1
|
Costa A, Bovenhuis H, Egger-Danner C, Fuerst-Waltl B, Boutinaud M, Guinard-Flament J, Obritzhauser W, Visentin G, Penasa M. Mastitis has a cumulative and lasting effect on milk yield and lactose content in dairy cows. J Dairy Sci 2025; 108:635-650. [PMID: 39343227 DOI: 10.3168/jds.2024-25467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
Milk lactose content (LC) physiologically decreases with parity order in dairy cows, but also after udder health inflammation(s) and in presence of elevated milk SCC in subclinical cases. Therefore, the progressive decrease in milk LC observed along cows' productive life can be attributed to a combination of factors that altogether impair the epithelial integrity, resulting in weaker tight junctions, e.g., physiological aging of epithelium, mechanical epithelial stress due to milking, and experienced clinical or subclinical mastitis. Mastitis is also known to affect the udder synthesis ability, so our intention through this study was to evaluate if there is a cumulative and lasting effect of mammary gland inflammation(s) on milk yield (MY) and LC. For this purpose, we used diagnoses of clinical mastitis and milk data of Austrian Fleckvieh cows to evaluate the effect of cumulative mastitis events on LC and MY. Only mastitis diagnoses recorded by trained veterinarians were used. Finally, we investigated if cumulative mastitis is a heritable trait and whether it is genetically correlated with either LC or MY. Estimates were obtained using univariate and bivariate linear animal models. A significant reduction in LC and MY was observed in cows that suffered from mastitis compared with those that did not experience udder inflammation. The h2 of cumulative mastitis is promising and much greater (0.09) than the h2 of the binary event itself (≤0.03). The genetic correlations between cumulative mastitis with LC and MY were negative, suggesting that cows with a great genetic merit for MY and LC are expected to be more resistant to repeated inflammations and less recidivist. When we used number of lifetime SCC peaks (≥200,000 or 400,000 cells/mL) to calculate cumulative inflammation events, h2 was even higher (up to 0.38), implying that subclinical mastitis also has a relevant negative impact on both LC and MY. Finally, the present study demonstrated how repeated mastitis events can permanently affect the mammary gland epithelial integrity and synthesis ability, and that the number of cumulative mastitis is a promising phenotype to be used in selection index in combination with other indicator traits toward more resistant and resilient mammary glands.
Collapse
Affiliation(s)
- A Costa
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy.
| | - H Bovenhuis
- Animal Breeding and Genomics Group, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - C Egger-Danner
- ZuchtData EDV-Dienstleistungen GmbH, A-1200 Vienna, Austria
| | - B Fuerst-Waltl
- Institute for Livestock Sciences, BOKU University, Vienna, A-1180 Vienna, Austria
| | - M Boutinaud
- PEGASE, INRAE, Institut Agro, Rennes, France
| | | | - W Obritzhauser
- Veterinary Public Health and Epidemiology Unit, University of Veterinary Medicine, A-1210 Vienna, Austria
| | - G Visentin
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia (BO), Italy
| | - M Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy
| |
Collapse
|
2
|
Bang NN, Hayes BJ, Lyons RE, Randhawa IAS, Gaughan JB, Trach NX, McNeill DM. Genomic Prediction and Genome-Wide Association Studies for Productivity, Conformation and Heat Tolerance Traits in Tropical Smallholder Dairy Cows. J Anim Breed Genet 2024. [PMID: 39462234 DOI: 10.1111/jbg.12907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/28/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Genomic selection (GS) and genome-wide association studies (GWAS) have not been investigated in Vietnamese dairy cattle, even for basic milk production traits, largely due to the scarcity of individual phenotype recording in smallholder dairy farms (SDFs). This study aimed to estimate heritability (h2) and test the applicability of GS and GWAS for milk production, body conformation and novel heat tolerance traits using single test day phenotypic data. Thirty-two SDFs located in either the north (a lowland vs. a highland) or the south (a lowland vs. a highland) of Vietnam were each visited for an afternoon and the next morning to collect phenotype data of all lactating cows (n = 345). Tail hair from each cow was sampled for subsequent genotyping with a 50K SNP chip at that same visit. Milk production traits (single-test day) were milk yield (MILK, kg/cow/day), energy corrected milk yield adjusted for body weight (ECMbw, kg/100 kg BW/day), fat (mFA, %), protein (mPR, %) and dry matter (mDM, %). Conformation traits were body weight (BW, kg) and body condition score (BCS, 1 = thin to 5 = obese). Heat tolerance traits were panting score (PS, 0 = normal to 4.5 = extremely heat-stressed) and infrared temperatures (IRTs, °C) at 11 areas on the external body surface of the cow (inner vulval lip, outer vulval surface, inner tail base surface, ocular area, muzzle, armpit area, paralumbar fossa area, fore udder, rear udder, forehoof and hind hoof), assessed by an Infrared Camera. Univariate linear mixed models and a 10-fold cross-validation approach were applied for GS. Univariate single SNP mixed linear models were applied for the GWAS. Estimated h2 (using the genotype information to build relationships among animals) were moderate (0.20-0.37) for ECMbw, mFA, mPR, mRE, BW, BCS and IRT at rear udder; low (0.08-0.19) for PS and other IRTs; and very low (≤ 0.07) for MILK, ECM and mDM. Accuracy of genomic estimated breeding values (GEBVs) was low (≤ 0.12) for MILK, ECM, mDM and IRT at hind hoof; and moderate to high (0.32-0.46) for all other traits. The most significant regions on chromosomes (BTA) associated with milk production traits were 0.47-1.18 Mb on BTA14. Moderate to high h2 and moderate accuracies of GEBVs for mFA, mPR, ECMbw, BCS, BW, PS and IRTs at rear udder and outer vulval surface suggested that GS using single test day phenotypic data could be applied for these traits. However, a greater sample size is required to decrease the bias of GEBVs by GS and increase the power of detecting significant quantitative trait loci (QTLs) by GWAS.
Collapse
Affiliation(s)
- Nguyen N Bang
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland, Australia
| | - Russell E Lyons
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Imtiaz A S Randhawa
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - John B Gaughan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton, Queensland, Australia
| | - Nguyen X Trach
- Faculty of Animal Science, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - David M McNeill
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
3
|
Ashja A, Zorc M, Dovc P. Genome-Wide Association Study for Milk Somatic Cell Score in Holstein Friesian Cows in Slovenia. Animals (Basel) 2024; 14:2713. [PMID: 39335302 PMCID: PMC11429251 DOI: 10.3390/ani14182713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Mastitis is a serious challenge for the dairy industry, leading to economic losses and affecting milk quality. The aim of this study is to identify genetic factors associated with mastitis resistance by conducting a genome-wide association study (GWAS) for the somatic cell score (SCS). Phenotypic records of 350 Holstein Friesian cows were obtained from the Slovenian Cattle Recording Scheme Database and consisted of around 1500 lactation data from 2012 to 2023 collected on a single farm in Slovenia. Corresponding genotypic data were also retrieved from the same database and genotyped using the Illumina BovineSNP50 BeadChip (Illumina, Inc., San Diego, CA, USA). For the association study, three SCS parameters were considered, including lactation mean somatic cell score (LM_SCS), maximum SCS value (SCSMAX), and top three mean value of SCS (TOP3). After performing a GWAS using FarmCPU and BLINK models, five significant SNPs associated with the TOP3 trait were found on BTA 14, 15, 22, and 29. The identified SNP markers were closely linked to six known candidate genes (DNASE1L3, SLC36A4, ARMC1, PDE7A, MMP13, CD44). These results indicate potential genetic markers associated with SCS in the Slovenian Holstein Friesian population.
Collapse
Affiliation(s)
| | | | - Peter Dovc
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.A.); (M.Z.)
| |
Collapse
|
4
|
Sinha MK, Kumaresan A, Rao Talluri T, Ebenezer Samuel King JP, Prakash MA, Nag P, Paul N, Raval K, Kamaraj E, V A. Single nucleotide polymorphisms cumulating to genetic variation for fertility in crossbred ( Bos taurus × Bos indicus) bull spermatozoa. Anim Biotechnol 2023; 34:2875-2886. [PMID: 36137067 DOI: 10.1080/10495398.2022.2124166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Spermatozoa from high-fertile (HF) and low-fertile (LF) breeding bulls were subjected to high-throughput next-generation sequencing to identify important Single nucleotide polymorphisms (SNPs) and novel variants associated with fertility. A total of 77,038 genome-wide SNPs were identified, among which, 10,788 were novel variants. A total of 42,290 and 34,748 variants were recorded with 6115 and 4673 novel variants in in HF and LF bulls, respectively. Higher number of SNPs were identified in HF compared to LF bulls. GO analysis of filtered genes with significant variations in HF bulls indicated their involvement in oxidative phosphorylation and metabolic pathways. GO analysis of filtered genes with significant variation in LF bulls revealed their involvement in Ca2++ ion binding, structural constituent of ribosome, and biological processes like translation and ribosomal small subunit assembly. The study identified SNPs in candidate genes including TPT1, BOLA-DRA, CD74, RPS17, RPS28, RPS29, RPL14, RPL13, and RPS27A, which are linked to sperm functionality, survival, oxidative stress, and bull fertility. The identified SNPs could be used in selection of bulls for high fertility and the variation in these genes could be established as an explanation for the fertility differences in bulls upon validation in large number of bulls.
Collapse
Affiliation(s)
| | - Arumugam Kumaresan
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Thirumala Rao Talluri
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | | | - Mani Arul Prakash
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Pradeep Nag
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Nilendu Paul
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Kathan Raval
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Elango Kamaraj
- Department of Biotechnology, Theriogenology Laboratory, Southern Regional Station of ICAR-National Dairy Research Institute, Bengaluru, India
| | - Aranganathan V
- Jain University (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
5
|
Pushpa, Magotra A, Kamaldeep, Sindhu V, Chaudhary P. Impact of temporal variations and risk factors associated with udder inflammation in Hardhenu cattle (Bos taurus × Bos indicus). Reprod Domest Anim 2023; 58:1612-1621. [PMID: 37800186 DOI: 10.1111/rda.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
This study aimed to explore the occurrence and risk factors associated with clinical mastitis within the Hardhenu cattle herd over a span of 14 years (2008-2021). A comprehensive analysis of 1515 lactation records was conducted to ascertain the incidence of clinical mastitis. The investigation determined an overall incidence rate of 26.80% in the studied population. A significant relationship between the year and clinical mastitis incidence was established through Chi-square analysis (p < .05). Temporal variations in clinical mastitis odds were apparent, with the highest odds (ranging from 0.91 to 1.00) observed during the initial years of 2008-2009 and 2009-2010. Logistic regression revealed that odds values for clinical mastitis incidence were highest in 2008-2009 (1.00), succeeded by 2009-2010 (0.91), 2012-2013 (0.88), 2018-2019 (0.67) and reaching the lowest in 2021-2022 (0.35). Subsequent rankings included 2010-2011 (0.39), 2014-2015 (0.43) and 2019-2020 (0.45). Parity was found to be significantly associated with clinical mastitis occurrence. When compared to Parity 3, both Parity 1 (odds ratio: 1.516, 95% confidence interval: 0.881-2.612) and Parity 2 (odds ratio: 2.626, 95% confidence interval: 1.568-4.398) exhibited higher odds values for clinical mastitis incidence. While the period of calving did not exert a significant influence on clinical mastitis incidence, a heightened occurrence was observed during the rainy season within the targeted population. These findings offer valuable insights into the patterns of incidence, temporal fluctuations, and non-genetic determinants impacting clinical mastitis within the Hardhenu cattle. The implications of this study can facilitate the development of targeted strategies and management protocols aimed at enhancing udder health and overall productivity in dairy cattle.
Collapse
Affiliation(s)
- Pushpa
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Ankit Magotra
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Kamaldeep
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Vikas Sindhu
- Department of Animal Nutrition, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Pradeep Chaudhary
- Department of Animal Genetics and Breeding, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
6
|
Brajnik Z, Ogorevc J. Candidate genes for mastitis resistance in dairy cattle: a data integration approach. J Anim Sci Biotechnol 2023; 14:10. [PMID: 36759924 PMCID: PMC9912691 DOI: 10.1186/s40104-022-00821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammation of the mammary tissue (mastitis) is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector. Improving mastitis resistance is becoming an important goal in dairy ruminant breeding programmes. However, mastitis resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult. Currently, the only applicable approach to identify candidate loci for complex traits in large farm animals is to combine different information that supports the functionality of the identified genomic regions with respect to a complex trait. METHODS To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate loci. Mastitis-associated candidate genes reported in association, expression, and mouse model studies were collected by searching the relevant literature and databases. The collected data were integrated into a single database, screened for overlaps, and used for gene set enrichment analysis. RESULTS The database contains candidate genes from association and expression studies and relevant transgenic mouse models. The 2448 collected candidate loci are evenly distributed across bovine chromosomes. Data integration and analysis revealed overlaps between different studies and/or with mastitis-associated QTL, revealing promising candidate genes for mastitis resistance. CONCLUSION Mastitis resistance is a complex trait influenced by numerous alleles. Based on the number of independent studies, we were able to prioritise candidate genes and propose a list of the 22 most promising. To our knowledge this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting genes for functional validation studies.
Collapse
Affiliation(s)
- Zala Brajnik
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230 Slovenia
| | - Jernej Ogorevc
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230, Slovenia.
| |
Collapse
|
7
|
The association of gene polymorphisms with milk production and mastitis resistance phenotypic traits in dairy cattle. ANNALS OF ANIMAL SCIENCE 2023. [DOI: 10.2478/aoas-2022-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Abstract
The aim of this study was to evaluate the association between gene polymorphisms (SNPs) and mastitis indicators and their relationship with milk production profitability in dairy herd.A functional analysis was also performed of five genes containing the studied SNPs and those located close by. DNA was isolated from the hair bulb of 320 dairy cows kept in three herds and SNP-microarray analysis was performed. The data on 299 cows was subjected to final statistical analysis using AI-REML method with one-trait repeatability test-day animal model and pedigree information using the DMU4 package. Five from 35 SNPs significantly associated with mastitis indicators or production traits and located within a gene or no more than 500,000 nucleotides from the gene were selected for the functional and economic analysis. A questionnaire was also developed to collect associated economic data of 219 cows from three herds, such as the value of milk production and direct costs incurred over three years; this allowed the gross margin, direct profitability index and direct costs incurred to produce one liter of milk to be determined, among others. None of the five studied SNPs were related to protein content. The rs110785912(T/A), found near CXCR4, and rs136813430(T/C), located in the TLR4 gene exon, were associated with lnSCC, while rs110455063(C/G), located near IGFI, was associated with milk yield, fat and total solid contents. rs109421300(T/C), associated with fat/protein content ratio, as well as fat and total solid content, is located in the DGAT1 gene intron. rs41587003(A/C), located in the DLG2 gene intron, was associated with lactose content. The economic analysis revealed differences between the variants of the three tested SNPs. The T/C variant of the rs136813430(T/C) SNP was characterized by the highest gross margin, the highest direct profitability index and the lowest costs incurred to produce 1 liter of milk. The T/A variant of rs110785912(T/A) was related to low lnSCC and was characterized by the highest direct profitability index. In turn, the C/C variant of the rs41587003(T/C) was related to the lowest level of lactose and the highest costs of milk production. It appears that rs136813430(T/C) may be the most promising of the tested SNPs for increasing the profitability of milk production. To our knowledge, it is the first effort to assess directly a correlation between the DNA polymorphism and economic output of a dairy enterprise.
Collapse
|
8
|
Kour A, Deb SM, Nayee N, Niranjan SK, Raina VS, Mukherjee A, Gupta ID, Patil CS. Novel insights into genome-wide associations in Bos indicus reveal genetic linkages between fertility and growth. Anim Biotechnol 2023; 34:39-55. [PMID: 34120566 DOI: 10.1080/10495398.2021.1932520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bos indicus breed Sahiwal, famous for its optimum performance, has so far been genetically improved for performance traits based on phenotypic records and the genomic knowhow regarding genes, regions and biological processes underlying the complex quantitative traits is lacking. In this context, a Genome-wide Association Study was performed for fertility and growth traits in Sahiwal cattle to shed light on its genomic profile. A total of 46 SNPs were found associated with the traits at genome-wide suggestive threshold of P ≤ 10-4. USP32, LRPPRC, PLA2G10, RRN3 and ASAP1 were identified as putative candidate genes for body weight at different ages. However, several genes mapped for growth traits like GREB1, PLA2G10, RAD51C, BIRC6, TEX14 and PEBP4 had significant physiological underpinnings in determining fertility of the animals. Moreover, Quantitative trait loci (QTL) identification revealed potential overlaps with the already reported QTLs for both fertility and growth for most of the traits. Further, candidate SNP enrichment analysis revealed an enriched biological process for birth weight with a significant reproductive role. Based on the findings, genetic linkages underlying fertility and growth could be discerned in Sahiwal population and may be utilized for improving fertility traits in future.
Collapse
Affiliation(s)
- Aneet Kour
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | | | - Nilesh Nayee
- National Dairy Development Board, Anand, Gujarat, India
| | | | | | | | | | | |
Collapse
|
9
|
Essa B, Al-Sharif M, Abdo M, Fericean L, Ateya A. New Insights on Nucleotide Sequence Variants and mRNA Levels of Candidate Genes Assessing Resistance/Susceptibility to Mastitis in Holstein and Montbéliarde Dairy Cows. Vet Sci 2023; 10:vetsci10010035. [PMID: 36669036 PMCID: PMC9861242 DOI: 10.3390/vetsci10010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/14/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
A major factor in the propagation of an infectious disease is host genetics. In this study, 180 dairy cows (90 of each breed: Holstein and Montbéliarde) were used. Each breed's tested dairy cows were divided into two groups of comparable size (45 cows each), mastitis-free and mastitis-affected groups. Each cow's jugular vein was punctured to obtain blood samples for DNA and RNA extraction. In the examined Holstein and Montbéliarde dairy cows, single nucleotide polymorphisms (SNPs) related with mastitis resistance/susceptibility were found in the RASGRP1, NFkB, CHL1, MARCH3, PDGFD, MAST3, EPS15L1, C1QTNF3, CD46, COX18, NEURL1, PPIE, and PTX3 genes. Chi-square analysis of identified SNPs revealed a significant difference in gene frequency between mastitic and healthy cows. Except for CHL1, mastitic dairy cows of two breeds had considerably higher mRNA levels of the examined genes than did healthy ones. Marker-assisted selection and monitoring of dairy cows' susceptibility to mastitis may be accomplished through the use of discovered SNPs and changes in the gene expression profile of the studied genes. These findings also point to a possible method for reducing mastitis in dairy cows through selective breeding of animals using genetic markers linked to an animal's ability to resist infection.
Collapse
Affiliation(s)
- Bothaina Essa
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Mona Al-Sharif
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo 11829, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat, Sadat City 32897, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agricultural Sciences, University of Life Sciences King Michael I, 300645 Timisoara, Romania
| | - Ahmed Ateya
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Correspondence: ; Tel.: +20-10-0354-1921; Fax: +20-502372592
| |
Collapse
|
10
|
KUMARI RAGINI, KUMAR RAKESH, SINHA BEENA, SINHA REBEKA, GUPTA ISHWARDAYAL, VERMA ARCHANA. Novel polymorphisms of the KCNB1 gene and their association with production traits in Indian Sahiwal cattle. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2022. [DOI: 10.56093/ijans.v92i12.117454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mastitis in cattle is a prevalent mammary gland disease that contributes significantly to the increase in veterinary expenditures in the dairy sector. KCNB1 (Potassium voltage-gated channel, subfamily B member 1) gene is involved in regulating apoptosis, cell proliferation and differentiation, udder epithelial tissue maintenance and repair, mammary gland development and recommended as a candidate gene for production related traits in cattle. The purpose of this research was to detect the genetic variants of KCNB1 gene in Sahiwal cattle and to analyze the association between polymorphisms with milk production traits, udder traits, and teat traits in Sahiwal cattle. A total of 87 cattle were genotyped by polymerase chain reaction-restriction fragment length polymorphism technique. Two single nucleotide polymorphisms within the non-coding sequence of KCNB1 gene were identified (g.78216220G>A and g.78216335A>G). Analysis of productivity traits within the genotyped animals revealed that the SNP1-Msp1 locus (g.78216220G>A) located at intron 1 was associated with milk production traits, but the SNP2-BspHI locus (g.78216335A>G) had no association with milk production. Significant associations were also observed between SNP1-Msp1 and SNP2-BspHI loci with both udder and teat traits. Our results demonstrate that polymorphisms in the cattle KCNB1 gene were associated with milk production, udder and teat traits and might be utilized as a genetic marker for marker-assisted selection in cattle breeding programs.
Collapse
|
11
|
Narayana SG, de Jong E, Schenkel FS, Fonseca PA, Chud TC, Powel D, Wachoski-Dark G, Ronksley PE, Miglior F, Orsel K, Barkema HW. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci 2022; 106:323-351. [DOI: 10.3168/jds.2022-21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
|
12
|
Multi-Omics Integration and Network Analysis Reveal Potential Hub Genes and Genetic Mechanisms Regulating Bovine Mastitis. Curr Issues Mol Biol 2022; 44:309-328. [PMID: 35723402 PMCID: PMC8928958 DOI: 10.3390/cimb44010023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Mastitis, inflammation of the mammary gland, is the most prevalent disease in dairy cattle that has a potential impact on profitability and animal welfare. Specifically designed multi-omics studies can be used to prioritize candidate genes and identify biomarkers and the molecular mechanisms underlying mastitis in dairy cattle. Hence, the present study aimed to explore the genetic basis of bovine mastitis by integrating microarray and RNA-Seq data containing healthy and mastitic samples in comparative transcriptome analysis with the results of published genome-wide association studies (GWAS) using a literature mining approach. The integration of different information sources resulted in the identification of 33 common and relevant genes associated with bovine mastitis. Among these, seven genes—CXCR1, HCK, IL1RN, MMP9, S100A9, GRO1, and SOCS3—were identified as the hub genes (highly connected genes) for mastitis susceptibility and resistance, and were subjected to protein-protein interaction (PPI) network and gene regulatory network construction. Gene ontology annotation and enrichment analysis revealed 23, 7, and 4 GO terms related to mastitis in the biological process, molecular function, and cellular component categories, respectively. Moreover, the main metabolic-signalling pathways responsible for the regulation of immune or inflammatory responses were significantly enriched in cytokine–cytokine-receptor interaction, the IL-17 signaling pathway, viral protein interaction with cytokines and cytokine receptors, and the chemokine signaling pathway. Consequently, the identification of these genes, pathways, and their respective functions could contribute to a better understanding of the genetics and mechanisms regulating mastitis and can be considered a starting point for future studies on bovine mastitis.
Collapse
|
13
|
Trujano-Chavez MZ, Sánchez-Ramos R, Pérez-Rodríguez P, Ruíz-Flores A. Genetic Diversity and Population Structure for Resistance and Susceptibility to Mastitis in Braunvieh Cattle. Vet Sci 2021; 8:vetsci8120329. [PMID: 34941856 PMCID: PMC8707377 DOI: 10.3390/vetsci8120329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/05/2021] [Accepted: 12/12/2021] [Indexed: 11/18/2022] Open
Abstract
Mastitis is a disease that causes significant economic losses, since resistance to mastitis is a difficult trait to be improved due to its multifactorial occurrence. Therefore, our objective was to characterize a Mexican Braunvieh cattle population for genetic resistance and susceptibility to mastitis. We used 66 SNP markers for 45 candidate genes in 150 animals. The average heterozygosity was 0.445 ± 0.076, a value higher than those reported for some European breeds. The inbreeding coefficient was slightly negative for resistance to subclinical (−0.058 ± 0.055) and clinical (−0.034 ± 0.076) mastitis, possibly due to low selection for the immunological candidate genes that influence these traits. The genotypic profiles for the candidate loci per K-means group were obtained, as well as the group distribution through the graphics of the principal component analysis. The genotypic profiles showed high genetic diversity among groups. Resistance to clinical mastitis had the lowest presence of the heterozygous genotypes. Although the percentage of highly inbred animals (>50%) is up to 13.3%, there are highly heterozygous groups in terms of the studied traits, a favorable indicator of the presence of genetic diversity. The results of this study constitute evidence of the genetic potential of the Mexican Braunvieh population to improve mastitis-related traits.
Collapse
Affiliation(s)
- Mitzilin Zuleica Trujano-Chavez
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
| | - Reyna Sánchez-Ramos
- Recursos Genéticos y Productividad, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Paulino Pérez-Rodríguez
- Socio Economía Estadística e Informática-Estadística, Colegio de Postgraduados, Carretera Federal México-Texcoco Km 36.5, Texcoco 56230, Estado de México, Mexico;
| | - Agustín Ruíz-Flores
- Posgrado en Producción Animal, Universidad Autónoma Chapingo, Carretera Federal México-Texcoco Km 38.5, Texcoco 56227, Estado de México, Mexico;
- Correspondence: ; Tel.: +52-595-952-1621
| |
Collapse
|
14
|
The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 2021; 7:ncrna7040078. [PMID: 34940759 PMCID: PMC8708473 DOI: 10.3390/ncrna7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is an integral and therefore complex structural element of mammalian nutrition. Therefore, it is simple to conclude that lactation, the process of producing milk, is as complex as the mammary gland, the organ responsible for this biochemical activity. Nutrition, genetics, epigenetics, disease pathogens, climatic conditions, and other environmental variables all impact breast productivity. In the last decade, the number of studies devoted to epigenetics has increased dramatically. Reports are increasingly describing the direct participation of microRNAs (miRNAs), small noncoding RNAs that regulate gene expression post-transcriptionally, in the regulation of mammary gland development and function. This paper presents a summary of the current state of knowledge about the roles of miRNAs in mammary gland development, health, and functions, particularly during lactation. The significance of miRNAs in signaling pathways, cellular proliferation, and the lipid metabolism in agricultural ruminants, which are crucial in light of their role in the nutrition of humans as consumers of dairy products, is discussed.
Collapse
|
15
|
Understanding the genomic architecture of clinical mastitis in Bos indicus. 3 Biotech 2021; 11:466. [PMID: 34745817 DOI: 10.1007/s13205-021-03012-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/01/2021] [Indexed: 12/26/2022] Open
Abstract
This study elucidated potential genetic variants and QTLs associated with clinical mastitis incidence traits in Bos indicus breed, Sahiwal. Estimated breeding values for the traits (calculated using Bayesian inference) were used as pseudo-phenotypes for association with genome-wide SNPs and further QTL regions underlying the traits were identified. In all, 25 SNPs were found to be associated with the traits at the genome-wide suggestive threshold (p ≤ 5 × 10-4) and these SNPs were used to define QTL boundaries based on the linkage disequilibrium structure. A total of 16 QTLs were associated with the trait EBVs including seven each for clinical mastitis incidence (CMI) in first and second lactations and two for CMI in third lactation. Nine out of sixteen QTLs overlapped with the already reported QTLs for mastitis traits, whereas seven were adjudged as novel ones. Important candidates for clinical mastitis in the identified QTL regions included DNAJB9, ELMO1, ARHGAP26, NR3C1, CACNB2, RAB4A, GRB2, NUP85, SUMO2, RBPJ, and RAB33B genes. These findings shed light on the genetic architecture of the disease in Bos indicus, and present potential regions for fine mapping and downstream analysis in future.
Collapse
|
16
|
Identification of candidate genes on the basis of SNP by time-lagged heat stress interactions for milk production traits in German Holstein cattle. PLoS One 2021; 16:e0258216. [PMID: 34648531 PMCID: PMC8516222 DOI: 10.1371/journal.pone.0258216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to estimate genotype by time-lagged heat stress (HS) variance components as well as main and interaction SNP-marker effects for maternal HS during the last eight weeks of cow pregnancy, considering milk production traits recorded in the offspring generation. The HS indicator was the temperature humidity index (THI) for each week. A dummy variable with the code = 1 for the respective week for THI ≥ 60 indicated HS, otherwise, for no HS, the code = 0 was assigned. The dataset included test-day and lactation production traits from 14,188 genotyped first parity Holstein cows. After genotype quality control, 41,139 SNP markers remained for the genomic analyses. Genomic animal models without (model VC_nHS) and with in-utero HS effects (model VC_wHS) were applied to estimate variance components. Accordingly, for genome-wide associations, models GWA_nHS and GWA_wHS, respectively, were applied to estimate main and interaction SNP effects. Common genomic and residual variances for the same traits were very similar from models VC_nHS and VC_wHS. Genotype by HS interaction variances varied, depending on the week with in-utero HS. Among all traits, lactation milk yield with HS from week 5 displayed the largest proportion for interaction variances (0.07). For main effects from model GWA_wHS, 380 SNPs were suggestively associated with all production traits. For the SNP interaction effects from model GWA_wHS, we identified 31 suggestive SNPs, which were located in close distance to 62 potential candidate genes. The inferred candidate genes have various biological functions, including mechanisms of immune response, growth processes and disease resistance. Two biological processes excessively represented in the overrepresentation tests addressed lymphocyte and monocyte chemotaxis, ultimately affecting immune response. The modelling approach considering time-lagged genotype by HS interactions for production traits inferred physiological mechanisms being associated with health and immunity, enabling improvements in selection of robust animals.
Collapse
|
17
|
Ilie DE, Mizeranschi AE, Mihali CV, Neamț RI, Goilean GV, Georgescu OI, Zaharie D, Carabaș M, Huțu I. Genome-Wide Association Studies for Milk Somatic Cell Score in Romanian Dairy Cattle. Genes (Basel) 2021; 12:genes12101495. [PMID: 34680890 PMCID: PMC8535694 DOI: 10.3390/genes12101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mastitis is one of the most frequently encountered diseases in dairy cattle, negatively affecting animal welfare and milk production. For this reason, contributions to understanding its genomic architecture are of great interest. Genome-wide association studies (GWAS) have identified multiple loci associated with somatic cell score (SCS) and mastitis in cattle. However, most of the studies have been conducted in different parts of the world on various breeds, and none of the investigations have studied the genetic architecture of mastitis in Romanian dairy cattle breeds up to this point in time. In this study, we report the first GWAS for SCS in dairy cattle breeds from Romania. For GWAS, we used an Axiom Bovine v3 SNP-chip (>63,000 Single Nucleotide Polymorphism -SNPs) and 33,330 records from 690 cows belonging to Romanian Spotted (RS) and Romanian Brown (RB) cattle. The results found one SNP significantly associated with SCS in the RS breed and 40 suggestive SNPs with -log10 (p) from 4 to 4.9 for RS and from 4 to 5.4 in RB. From these, 14 markers were located near 12 known genes (AKAP8, CLHC1, MEGF10, SATB2, GATA6, SPATA6, COL12A1, EPS8, LUZP2, RAMAC, IL12A and ANKRD55) in RB cattle, 3 markers were close to ZDHHC19, DAPK1 and MMP7 genes, while one SNP overlapped the HERC3 gene in RS cattle. Four genes (HERC3, LUZP2, AKAP8 and MEGF10) associated with SCS in this study were previously reported in different studies. The most significant SNP (rs110749552) associated with SCS was located within the HERC3 gene. In both breeds, the SNPs and position of association signals were distinct among the three parities, denoting that mastitis is controlled by different genes that are dependent according to parity. The current results contribute to an expansion in the body of knowledge regarding the proportion of genetic variability explained by SNPs for SCS in dairy cattle.
Collapse
Affiliation(s)
- Daniela Elena Ilie
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
- Correspondence:
| | - Alexandru Eugeniu Mizeranschi
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ciprian Valentin Mihali
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Radu Ionel Neamț
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - George Vlad Goilean
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ovidiu Ionuț Georgescu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| | - Daniela Zaharie
- Faculty of Mathematics and Computer Science, West University of Timișoara, 300223 Timisoara, Romania;
| | - Mihai Carabaș
- Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest, 060042 București, Romania;
| | - Ioan Huțu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| |
Collapse
|
18
|
Kim S, Lim B, Cho J, Lee S, Dang CG, Jeon JH, Kim JM, Lee J. Genome-Wide Identification of Candidate Genes for Milk Production Traits in Korean Holstein Cattle. Animals (Basel) 2021; 11:ani11051392. [PMID: 34068321 PMCID: PMC8153329 DOI: 10.3390/ani11051392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Milk production traits that are economically important in the dairy industry have been considered the main selection criteria for breeding. The present genome-wide association study was performed to identify chromosomal loci and candidate genes with potential effects on milk production phenotypes in a Korean Holstein population. A total of eight significant quantitative trait locus regions were identified for milk yield (Bos taurus autosome (BTA) 7 and 14), adjusted 305-d fat yield (BTA 3, 5, and 14), adjusted 305-d protein yield (BTA 8), and somatic cell score (BTA 8 and 23) of milk production traits. Furthermore, we discovered three main candidate genes (diacylglycerol O-acyltransferase 1 (DGAT1), phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) through bioinformatics analysis. These genes may help to understand better the underlying genetic and molecular mechanisms for milk production phenotypes in the Korean Holstein population. Abstract We performed a genome-wide association study and fine mapping using two methods (single marker regression: frequentist approach and Bayesian C (BayesC): fitting selected single nucleotide polymorphisms (SNPs) in a Bayesian framework) through three high-density SNP chip platforms to analyze milk production phenotypes in Korean Holstein cattle (n = 2780). We identified four significant SNPs for each phenotype in the single marker regression model: AX-311625843 and AX-115099068 on Bos taurus autosome (BTA) 14 for milk yield (MY) and adjusted 305-d fat yield (FY), respectively, AX-428357234 on BTA 18 for adjusted 305-d protein yield (PY), and AX-185120896 on BTA 5 for somatic cell score (SCS). Using the BayesC model, we discovered significant 1-Mb window regions that harbored over 0.5% of the additive genetic variance effects for four milk production phenotypes. The concordant significant SNPs and 1-Mb window regions were characterized into quantitative trait loci (QTL). Among the QTL regions, we focused on a well-known gene (diacylglycerol O-acyltransferase 1 (DGAT1)) and newly identified genes (phosphodiesterase 4B (PDE4B), and anoctamin 2 (ANO2)) for MY and FY, and observed that DGAT1 is involved in glycerolipid metabolism, fat digestion and absorption, metabolic pathways, and retinol metabolism, and PDE4B is involved in cAMP signaling. Our findings suggest that the candidate genes in QTL are strongly related to physiological mechanisms related to the fat production and consequent total MY in Korean Holstein cattle.
Collapse
Affiliation(s)
- Sangwook Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
| | - Joohyeon Cho
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Seokhyun Lee
- Dairy Cattle Genetic Improvement Center, Nonghyup, Goyang 10292, Gyeonggi-do, Korea; (J.C.); (S.L.)
| | - Chang-Gwon Dang
- Animal Genetics and Breeding Division, National Institute of Animal Science, RDA, Cheonan 31000, Chungcheongnam-do, Korea;
| | - Jung-Hwan Jeon
- Animal Welfare Research Team, National Institute of Animal Science, RDA, Wanju 55365, Jeollabuk-do, Korea;
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (S.K.); (B.L.)
- Correspondence: (J.-M.K.); (J.L.); Tel.: +82-31-670-3263 (J.-M.K. & J.L.); Fax: +82-31-675-3108 (J.-M.K. & J.L.)
| |
Collapse
|
19
|
Mancin E, Sartori C, Guzzo N, Tuliozi B, Mantovani R. Selection Response Due to Different Combination of Antagonistic Milk, Beef, and Morphological Traits in the Alpine Grey Cattle Breed. Animals (Basel) 2021; 11:1340. [PMID: 34066815 PMCID: PMC8151928 DOI: 10.3390/ani11051340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/01/2023] Open
Abstract
Selection in local dual-purpose breeds requires great carefulness because of the need to preserve peculiar traits and also guarantee the positive genetic progress for milk and beef production to maintain economic competitiveness. A specific breeding plan accounting for milk, beef, and functional traits is required by breeders of the Alpine Grey cattle (AG), a local dual-purpose breed of the Italian Alps. Hereditability and genetic correlations among all traits have been analyzed for this purpose. After that, different selection indexes were proposed to identify the most suitable for this breed. Firstly, a genetic parameters analysis was carried out with different datasets. The milk dataset contained 406,918 test day records of milk, protein, and fat yields and somatic cells (expressed as SCS). The beef dataset included performance test data conducted on 749 young bulls. Average daily gain, in vivo estimated carcass yields, and carcass conformation (SEUROP) were the phenotypes obtained from the performance tests. The morphological dataset included 21 linear type evaluations of 11,320 first party cows. Linear type traits were aggregated through factor analysis and three factors were retained, while head typicality (HT) and rear muscularity (RM) were analyzed as single traits. Heritability estimates (h2) for milk traits ranged from 0.125 to 0.219. Analysis of beef traits showed h2 greater than milk traits, ranging from 0.282 to 0.501. Type traits showed a medium value of h2 ranging from 0.238 to 0.374. Regarding genetic correlation, SCS and milk traits were strongly positively correlated. Milk traits had a negative genetic correlation with the factor accounting for udder conformations (-0.40) and with all performance test traits and RM. These latter traits showed also a negative genetic correlation with udder volume (-0.28). The HT and the factor accounting for rear legs traits were not correlated with milk traits, but negatively correlated with beef traits (-0.32 with RM). We argue that the consequence of these results is that the use of the current selection index, which is mainly focused on milk attitude, will lead to a deterioration of all other traits. In this study, we propose more appropriate selection indexes that account for genetic relationships among traits, including functional traits.
Collapse
Affiliation(s)
- Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell’Università, 16, 35020 Legnaro, PD, Italy; (C.S.); (B.T.); (R.M.)
| | - Cristina Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell’Università, 16, 35020 Legnaro, PD, Italy; (C.S.); (B.T.); (R.M.)
| | - Nadia Guzzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università, 16, 35020 Legnaro, PD, Italy;
| | - Beniamino Tuliozi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell’Università, 16, 35020 Legnaro, PD, Italy; (C.S.); (B.T.); (R.M.)
| | - Roberto Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padua, Viale dell’Università, 16, 35020 Legnaro, PD, Italy; (C.S.); (B.T.); (R.M.)
| |
Collapse
|
20
|
Berry DP, Dunne FL, Evans RD, McDermott K, O'Brien AC. Concordance rate in cattle and sheep between genotypes differing in Illumina GenCall quality score. Anim Genet 2021; 52:208-213. [PMID: 33527466 DOI: 10.1111/age.13043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 11/30/2022]
Abstract
Proper quality control of data prior to downstream analyses is fundamental to ensure integrity of results; quality control of genomic data is no exception. While many metrics of quality control of genomic data exist, the objective of the present study was to quantify the genotype and allele concordance rate between called single nucleotide polymorphism (SNP) genotypes differing in GenCall (GC) score; the GC score is a confidence measure assigned to each Illumina genotype call. This objective was achieved using Illumina beadchip genotype data from 771 cattle (12 428 767 genotypes in total post-editing) and 80 sheep (1 557 360 SNPs genotypes in total post-editing) each genotyped in duplicate. The called genotype with the lowest associated GC score was compared to the genotype called for the same SNP in the same duplicated animal sample but with a GC score of >0.90 (assumed to represent the true genotype). The mean genotype concordance rate for a GC score of <0.300, 0.300-0.549, and ≥0.550 in the cattle (sheep in parenthesis) was 0.9467 (0.9864), 0.9707 (0.9953), and 0.9994 (0.99997) respectively; the respective allele concordance rate was 0.9730 (0.9930), 0.9849 (0.9976), and 0.9997 (0.99998). Hence, concordance eroded as the GC score of the called genotype reduced, albeit the impact was not dramatic and was not very noticeable until a GC score of <0.55. Moreover, the impact was greater and more consistent in the cattle population than in the sheep population. Furthermore, an impact of GC score on genotype concordance rate existed even for the same SNP GenTrain value; the GenTrain value is a statistical score that depicts the shape of the genotype clusters and the relative distance between the called genotype clusters.
Collapse
Affiliation(s)
- D P Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - F L Dunne
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| | - R D Evans
- Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Co. Cork, P72 X050, Ireland
| | - K McDermott
- Sheep Ireland, Highfield House, Shinagh, Bandon, Co. Cork, P72 X050, Ireland
| | - A C O'Brien
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
| |
Collapse
|
21
|
Islam MA, Rony SA, Rahman MB, Cinar MU, Villena J, Uddin MJ, Kitazawa H. Improvement of Disease Resistance in Livestock: Application of Immunogenomics and CRISPR/Cas9 Technology. Animals (Basel) 2020; 10:E2236. [PMID: 33260762 PMCID: PMC7761152 DOI: 10.3390/ani10122236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 01/09/2023] Open
Abstract
Disease occurrence adversely affects livestock production and animal welfare, and have an impact on both human health and public perception of food-animals production. Combined efforts from farmers, animal scientists, and veterinarians have been continuing to explore the effective disease control approaches for the production of safe animal-originated food. Implementing the immunogenomics, along with genome editing technology, has been considering as the key approach for safe food-animal production through the improvement of the host genetic resistance. Next-generation sequencing, as a cutting-edge technique, enables the production of high throughput transcriptomic and genomic profiles resulted from host-pathogen interactions. Immunogenomics combine the transcriptomic and genomic data that links to host resistance to disease, and predict the potential candidate genes and their genomic locations. Genome editing, which involves insertion, deletion, or modification of one or more genes in the DNA sequence, is advancing rapidly and may be poised to become a commercial reality faster than it has thought. The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) [CRISPR/Cas9] system has recently emerged as a powerful tool for genome editing in agricultural food production including livestock disease management. CRISPR/Cas9 mediated insertion of NRAMP1 gene for producing tuberculosis resistant cattle, and deletion of CD163 gene for producing porcine reproductive and respiratory syndrome (PRRS) resistant pigs are two groundbreaking applications of genome editing in livestock. In this review, we have highlighted the technological advances of livestock immunogenomics and the principles and scopes of application of CRISPR/Cas9-mediated targeted genome editing in animal breeding for disease resistance.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Sharmin Aqter Rony
- Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Mohammad Bozlur Rahman
- Department of Livestock Services, Krishi Khamar Sarak, Farmgate, Dhaka 1215, Bangladesh;
| | - Mehmet Ulas Cinar
- Department of Animal Science, Faculty of Agriculture, Erciyes University, 38039 Kayseri, Turkey;
- Department of Veterinary Microbiology & Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Julio Villena
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli, (CERELA), Tucuman 4000, Argentina
| | - Muhammad Jasim Uddin
- Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
- School of Veterinary Science, Gatton Campus, The University of Queensland, Brisbane 4072, Australia
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Graduate School of Agricultural University Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Research and Education Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
22
|
Lin S, Wan Z, Zhang J, Xu L, Han B, Sun D. Genome-Wide Association Studies for the Concentration of Albumin in Colostrum and Serum in Chinese Holstein. Animals (Basel) 2020; 10:ani10122211. [PMID: 33255903 PMCID: PMC7759787 DOI: 10.3390/ani10122211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 01/24/2023] Open
Abstract
Albumin can be of particular benefit in fighting infections for newborn calves due to its anti-inflammatory and anti-oxidative stress properties. To identify the candidate genes related to the concentration of albumin in colostrum and serum, we collected the colostrum and blood samples from 572 Chinese Holstein cows within 24 h after calving and measured the concentration of albumin in the colostrum and serum using the ELISA methods. The cows were genotyped with GeneSeek 150 K chips (containing 140,668 single nucleotide polymorphisms; SNPs). After quality control, we performed GWASs via GCTA software with 91,620 SNPs and 563 cows. Consequently, 9 and 7 genome-wide significant SNPs (false discovery rate (FDR) at 1%) were identified. Correspondingly, 42 and 206 functional genes that contained or were approximate to (±1 Mbp) the significant SNPs were acquired. Integrating the biological process of these genes and the reported QTLs for immune and inflammation traits in cattle, 3 and 12 genes were identified as candidates for the concentration of colostrum and serum albumin, respectively; these are RUNX1, CBR1, OTULIN,CDK6, SHARPIN, CYC1, EXOSC4, PARP10, NRBP2, GFUS, PYCR3, EEF1D, GSDMD, PYCR2 and CXCL12. Our findings provide important information for revealing the genetic mechanism behind albumin concentration and for molecular breeding of disease-resistance traits in dairy cattle.
Collapse
Affiliation(s)
- Shan Lin
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Zihui Wan
- Stae Key Laboratory of Agriobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Junnan Zhang
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Lingna Xu
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Bo Han
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.L.); (J.Z.); (L.X.); (B.H.)
- Correspondence:
| |
Collapse
|
23
|
Kirsanova E, Heringstad B, Lewandowska-Sabat A, Olsaker I. Identification of candidate genes affecting chronic subclinical mastitis in Norwegian Red cattle: combining genome-wide association study, topologically associated domains and pathway enrichment analysis. Anim Genet 2019; 51:22-31. [PMID: 31808564 DOI: 10.1111/age.12886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to identify genes associated with chronic subclinical mastitis (SCM) in Norwegian Red (NR) cattle. Twelve SCM traits defined based on fixed threshold for test-day somatic cell count (SCC) were, together with lactation-average somatic cell score (LSCS) used for association and pathway enrichment analyses. A GWAS was performed on 3795 genotyped NR bulls with 777K SNP data and phenotypic information from 7 300 847 test-day SCC observations from 3 543 764 cows. At 5% chromosome-wide significance level 36 unique SNP were detected to be associated with one or more of the traits. These SNPs were analysed for linked genes using genomic positions of topologically associated domains (TAD). For the SCM traits with SCC >50 000 and >100 000 cells/ml on two test-days in a row and LSCS, the same top significant genes were identified - checkpoint clamp loader component (RAD17) and cyclin B1 (CCNB1). The SCM traits with SCC >250 000, 300 000, 350 000 or 400 000 cells/ml on two test-days in a row and D400 (number of days before the first case with SCC >400 000 cells/ml) displayed similar top significant genes: acyl-CoA thioesterase 2 and 4 (ACOT2; ACOT4). For the traits SCM200_3 (SCC >200 000 cells/ml on three test-days in a row) and SCM150, SCM200 (SCC >150 000; 200 000 cells/ml on two test-days in a row) a group of chemokine (C-X-C motif) ligand genes and the Fos proto-oncogene, AP-1 transcription factor subunit (FOS) gene, were identified. Further functional studies of these identified candidate genes are necessary to clarify their actual role in development of chronic SCM in NR cattle.
Collapse
Affiliation(s)
- E Kirsanova
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - B Heringstad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oslo, Norway.,Geno Breeding and A.I. Association, Hamar, Norway
| | - A Lewandowska-Sabat
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - I Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
24
|
Dhahbi J, Nunez Lopez YO, Schneider A, Victoria B, Saccon T, Bharat K, McClatchey T, Atamna H, Scierski W, Golusinski P, Golusinski W, Masternak MM. Profiling of tRNA Halves and YRNA Fragments in Serum and Tissue From Oral Squamous Cell Carcinoma Patients Identify Key Role of 5' tRNA-Val-CAC-2-1 Half. Front Oncol 2019; 9:959. [PMID: 31616639 PMCID: PMC6775249 DOI: 10.3389/fonc.2019.00959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer and, as indicated by The Oral Cancer Foundation, kills at an alarming rate of roughly one person per hour. With this study, we aimed at better understanding disease mechanisms and identifying minimally invasive disease biomarkers by profiling novel small non-coding RNAs (specifically, tRNA halves and YRNA fragments) in both serum and tumor tissue from humans. Small RNA-Sequencing identified multiple 5' tRNA halves and 5' YRNA fragments that displayed significant differential expression levels in circulation and/or tumor tissue, as compared to control counterparts. In addition, by implementing a modification of weighted gene coexpression network analysis, we identified an upregulated genetic module comprised of 5' tRNA halves and miRNAs (miRNAs were described in previous study using the same samples) with significant association with the cancer trait. By consequently implementing miRNA-overtargeting network analysis, the biological function of the module (and by "guilt by association," the function of the 5' tRNA-Val-CAC-2-1 half) was found to involve the transcriptional targeting of specific genes involved in the negative regulation of the G1/S transition of the mitotic cell cycle. These findings suggest that 5' tRNA-Val-CAC-2-1 half (reduced in serum of OSCC patients and elevated in the tumor tissue) could potentially serve as an OSCC circulating biomarker and/or target for novel anticancer therapies. To our knowledge, this is the first time that the specific molecular function of a 5'-tRNA half is specifically pinpointed in OSCC.
Collapse
Affiliation(s)
- Joseph Dhahbi
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Yury O. Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, AdventHealth, Orlando, FL, United States
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Tatiana Saccon
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, Brazil
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Krish Bharat
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Thaddeus McClatchey
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Hani Atamna
- Department of Medical Education, School of Medicine, California University of Science & Medicine, San Bernardino, CA, United States
| | - Wojciech Scierski
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Golusinski
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, Zielona Gora, Poland
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznań, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| | - Michal M. Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznań, Poland
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznań, Poland
| |
Collapse
|
25
|
Associations between Bovine β-Defensin 4 Genotypes and Production Traits of Polish Holstein-Friesian Dairy Cattle. Animals (Basel) 2019; 9:ani9100723. [PMID: 31557942 PMCID: PMC6827129 DOI: 10.3390/ani9100723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/22/2019] [Accepted: 09/23/2019] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Mastitis negatively affects dairy cattle, causing inferior milk quality and premature animal culling, which leads to economic losses. Therefore, selection based on genetic markers (i.g., marker-assisted selection) should also include functional traits with low heritability, such as resistance to udder inflammation. Single nucleotide polymorphisms (SNPs) identified in genes involved in the immune system, such as defensins with antibacterial properties, could be valuable markers. We chose two SNPs within the bovine neutrophil beta-defensin 4 (BNBD4) gene analyzed in a previous study related to milk production and udder health. Since these SNPs are located very close to each other in the gene intron, it is useful to analyze their association with production traits as a combined genotype. The results showed that these genotypes are indeed associated with productivity, as well as functional traits (milk, fat, and protein yields, fat, protein, lactose, and dry matter contents, and somatic cell count). The differences between the results based on the phenotypic data and the breeding values of studied traits may confirm the results of simulation studies that indicate a high rate of false-positives in genome-wide association study (GWAS) based on classically calculated estimated breeding values (EBVs) using best linear unbiased prediction (BLUP) methodology. Abstract This study analyzed the associations between two single-nucleotide polymorphisms (C2239T and A1674C), used together as a genotype located in BNBD4, and milk traits and breeding values of productivity traits of Polish Holstein-Friesian dairy cows. The research was carried out on 322 cows, with 7070 milk parameter and somatic cell count records in daily milking, as well as 897 records covering data on whole lactations, and 2209 breeding value records for productivity traits. The DMU statistical package with a one-trait repeatability test-day animal model was used to estimate the associations. The differences between the genotype effects were analyzed using Duncan’s post-hoc tests. The CC/AA and CT/AC genotypes had the highest frequencies (0.62 and 0.23, respectively). For use in marker-assisted selection, the CC/AC genotype is the most promising as an indicator of high-yielding cows potentially resistant to mastitis, because it was associated with the lowest somatic cell count (SCC), highest milk, fat, and protein yields in daily milking, as well as with milk yield in the whole lactation. The studied genotypes were also related to the breeding values of all the investigated production traits. However, some simulation studies have indicated a high rate of false-positives in GWAS based on classically calculated EBVs.
Collapse
|
26
|
Costa A, Schwarzenbacher H, Mészáros G, Fuerst-Waltl B, Fuerst C, Sölkner J, Penasa M. On the genomic regions associated with milk lactose in Fleckvieh cattle. J Dairy Sci 2019; 102:10088-10099. [PMID: 31447150 DOI: 10.3168/jds.2019-16663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Lactose is a sugar uniquely found in mammals' milk and it is the major milk solid in bovines. Lactose yield (LY, kg/d) is responsible for milk volume, whereas lactose percentage (LP) is thought to be more related to epithelial integrity and thus to udder health. There is a paucity of studies that have investigated lactose at the genomic level in dairy cows. This paper aimed to improve our knowledge on LP and LY, providing new insights into the significant genomic regions affecting these traits. A genome-wide association study for LP and LY was carried out in Fleckvieh cattle by using bulls' deregressed estimated breeding values of first lactation as pseudo-phenotypes. Heritabilities of first-lactation test-day LP and LY estimated using linear animal models were 0.38 and 0.25, respectively. A total of 2,854 bulls genotyped with a 54K SNP chip were available for the genome-wide association study; a linear mixed model approach was adopted for the analysis. The significant SNP of LP were scattered across the whole genome, with signals on chromosomes 1, 2, 3, 7, 12, 16, 18, 19, 20, 28, and 29; the top 4 significant SNP explained 4.90% of the LP genetic variance. The signals were mostly in regions or genes with involvement in molecular intra- or extracellular transport; for example, CDH5, RASGEF1C, ABCA6, and SLC35F3. A significant region within chromosome 20 was previously shown to affect mastitis or somatic cell score in cattle. As regards LY, the significant SNP were concentrated in fewer regions (chromosomes 6 and 14), related to mastitis/somatic cell score, immune response, and transport mechanisms. The 5 most significant SNP for LY explained 8.45% of genetic variance and more than one-quarter of this value has to be attributed to the variant within ADGRB1. Significant peaks in target regions remained even after adjustment for the 2 most significant variants previously detected on BTA6 and BTA14. The present study is a prelude for deeper investigations into the biological role of lactose for milk secretion and volume determination, stressing the connection with genes regulating intra- or extracellular trafficking and immune and inflammatory responses in dairy cows. Also, these results improve the knowledge on the relationship between lactose and udder health; they support the idea that LP and its derived traits are potential candidates as indicators of udder health in breeding programs aimed to enhance cows' resistance to mastitis.
Collapse
Affiliation(s)
- Angela Costa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | | | - Gábor Mészáros
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria.
| | - Birgit Fuerst-Waltl
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Christian Fuerst
- ZuchtData EDV-Dienstleistungen GmbH, Dresdner Strasse 89/19, A-1200 Vienna, Austria
| | - Johann Sölkner
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Sustainable Agricultural Systems, Division of Livestock Sciences, Gregor Mendel-Strasse 33, A-1180 Vienna, Austria
| | - Mauro Penasa
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| |
Collapse
|
27
|
Oliveira HR, Cant JP, Brito LF, Feitosa FLB, Chud TCS, Fonseca PAS, Jamrozik J, Silva FF, Lourenco DAL, Schenkel FS. Genome-wide association for milk production traits and somatic cell score in different lactation stages of Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019; 102:8159-8174. [PMID: 31301836 DOI: 10.3168/jds.2019-16451] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
We performed genome-wide association analyses for milk, fat, and protein yields and somatic cell score based on lactation stages in the first 3 parities of Canadian Ayrshire, Holstein, and Jersey cattle. The genome-wide association analyses were performed considering 3 different lactation stages for each trait and parity: from 5 to 95, from 96 to 215, and from 216 to 305 d in milk. Effects of single nucleotide polymorphisms (SNP) for each lactation stage, trait, parity, and breed were estimated by back-solving the direct breeding values estimated using the genomic best linear unbiased predictor and single-trait random regression test-day models containing only the fixed population average curve and the random genomic curves. To identify important genomic regions related to the analyzed lactation stages, traits, parities and breeds, moving windows (SNP-by-SNP) of 20 adjacent SNP explaining more than 0.30% of total genetic variance were selected for further analyses of candidate genes. A lower number of genomic windows with a relatively higher proportion of the explained genetic variance was found in the Holstein breed compared with the Ayrshire and Jersey breeds. Genomic regions associated with the analyzed traits were located on 12, 8, and 15 chromosomes for the Ayrshire, Holstein, and Jersey breeds, respectively. Especially for the Holstein breed, many of the identified candidate genes supported previous reports in the literature. However, well-known genes with major effects on milk production traits (e.g., diacylglycerol O-acyltransferase 1) showed contrasting results among lactation stages, traits, and parities of different breeds. Therefore, our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the analyzed traits across breeds, parities, and lactation stages. Further functional studies are needed to validate our findings in independent populations.
Collapse
Affiliation(s)
- H R Oliveira
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - J P Cant
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - L F Brito
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F L B Feitosa
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - T C S Chud
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - P A S Fonseca
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J Jamrozik
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada; Canadian Dairy Network (CDN), Guelph, Ontario, N1K 1E5, Canada
| | - F F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
28
|
Iung LHS, Petrini J, Ramírez-Díaz J, Salvian M, Rovadoscki GA, Pilonetto F, Dauria BD, Machado PF, Coutinho LL, Wiggans GR, Mourão GB. Genome-wide association study for milk production traits in a Brazilian Holstein population. J Dairy Sci 2019; 102:5305-5314. [PMID: 30904307 DOI: 10.3168/jds.2018-14811] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 10/19/2018] [Indexed: 12/19/2022]
Abstract
Advances in the molecular area of selection have expanded knowledge of the genetic architecture of complex traits through genome-wide association studies (GWAS). Several GWAS have been performed so far, but confirming these results is not always possible due to several factors, including environmental conditions. Thus, our objective was to identify genomic regions associated with traditional milk production traits, including milk yield, somatic cell score, fat, protein and lactose percentages, and fatty acid composition in a Holstein cattle population producing under tropical conditions. For this, 75,228 phenotypic records from 5,981 cows and genotypic data of 56,256 SNP from 1,067 cows were used in a weighted single-step GWAS. A total of 46 windows of 10 SNP explaining more than 1% of the genetic variance across 10 Bos taurus autosomes (BTA) harbored well-known and novel genes. The MGST1 (BTA5), ABCG2 (BTA6), DGAT1 (BTA14), and PAEP (BTA11) genes were confirmed within some of the regions identified in our study. Potential novel genes involved in tissue damage and repair of the mammary gland (COL18A1), immune response (LTTC19), glucose homeostasis (SLC37A1), synthesis of unsaturated fatty acids (LTBP1), and sugar transport (SLC37A1 and MFSD4A) were found for milk yield, somatic cell score, fat percentage, and fatty acid composition. Our findings may assist genomic selection by using these regions to design a customized SNP array to improve milk production traits on farms with similar environmental conditions.
Collapse
Affiliation(s)
- L H S Iung
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Petrini
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - J Ramírez-Díaz
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - M Salvian
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G A Rovadoscki
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - F Pilonetto
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - B D Dauria
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - P F Machado
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - L L Coutinho
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil
| | - G R Wiggans
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - G B Mourão
- Department of Animal Science, University of São Paulo (USP)/Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo 13418900, Brazil.
| |
Collapse
|
29
|
Di Gerlando R, Sardina MT, Tolone M, Sutera AM, Mastrangelo S, Portolano B. Genome-wide detection of copy-number variations in local cattle breeds. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The aim of the present study was to identify copy-number variations (CNVs) in Cinisara (CIN) and Modicana (MOD) cattle breeds on the basis of signal intensity (logR ratio) and B allele frequency of each marker, using Illumina’s BovineSNP50K Genotyping BeadChip. The CNVs were detected with the PennCNV and SVS 8.7.0 software and were aggregated into CNV regions (CNVRs). PennCNV identified 487 CNVs in CIN that aggregated into 86 CNVRs, and 424 CNVs in MOD that aggregated into 81 CNVRs. SVS identified a total of 207 CNVs in CIN that aggregated into 39 CNVRs, and 181 CNVs in MOD that aggregated into 41 CNVRs. The CNVRs identified with the two softwares contained 29 common CNVRs in CIN and 17 common CNVRs in MOD. Only a small number of CNVRs identified in the present study have been identified elsewhere, probably because of the limitations of the array used. In total, 178 and 208 genes were found within the CNVRs of CIN and MOD respectively. Gene Ontology and KEGG pathway analyses showed that several of these genes are involved in milk production, reproduction and behaviour, the immune response, and resistance/susceptibility to infectious diseases. Our results have provided significant information for the construction of more-complete CNV maps of the bovine genome and offer an important resource for the investigation of genomic changes and traits of interest in the CIN and MOD cattle breeds. Our results will also be valuable for future studies and constitute a preliminary report of the CNV distribution resources in local cattle genomes.
Collapse
|
30
|
A genome-wide association study for mastitis resistance in phenotypically well-characterized Holstein dairy cattle using a selective genotyping approach. Immunogenetics 2018; 71:35-47. [DOI: 10.1007/s00251-018-1088-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
|
31
|
Cai Z, Guldbrandtsen B, Lund MS, Sahana G. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genomics 2018; 19:656. [PMID: 30189836 PMCID: PMC6127918 DOI: 10.1186/s12864-018-5050-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022] Open
Abstract
Background Improving resistance to mastitis, one of the costliest diseases in dairy production, has become an important objective in dairy cattle breeding. However, mastitis resistance is influenced by many genes involved in multiple processes, including the response to infection, inflammation, and post-infection healing. Low genetic heritability, environmental variations, and farm management differences further complicate the identification of links between genetic variants and mastitis resistance. Consequently, studies of the genetics of variation in mastitis resistance in dairy cattle lack agreement about the responsible genes. Results We associated 15,552,968 imputed whole-genome sequencing markers for 5147 Nordic Holstein cattle with mastitis resistance in a genome-wide association study (GWAS). Next, we augmented P-values for markers in genes in the associated regions using Gene Ontology terms, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and mammalian phenotype database. To confirm results of gene-based analyses, we used gene expression data from E. coli-challenged cow udders. We identified 22 independent quantitative trait loci (QTL) that collectively explained 14% of the variance in breeding values for resistance to clinical mastitis (CM). Using association test statistics with multiple pieces of independent information on gene function and differential expression during bacterial infection, we suggested putative causal genes with biological relevance for 12 QTL affecting resistance to CM in dairy cattle. Conclusion Combining information on the nearest positional genes, gene-based analyses, and differential gene expression data from RNA-seq, we identified putative causal genes (candidate genes with biological evidence) in QTL for mastitis resistance in Nordic Holstein cattle. The same strategy can be applied for other traits. Electronic supplementary material The online version of this article (10.1186/s12864-018-5050-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zexi Cai
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark.
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Mogens Sandø Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830, Tjele, Denmark
| |
Collapse
|
32
|
Song H, Li L, Ma P, Zhang S, Su G, Lund MS, Zhang Q, Ding X. Short communication: Improving the accuracy of genomic prediction of body conformation traits in Chinese Holsteins using markers derived from high-density marker panels. J Dairy Sci 2018; 101:5250-5254. [PMID: 29550139 DOI: 10.3168/jds.2017-13456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/25/2017] [Indexed: 01/02/2023]
Abstract
This study investigated the efficiency of genomic prediction with adding the markers identified by genome-wide association study (GWAS) using a data set of imputed high-density (HD) markers from 54K markers in Chinese Holsteins. Among 3,056 Chinese Holsteins with imputed HD data, 2,401 individuals born before October 1, 2009, were used for GWAS and a reference population for genomic prediction, and the 220 younger cows were used as a validation population. In total, 1,403, 1,536, and 1,383 significant single nucleotide polymorphisms (SNP; false discovery rate at 0.05) associated with conformation final score, mammary system, and feet and legs were identified, respectively. About 2 to 3% genetic variance of 3 traits was explained by these significant SNP. Only a very small proportion of significant SNP identified by GWAS was included in the 54K marker panel. Three new marker sets (54K+) were herein produced by adding significant SNP obtained by linear mixed model for each trait into the 54K marker panel. Genomic breeding values were predicted using a Bayesian variable selection (BVS) model. The accuracies of genomic breeding value by BVS based on the 54K+ data were 2.0 to 5.2% higher than those based on the 54K data. The imputed HD markers yielded 1.4% higher accuracy on average (BVS) than the 54K data. Both the 54K+ and HD data generated lower bias of genomic prediction, and the 54K+ data yielded the lowest bias in all situations. Our results show that the imputed HD data were not very useful for improving the accuracy of genomic prediction and that adding the significant markers derived from the imputed HD marker panel could improve the accuracy of genomic prediction and decrease the bias of genomic prediction.
Collapse
Affiliation(s)
- H Song
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - L Li
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - P Ma
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China; Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark; Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - S Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - G Su
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
| | - M S Lund
- Department of Molecular Biology and Genetics, Aarhus University, DK-8830 Tjele, Denmark
| | - Q Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China
| | - X Ding
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
33
|
Ju Z, Jiang Q, Liu G, Wang X, Luo G, Zhang Y, Zhang J, Zhong J, Huang J. Solexa sequencing and custom microRNA chip reveal repertoire of microRNAs in mammary gland of bovine suffering from natural infectious mastitis. Anim Genet 2018; 49:3-18. [PMID: 29315680 DOI: 10.1111/age.12628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Identification of microRNAs (miRNAs), target genes and regulatory networks associated with innate immune and inflammatory responses and tissue damage is essential to elucidate the molecular and genetic mechanisms for resistance to mastitis. In this study, a combination of Solexa sequencing and custom miRNA chip approaches was used to profile the expression of miRNAs in bovine mammary gland at the late stage of natural infection with Staphylococcus aureus, a widespread mastitis pathogen. We found 383 loci corresponding to 277 known and 49 putative novel miRNAs, two potential mitrons and 266 differentially expressed miRNAs in the healthy and mastitic cows' mammary glands. Several interaction networks and regulators involved in mastitis susceptibility, such as ALCAM, COL1A1, APOP4, ITIH4, CRP and fibrinogen alpha (FGA), were highlighted. Significant down-regulation and location of bta-miR-26a, which targets FGA in the mastitic mammary glands, were validated using quantitative real-time PCR, in situ hybridization and dual-luciferase reporter assays. We propose that the observed miRNA variations in mammary glands of mastitic cows are related to the maintenance of immune and defense responses, cell proliferation and apoptosis, and tissue injury and healing during the late stage of infection. Furthermore, the effect of bta-miR-26a in mastitis, mediated at least in part by enhancing FGA expression, involves host defense, inflammation and tissue damage.
Collapse
Affiliation(s)
- Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Gang Liu
- National Center for Preservation and Utilization of Genetic Resources of Domestic Animals, National Animal Husbandry Service, Beijing, 100193, China
| | - Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Guojing Luo
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Yan Zhang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China
| | - Jibin Zhang
- Department of Animal Science, Iowa State University, 2361 Kildee Hall, 806 Stange Road, Ames, IA, 50010, USA
| | - Jifeng Zhong
- Engineering Center of Animal Breeding and Reproduction, Jinan, Shandong, 250100, China
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China.,Engineering Center of Animal Breeding and Reproduction, Jinan, Shandong, 250100, China
| |
Collapse
|
34
|
Judge MM, Purfield DC, Sleator RD, Berry DP. The impact of multi-generational genotype imputation strategies on imputation accuracy and subsequent genomic predictions. J Anim Sci 2017; 95:1489-1501. [PMID: 28464096 DOI: 10.2527/jas.2016.1212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to quantify, using simulations, the impact of successive generations of genotype imputation on genomic predictions. The impact of using a small reference population of true genotypes versus a larger reference population of imputed genotypes on the accuracy of genomic predictions was also investigated. After construction of a founder population, high-density (HD) genotypes ( = 43,500 single nucleotide polymorphisms, SNP) were simulated across 25 generations ( = 46,800 per generation); a low-density genotype panel ( = 3,000 SNP) was developed from these HD genotypes, which was then used to impute genotypes using 7 alternative imputation strategies. Both low (0.03) and moderately (0.35) heritable phenotypes were simulated. Direct genomic values (DGV) were estimated using imputed genotypes from the investigated scenarios and the accuracy of predicting the simulated true breeding values (TBV) were expressed relative to the accuracy when the true genotypes were used. Mean allele concordance rate and the rate of change in mean allele concordance per generation differed between the imputation strategies investigated. Imputation was most accurate when the true HD genotypes of sires and 50% of the dams of the generation being imputed were included in the reference population; the average allele concordance rate for this scenario across generations was 0.9707. The strongest correlation between the TBV and DGV of the last generation was when the reference population included sequentially imputed HD genotypes of all previous generations, plus the true HD genotypes of all sires of the previous generations (0.987 as efficient as when the true genotypes were used in the reference population). With a moderate heritability, the correlation between the TBV and the DGV using a small reference population of accurate genotypes were, on average, 0.07 units stronger compared to DGV generated using a larger population of imputed genotypes. When the heritability was low, the accuracy of genomic predictions benefited from a larger reference population, even if SNP were imputed. The impact on the accuracy of genomic predictions from the accumulation of imputation errors across generations indicates the need to routinely generate HD genotypes on influential animals to reduce the accumulation of imputation errors over generations.
Collapse
|
35
|
Parker Gaddis KL, Null DJ, Cole JB. Explorations in genome-wide association studies and network analyses with dairy cattle fertility traits. J Dairy Sci 2016; 99:6420-6435. [PMID: 27209127 DOI: 10.3168/jds.2015-10444] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/15/2016] [Indexed: 01/03/2023]
Abstract
The objective of this study was to identify single nucleotide polymorphisms and gene networks associated with 3 fertility traits in dairy cattle-daughter pregnancy rate, heifer conception rate, and cow conception rate-using different approaches. Deregressed predicted transmitting abilities were available for approximately 24,000 Holstein bulls and 36,000 Holstein cows sampled from the National Dairy Database with high-density genotypes. Of those, 1,732 bulls and 375 cows had been genotyped with the Illumina BovineHD Genotyping BeadChip (Illumina Inc., San Diego, CA). The remaining animals were genotyped with various chips of lower density that were imputed to high density. Univariate and trivariate genome-wide association studies (GWAS) with both medium- (60,671 markers) and high-density (312,614 markers) panels were performed for daughter pregnancy rate, heifer conception rate, and cow conception rate using GEMMA (version 0.94; http://www.xzlab.org/software.html). Analyses were conducted using bulls only, cows only, and a sample of both bulls and cows. The partial correlation and information theory algorithm was used to develop gene interaction networks. The most significant markers were further investigated to identify putatively associated genes. Little overlap in associated genes could be found between GWAS using different reference populations of bulls only, cows only, and combined bulls and cows. The partial correlation and information theory algorithm was able to identify several genes that were not identified by ordinary GWAS. The results obtained herein will aid in further dissecting the complex biology underlying fertility traits in dairy cattle, while also providing insight into the nuances of GWAS.
Collapse
Affiliation(s)
- K L Parker Gaddis
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| | - D J Null
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - J B Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| |
Collapse
|
36
|
de Camargo GMF, Aspilcueta-Borquis RR, Fortes MRS, Porto-Neto R, Cardoso DF, Santos DJA, Lehnert SA, Reverter A, Moore SS, Tonhati H. Prospecting major genes in dairy buffaloes. BMC Genomics 2015; 16:872. [PMID: 26510479 PMCID: PMC4625573 DOI: 10.1186/s12864-015-1986-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asian buffaloes (Bubalus bubalis) have an important socio-economic role. The majority of the population is situated in developing countries. Due to the scarce resources in these countries, very few species-specific biotechnology tools exist and a lot of cattle-derived technologies are applied to buffaloes. However, the application of cattle genomic tools to buffaloes is not straightforward and, as results suggested, despite genome sequences similarity the genetic polymorphisms are different. RESULTS The first SNP chip genotyping platform designed specifically for buffaloes has recently become available. Herein, a genome-wide association study (GWAS) and gene network analysis carried out in buffaloes is presented. Target phenotypes were six milk production and four reproductive traits. GWAS identified SNP with significant associations and suggested candidate genes that were specific to each trait and also genes with pleiotropic effect, associated to multiple traits. CONCLUSIONS Network predictions of interactions between these candidate genes may guide further molecular analyses in search of disruptive mutations, help select genes for functional experiments and evidence metabolism differences in comparison to cattle. The cattle SNP chip does not offer an optimal coverage of buffalo genome, thereafter the development of new buffalo-specific genetic technologies is warranted. An annotated reference genome would greatly facilitate genetic research, with potential impact to buffalo-based dairy production.
Collapse
Affiliation(s)
- G M F de Camargo
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - R R Aspilcueta-Borquis
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - M R S Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - R Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Agriculture Flagship, St Lucia, Brisbane, QLD, 4072, Australia.
| | - D F Cardoso
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - D J A Santos
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| | - S A Lehnert
- Commonwealth Scientific and Industrial Research Organization, Agriculture Flagship, St Lucia, Brisbane, QLD, 4072, Australia.
| | - A Reverter
- Commonwealth Scientific and Industrial Research Organization, Agriculture Flagship, St Lucia, Brisbane, QLD, 4072, Australia.
| | - S S Moore
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, Brisbane, QLD, 4067, Australia.
| | - H Tonhati
- Universidade Estadual Paulista (Unesp), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, Via de acesso Professor Paulo Donato Castelane, Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
37
|
Martinez BV, Dhahbi JM, Lopez YON, Lamperska K, Golusinski P, Luczewski L, Kolenda T, Atamna H, Spindler SR, Golusinski W, Masternak MM. Circulating small non-coding RNA signature in head and neck squamous cell carcinoma. Oncotarget 2015; 6:19246-63. [PMID: 26057471 PMCID: PMC4662488 DOI: 10.18632/oncotarget.4266] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
The Head and Neck Squamous Cell Carcinoma (HNSCC) is the sixth most common human cancer, causing 350,000 individuals die worldwide each year. The overall prognosis in HNSCC patients has not significantly changed for the last decade. Complete understanding of the molecular mechanisms in HNSCC carcinogenesis could allow an earlier diagnosis and the use of more specific and effective therapies. In the present study we used deep sequencing to characterize small non-coding RNAs (sncRNAs) in serum from HNSCC patients and healthy donors. We identified, for the first time, a multi-marker signature of 3 major classes of circulating sncRNAs in HNSCC, revealing the presence of circulating novel and known miRNAs, and tRNA- and YRNA-derived small RNAs that were significantly deregulated in the sera of HNSCC patients compared to healthy controls. By implementing a triple-filtering approach we identified a subset of highly biologically relevant miRNA-mRNA interactions and we demonstrated that the same genes/pathways affected by somatic mutations in cancer are affected by changes in the abundance of miRNAs. Therefore, one important conclusion from our work is that during cancer development, there seems to be a convergence of oncogenic processes driven by somatic mutations and/or miRNA regulation affecting key cellular pathways.
Collapse
Affiliation(s)
- Berta Victoria Martinez
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine Orlando, FL, USA
| | - Joseph M. Dhahbi
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Yury O. Nunez Lopez
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, FL, USA
| | - Katarzyna Lamperska
- Deptartment of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Paweł Golusinski
- Department of Biology and Environmental Studies, Poznan University of Medical Sciences, Poznan, Poland
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Luczewski
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Tomasz Kolenda
- Deptartment of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Hani Atamna
- Department of Medical Education, California Northstate University, Elk Grove, CA, USA
| | - Stephen R. Spindler
- Department of Biochemistry, University of California at Riverside, Riverside, CA, USA
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| | - Michal M. Masternak
- University of Central Florida, Burnett School of Biomedical Sciences, College of Medicine Orlando, FL, USA
- Department of Head and Neck Surgery, Greater Poland Cancer Centre, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
38
|
Usman T, Wang Y, Liu C, Wang X, Zhang Y, Yu Y. Association study of single nucleotide polymorphisms in JAK2 and STAT5B genes and their differential mRNA expression with mastitis susceptibility in Chinese Holstein cattle. Anim Genet 2015; 46:371-80. [PMID: 26154111 DOI: 10.1111/age.12306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2015] [Indexed: 02/03/2023]
Abstract
The JAK-STAT pathway plays a key role in mediating immune responses. The genetic effects of single nucleotide polymorphisms (SNPs) in JAK2 and STAT5B were investigated for serum cytokines, mastitis indicators and productions traits in a population of 468 Chinese Holstein cattle. Pooled DNA sequencing revealed one SNP (BTA8:g.39645396A>G) in JAK2 and two SNPs (BTA19:g.43673888A>G and BTA19:g.43660093T>C) in STAT5B. A fixed effect model considering the effects of SNPs, parity, herd, season and year of calving was used by way of the general linear model procedure of sas. Genotype frequencies of these SNPs in the population were in Hardy-Weinberg equilibrium (P > 0.05). A novel SNP (g.39645396A>G) in JAK2 was predicted to change the amino acid from lysine to asparagine and was significantly associated with the somatic cell count (SCC) and somatic cell score (SCS), whereas g.43673888A>G in STAT5B was significantly associated with SCC, SCS and interleukin-4 (IL-4) (P < 0.05). The dominant effect of g.39645396A>G in JAK2 was significant for SCS, and its additive effect was significant for SCC, whereas the dominant effect of g.43673888A>G in STAT5B was significant for SCS and IL-4 (P < 0.05). The combination of g.39645396A>G in JAK2 and g.43673888A>G in STAT5B showed a significant effect on SCC, SCS, IL-4 and TNF-α (P < 0.05). As for mRNA expression analysis, the AA genotype g.39645396A>G and GG genotype g.43673888A>G indicated higher mRNA expression level and were significantly different from other genotypes (P < 0.05). The results imply that JAK2 and STAT5B genes could be useful candidate genes, and the identified polymorphisms might potentially be strong genetic markers for selection of dairy cattle against mastitis development.
Collapse
Affiliation(s)
- T Usman
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China.,College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - C Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - X Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Y Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| | - Y Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
39
|
Nani JP, Raschia MA, Poli MA, Calvinho LF, Amadio AF. Genome-wide association study for somatic cell score in Argentinean dairy cattle. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Tiezzi F, Parker-Gaddis KL, Cole JB, Clay JS, Maltecca C. A genome-wide association study for clinical mastitis in first parity US Holstein cows using single-step approach and genomic matrix re-weighting procedure. PLoS One 2015; 10:e0114919. [PMID: 25658712 PMCID: PMC4319771 DOI: 10.1371/journal.pone.0114919] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 11/01/2014] [Indexed: 11/18/2022] Open
Abstract
Clinical mastitis (CM) is one of the health disorders with large impacts on dairy farming profitability and animal welfare. The objective of this study was to perform a genome-wide association study (GWAS) for CM in first-lactation Holstein. Producer-recorded mastitis event information for 103,585 first-lactation cows were used, together with genotype information on 1,361 bulls from the Illumina BovineSNP50 BeadChip. Single-step genomic-BLUP methodology was used to incorporate genomic data into a threshold-liability model. Association analysis confirmed that CM follows a highly polygenic mode of inheritance. However, 10-adjacent-SNP windows showed that regions on chromosomes 2, 14 and 20 have impacts on genetic variation for CM. Some of the genes located on chromosome 14 (LY6K, LY6D, LYNX1, LYPD2, SLURP1, PSCA) are part of the lymphocyte-antigen-6 complex (LY6) known for its neutrophil regulation function linked to the major histocompatibility complex. Other genes on chromosome 2 were also involved in regulating immune response (IFIH1, LY75, and DPP4), or are themselves regulated in the presence of specific pathogens (ITGB6, NR4A2). Other genes annotated on chromosome 20 are involved in mammary gland metabolism (GHR, OXCT1), antibody production and phagocytosis of bacterial cells (C6, C7, C9, C1QTNF3), tumor suppression (DAB2), involution of mammary epithelium (OSMR) and cytokine regulation (PRLR). DAVID enrichment analysis revealed 5 KEGG pathways. The JAK-STAT signaling pathway (cell proliferation and apoptosis) and the 'Cytokine-cytokine receptor interaction' (cytokine and interleukines response to infectious agents) are co-regulated and linked to the 'ABC transporters' pathway also found here. Gene network analysis performed using GeneMania revealed a co-expression network where 665 interactions existed among 145 of the genes reported above. Clinical mastitis is a complex trait and the different genes regulating immune response are known to be pathogen-specific. Despite the lack of information in this study, candidate QTL for CM were identified in the US Holstein population.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
- * E-mail:
| | - Kristen L. Parker-Gaddis
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705–2350, United States of America
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD, 20705–2350, United States of America
| | - John S. Clay
- Dairy Records Management Systems, Raleigh, NC, 27603, United States of America
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, United States of America
| |
Collapse
|
41
|
Winkelman A, Johnson D, Harris B. Application of genomic evaluation to dairy cattle in New Zealand. J Dairy Sci 2015; 98:659-75. [DOI: 10.3168/jds.2014-8560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/15/2014] [Indexed: 11/19/2022]
|
42
|
Lawless N, Vegh P, O'Farrelly C, Lynn DJ. The Role of microRNAs in Bovine Infection and Immunity. Front Immunol 2014; 5:611. [PMID: 25505900 PMCID: PMC4245999 DOI: 10.3389/fimmu.2014.00611] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small, non-coding RNAs that are recognized as critical regulators of immune gene expression during infection. Many immunologically significant human miRNAs have been found to be conserved in agriculturally important species, including cattle. Discovering how bovine miRNAs mediate the immune defense during infection is critical to understanding the etiology of the most prevalent bovine diseases. Here, we review current knowledge of miRNAs in the bovine genome, and discuss the advances in understanding of miRNAs as regulators of immune cell function, and bovine immune response activation, regulation, and resolution. Finally, we consider the future perspectives on miRNAs in bovine viral disease, their role as potential biomarkers and in therapy.
Collapse
Affiliation(s)
- Nathan Lawless
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany , Meath , Ireland ; School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - Peter Vegh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany , Meath , Ireland ; School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin , Dublin , Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin , Dublin , Ireland
| | - David J Lynn
- South Australian Health and Medical Research Institute, North Terrace , Adelaide, SA , Australia ; School of Medicine, Flinders University , Bedford Park, SA , Australia
| |
Collapse
|
43
|
Thompson-Crispi K, Atalla H, Miglior F, Mallard BA. Bovine mastitis: frontiers in immunogenetics. Front Immunol 2014; 5:493. [PMID: 25339959 PMCID: PMC4188034 DOI: 10.3389/fimmu.2014.00493] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/23/2014] [Indexed: 12/24/2022] Open
Abstract
Mastitis is one of the most prevalent and costly diseases in the dairy industry with losses attributable to reduced milk production, discarded milk, early culling, veterinary services, and labor costs. Typically, mastitis is an inflammation of the mammary gland most often, but not limited to, bacterial infection, and is characterized by the movement of leukocytes and serum proteins from the blood to the site of infection. It contributes to compromised milk quality and the potential spread of antimicrobial resistance if antibiotic treatment is not astutely applied. Despite the implementation of management practises and genetic selection approaches, bovine mastitis control continues to be inadequate. However, some novel genetic strategies have recently been demonstrated to reduce mastitis incidence by taking advantage of a cow's natural ability to make appropriate immune responses against invading pathogens. Specifically, dairy cattle with enhanced and balanced immune responses have a lower occurrence of disease, including mastitis, and they can be identified and selected for using the high immune response (HIR) technology. Enhanced immune responsiveness is also associated with improved response to vaccination, increased milk, and colostrum quality. Since immunity is an important fitness trait, beneficial associations with longevity and reproduction are also often noted. This review highlights the genetic regulation of the bovine immune system and its vital contributions to disease resistance. Genetic selection approaches currently used in the dairy industry to reduce the incidence of disease are reviewed, including the HIR technology, genomics to improve disease resistance or immune response, as well as the Immunity(+)™ sire line. Improving the overall immune responsiveness of cattle is expected to provide superior disease resistance, increasing animal welfare and food quality while maintaining favorable production levels to feed a growing population.
Collapse
Affiliation(s)
- Kathleen Thompson-Crispi
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Heba Atalla
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Department of Biomedical Science, University of Guelph, Guelph, ON, Canada
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada
| | - Filippo Miglior
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
- Canadian Dairy Network, Guelph, ON, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
44
|
Kościuczuk EM, Lisowski P, Jarczak J, Krzyżewski J, Zwierzchowski L, Bagnicka E. Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet Res 2014; 10:246. [PMID: 25286984 PMCID: PMC4194403 DOI: 10.1186/s12917-014-0246-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/29/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mastitis is still considered to be the most economically important infectious disease in dairy cattle breeding. The immune response in mammary gland tissues could help in developing support strategies to combat this disease. The role of neutrophils and macrophages in the innate response of mammary gland is well known. However, the immune response in mammary gland tissues, including levels of antimicrobial peptide transcripts, has not been well recognized. Moreover, most studies are conducted in vitro, on cell cultures, or on artificially infected animals, with analysis being done within a several dozen hours after infection.The aim of the study was to examine the in vivo transcript levels of beta-defensin and cathelicidins genes in cow mammary gland secretory tissue (parenchyma) with the chronic, recurrent and incurable mammary gland inflammation induced by coagulase-positive or coagulase-negative Staphyloccoci vs. bacteria-free tissue. RESULTS The mRNA of DEFB1, BNBD4, BNBD5, BNBD10 and LAP genes, but not of TAP gene, were detected in all investigated samples regardless of the animals' age and microbiological status of the mammary gland, but at different levels. The expression of most of the beta-defensin genes was shown to be much higher in tissues derived from udders infected with bacteria (CoPS or CoNS) than from bacteria-free udders, regardless of parity. Cathelicidins (CATH4, CATH5 and CATH6) showed expression patterns contrasting those of β-defensins, with the highest expression in tissues derived from bacteria-free udders. CONCLUSION Increased expression of genes encoding β-defensins in the infected udder confirms their crucial role in the defense of the cow mammary gland against mastitis. On the other hand, the elevated cathelicidin transcripts in non-infected tissues indicate their role in the maintenance of healthy mammary tissues. The expression levels of investigated genes are likely to depend on the duration of the infection and type of bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Emilia Bagnicka
- Institute of Genetics and Animal Breeding, PAS in Jastrzębiec, ulPostępu 36A, Magdalenka 05-552, Poland.
| |
Collapse
|
45
|
Strillacci MG, Frigo E, Schiavini F, Samoré AB, Canavesi F, Vevey M, Cozzi MC, Soller M, Lipkin E, Bagnato A. Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC Genet 2014; 15:106. [PMID: 25288516 PMCID: PMC4198737 DOI: 10.1186/s12863-014-0106-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mastitis is a major disease of dairy cattle occurring in response to environmental exposure to infective agents with a great economic impact on dairy industry. Somatic cell count (SCC) and its log transformation in somatic cell score (SCS) are traits that have been used as indirect measures of resistance to mastitis for decades in selective breeding. A selective DNA pooling (SDP) approach was applied to identify Quantitative Trait Loci (QTL) for SCS in Valdostana Red Pied cattle using the Illumina Bovine HD BeadChip. RESULTS A total of 171 SNPs reached the genome-wide significance for association with SCS. Fifty-two SNPs were annotated within genes, some of those involved in the immune response to mastitis. On BTAs 1, 2, 3, 4, 9, 13, 15, 17, 21 and 22 the largest number of markers in association to the trait was found. These regions identified novel genomic regions related to mastitis (1-Mb SNP windows) and confirmed those already mapped. The largest number of significant SNPs exceeding the threshold for genome-wide significant signal was found on BTA 15, located at 50.43-51.63 Mb. CONCLUSIONS The genomic regions identified in this study contribute to a better understanding of the genetic control of the mastitis immune response in cattle and may allow the inclusion of more detailed QTL information in selection programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alessandro Bagnato
- Department of Health, Animal Science and Food Safety (VESPA), University of Milan, Via Celoria 10, Milan, 20133, Italy.
| |
Collapse
|
46
|
Dhahbi JM. Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev 2014; 17:86-98. [PMID: 24607831 DOI: 10.1016/j.arr.2014.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/31/2022]
Abstract
Small noncoding RNAs (sncRNAs) mediate a variety of cellular functions in animals and plants. Deep sequencing has made it possible to obtain highly detailed information on the types and abundance of sncRNAs in biological specimens, leading to the discovery that sncRNAs circulate in the blood of humans and mammals. The most abundant types of circulating sncRNAs are microRNAs (miRNAs), 5' transfer RNA (tRNA) halves, and YRNA fragments, with minute amounts of other types that may nevertheless be significant. Of the more abundant circulating sncRNAs only miRNAs have well described functions, but characteristics of the others suggest specific processing and secretion as complexes that protect the RNA from degradation. The properties of circulating sncRNAs are consistent with their serving as signaling molecules, and investigations of circulating miRNAs support the view that they can enter cells and regulate cellular functions. The serum levels of specific sncRNAs change markedly with age, and these changes can be mitigated by calorie restriction (CR), indicating that levels are under physiologic control. The ability of circulating sncRNAs to transmit functions between cells and to regulate a broad spectrum of cellular functions, and the changes in their levels with age, implicate them in the manifestations of aging. Our understanding of the functions of circulating sncRNA, particularly in relation to aging, is currently at a very early stage; results to date suggest that more extensive investigation will yield important insights into mechanisms of aging.
Collapse
Affiliation(s)
- Joseph M Dhahbi
- Department of Biochemistry, University of California at Riverside, Riverside, CA 92521, USA; Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| |
Collapse
|
47
|
Sahana G, Guldbrandtsen B, Thomsen B, Holm LE, Panitz F, Brøndum RF, Bendixen C, Lund MS. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. J Dairy Sci 2014; 97:7258-75. [PMID: 25151887 DOI: 10.3168/jds.2014-8141] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Mastitis is a mammary disease that frequently affects dairy cattle. Despite considerable research on the development of effective prevention and treatment strategies, mastitis continues to be a significant issue in bovine veterinary medicine. To identify major genes that affect mastitis in dairy cattle, 6 chromosomal regions on Bos taurus autosome (BTA) 6, 13, 16, 19, and 20 were selected from a genome scan for 9 mastitis phenotypes using imputed high-density single nucleotide polymorphism arrays. Association analyses using sequence-level variants for the 6 targeted regions were carried out to map causal variants using whole-genome sequence data from 3 breeds. The quantitative trait loci (QTL) discovery population comprised 4,992 progeny-tested Holstein bulls, and QTL were confirmed in 4,442 Nordic Red and 1,126 Jersey cattle. The targeted regions were imputed to the sequence level. The highest association signal for clinical mastitis was observed on BTA 6 at 88.97 Mb in Holstein cattle and was confirmed in Nordic Red cattle. The peak association region on BTA 6 contained 2 genes: vitamin D-binding protein precursor (GC) and neuropeptide FF receptor 2 (NPFFR2), which, based on known biological functions, are good candidates for affecting mastitis. However, strong linkage disequilibrium in this region prevented conclusive determination of the causal gene. A different QTL on BTA 6 located at 88.32 Mb in Holstein cattle affected mastitis. In addition, QTL on BTA 13 and 19 were confirmed to segregate in Nordic Red cattle and QTL on BTA 16 and 20 were confirmed in Jersey cattle. Although several candidate genes were identified in these targeted regions, it was not possible to identify a gene or polymorphism as the causal factor for any of these regions.
Collapse
Affiliation(s)
- G Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark.
| | - B Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - B Thomsen
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - L-E Holm
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - F Panitz
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - R F Brøndum
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - C Bendixen
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - M S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
48
|
Wang X, Zhong J, Gao Y, Ju Z, Huang J. A SNP in intron 8 of CD46 causes a novel transcript associated with mastitis in Holsteins. BMC Genomics 2014; 15:630. [PMID: 25070150 PMCID: PMC4124149 DOI: 10.1186/1471-2164-15-630] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 07/15/2014] [Indexed: 02/07/2023] Open
Abstract
Background The membrane protein CD46, a ubiquitous cell surface pathogen receptor, can bind Streptococcus to trigger cell autophagy, which is a critical step in the control of infection. Results In this study, we found a new splice variant designated CD46 transcript variant (CD46-TV). The splice variant is characterized by the retention of a 48 bp sequence from intron 8 of the bovine CD46 gene, which encodes a putative protein enlarged by 16 amino acids. CD46-TV mRNA was found to be over expressed in mastitis-infected mammary gland tissues relative to healthy tissues. A single nucleotide polymorphism (c. 1033 + 2184 C > T) in the exonic splicing enhancer (ESE) motif region was shown to result in the CD46-TV aberrant splice variant through constructing alternative alleles using the pSPL3 exon capturing vector and transfecting these into 293 T cells. Allelic frequency in 56,682 individuals belonging to 112 Bos taurus, Bos indicus, Bos javanicus, Bos grunniens and Bos mutus, etc. suggests that the C allele (80.09%) is the ancestral allele. Association analysis found that the mean genomic estimated breeding values (gEBV) for milk somatic cell score and the occurrence of clinical mastitis, as well as the milk somatic cell score of Chinese Holsteins with the CT genotype was lower than those of individuals with either the CC or TT genotypes. The mean gEBV for udder health synthesis for the TT genotype was greater than those for the CC or CT genotypes. Conclusions Our findings suggest that the CD46 gene likely plays a critical role in the risk of mastitis caused by Streptococcus in dairy cows via an alternative splicing mechanism caused by a functional mutation in intron 8. Our data also underline the importance of variation within ESEs in regulating transcript processing. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-630) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No,159 North of Industry Road, Jinan, Shandong 250131, China.
| |
Collapse
|
49
|
Thompson-Crispi KA, Sargolzaei M, Ventura R, Abo-Ismail M, Miglior F, Schenkel F, Mallard BA. A genome-wide association study of immune response traits in Canadian Holstein cattle. BMC Genomics 2014; 15:559. [PMID: 24996426 PMCID: PMC4099479 DOI: 10.1186/1471-2164-15-559] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/27/2014] [Indexed: 11/26/2022] Open
Abstract
Background Breeding for enhanced immune response (IR) has been suggested as a tool to improve inherent animal health. Dairy cows with superior antibody-mediated (AMIR) and cell-mediated immune responses (CMIR) have been demonstrated to have a lower occurrence of many diseases including mastitis. Adaptive immune response traits are heritable, and it is, therefore, possible to breed for improved IR, decreasing the occurrence of disease. The objective of this study was to perform genome-wide association studies to determine differences in genetic profiles among Holstein cows classified as High or Low for AMIR and CMIR. From a total of 680 cows with immune response phenotypes, 163 cows for AMIR (81 High and 82 Low) and 140 for CMIR (75 High and 65 Low) were selectively genotyped using the Illumina Bovine SNP50 BeadChip. Results were validated using an unrelated population of 164 Holstein bulls IR phenotyped for AMIR and 146 for CMIR. Results A generalized quasi likelihood score method was used to determine single nucleotide polymorphisms (SNP) and chromosomal regions associated with immune response. After applying a 5% chromosomal false discovery rate, 186 SNPs were significantly associated with AMIR. The majority (93%) of significant markers were on chromosome 23, with a similar peak found in the bull population. For CMIR, 21 SNP markers remained significant. Candidate genes within 250,000 base pairs of significant SNPs were identified to determine biological pathways associated with AMIR and CMIR. Various pathways were identified, including the antigen processing and presentation pathway, important in host defense. Candidate genes included those within the bovine Major Histocompatability Complex such as BoLA-DQ, BoLA-DR and the non-classical BoLA-NC1 for AMIR and BoLA-DQ for CMIR, the complement system including C2 and C4 for AMIR and C1q for CMIR, and cytokines including IL-17A, IL17F for AMIR and IL-17RA for CMIR and tumor necrosis factor for both AMIR and CMIR. Additional genes associated with CMIR included galectins 1, 2 and 3, BCL2 and β-defensin. Conclusions The significant genetic variation associated with AMIR and CMIR in this study may imply feasibility to include immune response in genomic breeding indices as an approach to improve inherent animal health.
Collapse
Affiliation(s)
- Kathleen A Thompson-Crispi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, ON N1G 2W1, Canada.
| | | | | | | | | | | | | |
Collapse
|