicity. For both drugs, pharmacogenomic factors have been identified that could explain a large amount of the variance in toxicity between patients, and may serve as effective predictors of toxicity during the maintenance phase of ALL treatment. 6-MP toxicity is associated with polymorphisms in the genes encoding thiopurine methyltransferase (TPMT), nudix hydrolase 15 (NUDT15), and potentially inosine triphosphatase (ITPA), which vary between ethnic groups. Moreover, MTX toxicity is associated with polymorphisms in genes encoding solute carrier organic anion transporter family member 1B1 (SLCO1B1) and dihydrofolate reductase (DHFR). Additional polymorphisms potentially associated with toxicities for MTX have also been identified, including those in the genes encoding solute carrier family 19 member 1 (SLC19A1) and thymidylate synthetase (TYMS), but their contributions have not yet been well quantified. It is clear that pharmacogenomics should be incorporated as a dosage-calibrating tool in pediatric ALL treatment in order to predict and minimize the occurrence of serious toxicities for these patients.
Collapse
Affiliation(s)
- Shoshana Rudin
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - Marcus Marable
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | - R Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Burgis NE. A disease spectrum for ITPA variation: advances in biochemical and clinical research. J Biomed Sci 2016; 23:73. [PMID: 27770805 PMCID: PMC5075207 DOI: 10.1186/s12929-016-0291-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022] Open
Abstract
Human ITPase (encoded by the ITPA gene) is a protective enzyme which acts to exclude noncanonical (deoxy)nucleoside triphosphates ((d)NTPs) such as (deoxy)inosine 5′-triphosphate ((d)ITP), from (d)NTP pools. Until the last few years, the importance of ITPase in human health and disease has been enigmatic. In 2009, an article was published demonstrating that ITPase deficiency in mice is lethal. All homozygous null offspring died before weaning as a result of cardiomyopathy due to a defect in the maintenance of quality ATP pools. More recently, a whole exome sequencing project revealed that very rare, severe human ITPA mutation results in early infantile encephalopathy and death. It has been estimated that nearly one third of the human population has an ITPA status which is associated with decreased ITPase activity. ITPA status has been linked to altered outcomes for patients undergoing thiopurine or ribavirin therapy. Thiopurine therapy can be toxic for patients with ITPA polymorphism, however, ITPA polymorphism is associated with improved outcomes for patients undergoing ribavirin treatment. ITPA polymorphism has also been linked to early-onset tuberculosis susceptibility. These data suggest a spectrum of ITPA-related disease exists in human populations. Potentially, ITPA status may affect a large number of patient outcomes, suggesting that modulation of ITPase activity is an important emerging avenue for reducing the number of negative outcomes for ITPA-related disease. Recent biochemical studies have aimed to provide rationale for clinical observations, better understand substrate selectivity and provide a platform for modulation of ITPase activity.
Collapse
Affiliation(s)
- Nicholas E Burgis
- Department of Chemistry and Biochemistry, Eastern Washington University, 226 Science Building, Cheney, WA, 99004, USA.
| |
Collapse
|
6
|
Mei L, Ontiveros EP, Griffiths EA, Thompson JE, Wang ES, Wetzler M. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy. Blood Rev 2015; 29:243-9. [PMID: 25614322 DOI: 10.1016/j.blre.2015.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/26/2014] [Accepted: 01/06/2015] [Indexed: 12/19/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a relatively rare disease in adults accounting for no more than 20% of all cases of acute leukemia. By contrast with the pediatric population, in whom significant improvements in long term survival and even cure have been achieved over the last 30years, adult ALL remains a significant challenge. Overall survival in this group remains a relatively poor 20-40%. Modern research has focused on improved pharmacokinetics, novel pharmacogenetics and personalized principles to optimize the efficacy of the treatment while reducing toxicity. Here we review the pharmacogenetics of medications used in the management of patients with ALL, including l-asparaginase, glucocorticoids, 6-mercaptopurine, methotrexate, vincristine and tyrosine kinase inhibitors. Incorporating recent pharmacogenetic data, mainly from pediatric ALL, will provide novel perspective of predicting response and toxicity in both pediatric and adult ALL therapies.
Collapse
Affiliation(s)
- Lin Mei
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Evelena P Ontiveros
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Elizabeth A Griffiths
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - James E Thompson
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Eunice S Wang
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Meir Wetzler
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
7
|
Tip-to-tip interaction in the crystal packing of PACSIN 2 is important in regulating tubulation activity. Protein Cell 2013; 4:695-701. [PMID: 23888307 DOI: 10.1007/s13238-013-3041-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/05/2013] [Indexed: 02/04/2023] Open
Abstract
The F-BAR domain containing proteins PACSINs are cytoplasmic phosphoproteins involved in various membrane deformations, such as actin reorganization, vesicle transport and microtubule movement. Our previous study shows that all PACSINs are composed of crescent shaped dimers with two wedge loops, and the wedge loop-mediated lateral interaction between neighboring dimers is important for protein packing and tubulation activity. Here, from the crystal packing of PACSIN 2, we observed a tight tip-to-tip interaction, in addition to the wedge loop-mediated lateral interaction. With this tip-to-tip interaction, the whole packing of PACSIN 2 shows a spiral-like assembly with a central hole from the top view. Elimination of this tip-to-tip connection inhibited the tubulation function of PACSIN 2, indicating that tip-to-tip interaction plays an important role in membrane deformation activity. Together with our previous study, we proposed a packing model for the assembly of PACSIN 2 on membrane, where the proteins are connected by tip-to-tip and wedge loop-mediated lateral interactions on the surface of membrane to generate various diameter tubules.
Collapse
|