1
|
Shen Z, Wang Y, Wang G, Gu W, Zhao S, Hu X, Liu W, Cai Y, Ma Z, Gautam RK, Jia J, Wan CC, Yan T. Research progress of small-molecule drugs in targeting telomerase in human cancer and aging. Chem Biol Interact 2023; 382:110631. [PMID: 37451664 DOI: 10.1016/j.cbi.2023.110631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.
Collapse
Affiliation(s)
- Ziyi Shen
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Yuanhui Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Guanzhen Wang
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Wei Gu
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China
| | - Shengchao Zhao
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Xiaomeng Hu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China; Huzhou Central Hospital, Huzhou, 313000, China
| | - Wei Liu
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhihong Ma
- Huzhou Central Hospital, Huzhou, 313000, China
| | - Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Indore, 453331, India
| | - Jia Jia
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| | - Chunpeng Craig Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tingdong Yan
- School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai, 200444, China; Translational Medicine Center, Zhejiang Xinda hospital, School of Medicine&Nursing, Huzhou University, Huzhou, 313099, China.
| |
Collapse
|
2
|
Research on Werner Syndrome: Trends from Past to Present and Future Prospects. Genes (Basel) 2022; 13:genes13101802. [PMID: 36292687 PMCID: PMC9601476 DOI: 10.3390/genes13101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
A rare and autosomal recessive premature aging disorder, Werner syndrome (WS) is characterized by the early onset of aging-associated diseases, including shortening stature, alopecia, bilateral cataracts, skin ulcers, diabetes, osteoporosis, arteriosclerosis, and chromosomal instability, as well as cancer predisposition. WRN, the gene responsible for WS, encodes DNA helicase with a 3′ to 5′ exonuclease activity, and numerous studies have revealed that WRN helicase is involved in the maintenance of chromosome stability through actions in DNA, e.g., DNA replication, repair, recombination, and epigenetic regulation via interaction with DNA repair factors, telomere-binding proteins, histone modification enzymes, and other DNA metabolic factors. However, although these efforts have elucidated the cellular functions of the helicase in cell lines, they have not been linked to the treatment of the disease. Life expectancy has improved for WS patients over the past three decades, and it is hoped that a fundamental treatment for the disease will be developed. Disease-specific induced pluripotent stem (iPS) cells have been established, and these are expected to be used in drug discovery and regenerative medicine for WS patients. In this article, we review trends in research to date and present some perspectives on WS research with regard to the application of pluripotent stem cells. Furthermore, the elucidation of disease mechanisms and drug discovery utilizing the vast amount of scientific data accumulated to date will be discussed.
Collapse
|
3
|
WRN promotes bone development and growth by unwinding SHOX-G-quadruplexes via its helicase activity in Werner Syndrome. Nat Commun 2022; 13:5456. [PMID: 36114168 PMCID: PMC9481537 DOI: 10.1038/s41467-022-33012-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 08/29/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractWerner Syndrome (WS) is an autosomal recessive disorder characterized by premature aging due to mutations of the WRN gene. A classical sign in WS patients is short stature, but the underlying mechanisms are not well understood. Here we report that WRN is indispensable for chondrogenesis, which is the engine driving the elongation of bones and determines height. Zebrafish lacking wrn exhibit impairment of bone growth and have shorter body stature. We pinpoint the function of WRN to its helicase domain. We identify short-stature homeobox (SHOX) as a crucial and direct target of WRN and find that the WRN helicase core regulates the transcriptional expression of SHOX via unwinding G-quadruplexes. Consistent with this, shox−/− zebrafish exhibit impaired bone growth, while genetic overexpression of SHOX or shox expression rescues the bone developmental deficiency induced in WRN/wrn-null mutants both in vitro and in vivo. Collectively, we have identified a previously unknown function of WRN in regulating bone development and growth through the transcriptional regulation of SHOX via the WRN helicase domain, thus illuminating a possible approach for new therapeutic strategies.
Collapse
|
4
|
Malcangi G, Inchingolo AD, Inchingolo AM, Piras F, Settanni V, Garofoli G, Palmieri G, Ceci S, Patano A, Mancini A, Vimercati L, Nemore D, Scardapane A, Rapone B, Semjonova A, D’Oria MT, Macchia L, Bordea IR, Migliore G, Scarano A, Lorusso F, Tartaglia GM, Giovanniello D, Nucci L, Maggialetti N, Parisi A, Domenico MD, Brienza N, Tafuri S, Stefanizzi P, Curatoli L, Corriero A, Contaldo M, Inchingolo F, Dipalma G. COVID-19 Infection in Children and Infants: Current Status on Therapies and Vaccines. CHILDREN (BASEL, SWITZERLAND) 2022; 9:249. [PMID: 35204969 PMCID: PMC8870718 DOI: 10.3390/children9020249] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
Abstract
Since the beginning in December 2019, the SARS-CoV-2 outbreak appeared to affect mostly the adult population, sparing the vast majority of children who only showed mild symptoms. The purpose of this investigation is to assess the status on the mechanisms that give children and infants this variation in epidemiology compared to the adult population and its impact on therapies and vaccines that are aimed towards them. A literature review, including in vitro studies, reviews, published guidelines and clinical trials was performed. Clinical trials concerned topics that allowed a descriptive synthesis to be produced. Four underlying mechanisms were found that may play a key role in providing COVID-19 protection in babies. No guidelines are available yet for therapy due to insufficient data; support therapy remains the most used. Only two vaccines are approved by the World Health Organization to be used in children from 12 years of age, and there are currently no efficacy or safety data for children below the age of 12 years. The COVID-19 clinical frame infection is milder in children and adolescents. This section of the population can act as vectors and reservoirs and play a key role in the transmission of the infection; therefore, vaccines are paramount. More evidence is required to guide safely the vaccination campaign.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Damiano Nemore
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Alexandra Semjonova
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), School and Chair of Allergology and Clinical Immunology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | | | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Delia Giovanniello
- Department of Toracic Surgery, Hospital “San Camillo Forlanini”, 00152 Rome, Italy;
| | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (M.C.)
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, 71121 Foggia, Italy;
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy; (S.T.); (P.S.)
| | - Pasquale Stefanizzi
- Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy; (S.T.); (P.S.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70124 Bari, Italy; (N.B.); (A.C.)
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (M.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy; (G.M.); (A.D.I.); (A.M.I.); (F.P.); (V.S.); (G.G.); (G.P.); (S.C.); (A.P.); (A.M.); (L.V.); (D.N.); (A.S.); (B.R.); (A.S.); (M.T.D.); (G.D.)
| |
Collapse
|
5
|
Thorin-Trescases N, Labbé P, Mury P, Lambert M, Thorin E. Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence. Int J Mol Sci 2021; 22:12232. [PMID: 34830112 PMCID: PMC8624568 DOI: 10.3390/ijms222212232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases.
Collapse
Affiliation(s)
- Nathalie Thorin-Trescases
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
| | - Pauline Labbé
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Pauline Mury
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mélanie Lambert
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Eric Thorin
- Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada; (P.L.); (P.M.); (M.L.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
6
|
Malcangi G, Inchingolo AD, Inchingolo AM, Santacroce L, Marinelli G, Mancini A, Vimercati L, Maggiore ME, D’Oria MT, Hazballa D, Bordea IR, Xhajanka E, Scarano A, Farronato M, Tartaglia GM, Giovanniello D, Nucci L, Serpico R, Sammartino G, Capozzi L, Parisi A, Di Domenico M, Lorusso F, Contaldo M, Inchingolo F, Dipalma G. COVID-19 Infection in Children, Infants and Pregnant Subjects: An Overview of Recent Insights and Therapies. Microorganisms 2021; 9:1964. [PMID: 34576859 PMCID: PMC8469368 DOI: 10.3390/microorganisms9091964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The SARS-CoV-2 pandemic has involved a severe increase of cases worldwide in a wide range of populations. The aim of the present investigation was to evaluate recent insights about COVID-19 infection in children, infants and pregnant subjects. METHODS a literature overview was performed including clinical trials, in vitro studies, reviews and published guidelines regarding the present paper topic. A descriptive synthesis was performed to evaluate recent insights and the effectiveness of therapies for SARS-CoV-2 infection in children, infants and pregnant subjects. RESULTS Insufficient data are available regarding the relationship between COVID-19 and the clinical risk of spontaneous abortion and premature foetus death. A decrease in the incidence of COVID-19 could be correlated to a minor expression of ACE2 in childrens' lungs. At present, a modulation of the dose-effect posology for children and infants is necessary. CONCLUSIONS Pregnant vertical transmission has been hypothesised for SARS-CoV-2 infection. Vaccines are necessary to achieve mass immunity for children and also pregnant subjects.
Collapse
Affiliation(s)
- Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Luigi Santacroce
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Maria Teresa D’Oria
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
- Department of Medical and Biological Sciences, University of Udine, Via delle Scienze, 206, 33100 Udine, Italy
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Edit Xhajanka
- Department of Dental Prosthesis, Medical University of Tirana, Rruga e Dibrës, U.M.T., 1001 Tirana, Albania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | | | - Ludovica Nucci
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Rosario Serpico
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Gilberto Sammartino
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, 80131 Naples, Italy;
| | - Loredana Capozzi
- Istituto Zooprofilattico Sperimentale Della Puglia e Della Basilicata, 71121 Foggia, Italy; (L.C.); (A.P.)
| | - Antonio Parisi
- Istituto Zooprofilattico Sperimentale Della Puglia e Della Basilicata, 71121 Foggia, Italy; (L.C.); (A.P.)
| | - Marina Di Domenico
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Maria Contaldo
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania Luigi Vanvitelli, Via Luigi de Crecchio, 6, 80138 Naples, Italy; (L.N.); (R.S.); (M.C.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (A.D.I.); (A.M.I.); (L.S.); (G.M.); (A.M.); (L.V.); (M.E.M.); (M.T.D.); (D.H.); (F.I.); (G.D.)
| |
Collapse
|
7
|
前澤 善. [Basic science of Werner syndrome]. Nihon Ronen Igakkai Zasshi 2021; 58:402-408. [PMID: 34483166 DOI: 10.3143/geriatrics.58.402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- 善朗 前澤
- 千葉大学大学院医学研究院内分泌代謝・血液・老年内科学
| |
Collapse
|
8
|
Idiopathic Infertility as a Feature of Genome Instability. Life (Basel) 2021; 11:life11070628. [PMID: 34209597 PMCID: PMC8307193 DOI: 10.3390/life11070628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Genome instability may play a role in severe cases of male infertility, with disrupted spermatogenesis being just one manifestation of decreased general health and increased morbidity. Here, we review the data on the association of male infertility with genetic, epigenetic, and environmental alterations, the causes and consequences, and the methods for assessment of genome instability. Male infertility research has provided evidence that spermatogenic defects are often not limited to testicular dysfunction. An increased incidence of urogenital disorders and several types of cancer, as well as overall reduced health (manifested by decreased life expectancy and increased morbidity) have been reported in infertile men. The pathophysiological link between decreased life expectancy and male infertility supports the notion of male infertility being a systemic rather than an isolated condition. It is driven by the accumulation of DNA strand breaks and premature cellular senescence. We have presented extensive data supporting the notion that genome instability can lead to severe male infertility termed “idiopathic oligo-astheno-teratozoospermia.” We have detailed that genome instability in men with oligo-astheno-teratozoospermia (OAT) might depend on several genetic and epigenetic factors such as chromosomal heterogeneity, aneuploidy, micronucleation, dynamic mutations, RT, PIWI/piRNA regulatory pathway, pathogenic allelic variants in repair system genes, DNA methylation, environmental aspects, and lifestyle factors.
Collapse
|
9
|
Abstract
Werner syndrome, also called adult progeria, is a heritable autosomal recessive human disorder characterized by the premature onset of numerous age-related diseases including juvenile cataracts, dyslipidemia, diabetes mellitus (DM), osteoporosis, atherosclerosis, and cancer. Werner syndrome is a segmental progeroid syndrome whose presentation resembles accelerated aging. The most common causes of death for WS patients are atherosclerosis and cancer. A 40-year-old female presented with short stature, bird-like facies, canities with alopecia, scleroderma-like skin changes, and non-healing foot ulcers. The patient reported a history of delayed puberty, abortion, hypertriglyceridemia, and juvenile cataracts. A clinical diagnosis of WS was made and subsequently confirmed. We discovered two WRN gene mutations in the patient, Variant 1 was the most common WRN mutation, nonsense mutation (c.1105C>T:p.R369Ter) in exon 9, which caused a premature termination codon (PTC) at position 369. Variant 2 was a frameshift mutation (c.1134delA:p.E379KfsTer5) in exon 9, which caused a PTC at position 383 and has no published reports describing. Patients with WS can show a wide variety of clinical and biological manifestations in endocrine-metabolic systems (DM, thyroid dysfunction, and hyperlipidemia). Doctors must be cognizant of early manifestations of WS and treatment options.
Collapse
Affiliation(s)
- Huan Li
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Maoguang Yang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hong Shen
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Sisi Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Hanqing Cai
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Mesenchymal Stem Cells: The Secret Children’s Weapons against the SARS-CoV-2 Lethal Infection. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041696] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to the promising effects of mesenchymal stem cells (MSCs) in the treatment of various diseases, this commentary aimed to focus on the auxiliary role of MSCs to reduce inflammatory processes of acute respiratory infections caused by the 2019 novel coronavirus (COVID-19). Since early in 2020, COVID-19, a consequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly affected millions of people world-wide. The SARS-CoV-2 infection in children appears to be an unusual event. Despite the high number of affected adult and elderly, children and adolescents remained low in amounts, and marginally touched. Based on the promising role of cell therapy and regenerative medicine approaches in the treatment of several life-threatening diseases, it seems that applying MSCs cell-based approaches can also be a hopeful strategy for improving subjects with severe acute respiratory infections caused by COVID-19.
Collapse
|
11
|
Tu J, Wan C, Zhang F, Cao L, Law PWN, Tian Y, Lu G, Rennert OM, Chan W, Cheung H. Genetic correction of Werner syndrome gene reveals impaired pro-angiogenic function and HGF insufficiency in mesenchymal stem cells. Aging Cell 2020; 19:e13116. [PMID: 32320127 PMCID: PMC7253065 DOI: 10.1111/acel.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/30/2019] [Accepted: 01/26/2020] [Indexed: 12/21/2022] Open
Abstract
WRN mutation causes a premature aging disease called Werner syndrome (WS). However, the mechanism by which WRN loss leads to progeroid features evident with impaired tissue repair and regeneration remains unclear. To determine this mechanism, we performed gene editing in reprogrammed induced pluripotent stem cells (iPSCs) derived from WS fibroblasts. Gene correction restored the expression of WRN. WRN+/+ mesenchymal stem cells (MSCs) exhibited improved pro‐angiogenesis. An analysis of paracrine factors revealed that hepatocyte growth factor (HGF) was downregulated in WRN−/− MSCs. HGF insufficiency resulted in poor angiogenesis and cutaneous wound healing. Furthermore, HGF was partially regulated by PI3K/AKT signaling, which was desensitized in WRN−/− MSCs. Consistently, the inhibition of the PI3K/AKT pathway in WRN+/+ MSC resulted in reduced angiogenesis and poor wound healing. Our findings indicate that the impairment in the pro‐angiogenic function of WS‐MSCs is due to HGF insufficiency and PI3K/AKT dysregulation, suggesting trophic disruption between stromal and epithelial cells as a mechanism for WS pathogenesis.
Collapse
Affiliation(s)
- Jiajie Tu
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
- Institute of Clinical Pharmacology Key Laboratory of Anti‐Inflammatory and Immune Medicine Ministry of Education Anhui Collaborative Innovation Center of Anti‐Inflammatory and Immune Medicine Anhui Medical University Hefei China
- CUHK‐SDU Joint Laboratory on Reproductive Genetics School of Biomedical Sciences the Chinese University of Hong Kong Hong Kong SAR China
| | - Chao Wan
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
- School of Biomedical Sciences Core Laboratory Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
- Key Laboratory for Regenerative Medicine Ministry of Education School of Biomedical Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Fengjie Zhang
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
- Key Laboratory for Regenerative Medicine Ministry of Education School of Biomedical Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Lianbao Cao
- CUHK‐SDU Joint Laboratory on Reproductive Genetics School of Biomedical Sciences the Chinese University of Hong Kong Hong Kong SAR China
| | - Patrick Wai Nok Law
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
| | - Yuyao Tian
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
| | - Gang Lu
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
- CUHK‐SDU Joint Laboratory on Reproductive Genetics School of Biomedical Sciences the Chinese University of Hong Kong Hong Kong SAR China
| | - Owen M. Rennert
- Division of Intramural Research Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda MD USA
| | - Wai‐Yee Chan
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
- CUHK‐SDU Joint Laboratory on Reproductive Genetics School of Biomedical Sciences the Chinese University of Hong Kong Hong Kong SAR China
- Key Laboratory for Regenerative Medicine Ministry of Education School of Biomedical Sciences The Chinese University of Hong Kong Hong Kong SAR China
| | - Hoi‐Hung Cheung
- School of Biomedical Sciences Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
- CUHK‐SDU Joint Laboratory on Reproductive Genetics School of Biomedical Sciences the Chinese University of Hong Kong Hong Kong SAR China
- School of Biomedical Sciences Core Laboratory Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen China
- Key Laboratory for Regenerative Medicine Ministry of Education School of Biomedical Sciences The Chinese University of Hong Kong Hong Kong SAR China
| |
Collapse
|
12
|
Sarkar TJ, Quarta M, Mukherjee S, Colville A, Paine P, Doan L, Tran CM, Chu CR, Horvath S, Qi LS, Bhutani N, Rando TA, Sebastiano V. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat Commun 2020; 11:1545. [PMID: 32210226 PMCID: PMC7093390 DOI: 10.1038/s41467-020-15174-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/20/2020] [Indexed: 01/11/2023] Open
Abstract
Aging is characterized by a gradual loss of function occurring at the molecular, cellular, tissue and organismal levels. At the chromatin level, aging associates with progressive accumulation of epigenetic errors that eventually lead to aberrant gene regulation, stem cell exhaustion, senescence, and deregulated cell/tissue homeostasis. Nuclear reprogramming to pluripotency can revert both the age and the identity of any cell to that of an embryonic cell. Recent evidence shows that transient reprogramming can ameliorate age-associated hallmarks and extend lifespan in progeroid mice. However, it is unknown how this form of rejuvenation would apply to naturally aged human cells. Here we show that transient expression of nuclear reprogramming factors, mediated by expression of mRNAs, promotes a rapid and broad amelioration of cellular aging, including resetting of epigenetic clock, reduction of the inflammatory profile in chondrocytes, and restoration of youthful regenerative response to aged, human muscle stem cells, in each case without abolishing cellular identity.
Collapse
Affiliation(s)
- Tapash Jay Sarkar
- 0000000419368956grid.168010.eInstitute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.eDepartment of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.eDepartment of Applied Physics, Stanford University School of Humanities and Sciences, Stanford, CA 94305 USA
| | - Marco Quarta
- 0000000419368956grid.168010.eDepartment of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.ePaul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000 0004 0419 2556grid.280747.eCenter for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA ,0000 0004 0635 6745grid.486808.aMolecular Medicine Research Institute, Sunnyvale, CA 94085 USA
| | - Shravani Mukherjee
- Department of Orthopedic Surgery, Stanford University School of Medicine, Sanford, CA 94305 USA
| | - Alex Colville
- 0000000419368956grid.168010.eDepartment of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.ePaul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000 0004 0419 2556grid.280747.eCenter for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA ,0000000419368956grid.168010.eDepartment of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Patrick Paine
- 0000000419368956grid.168010.eDepartment of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.ePaul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000 0004 0419 2556grid.280747.eCenter for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA ,0000 0004 0635 6745grid.486808.aMolecular Medicine Research Institute, Sunnyvale, CA 94085 USA
| | - Linda Doan
- 0000000419368956grid.168010.eDepartment of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.ePaul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000 0004 0419 2556grid.280747.eCenter for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA ,0000 0004 0635 6745grid.486808.aMolecular Medicine Research Institute, Sunnyvale, CA 94085 USA
| | - Christopher M. Tran
- 0000000419368956grid.168010.eDepartment of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.ePaul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000 0004 0419 2556grid.280747.eCenter for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Constance R. Chu
- Department of Orthopedic Surgery, Stanford University School of Medicine, Sanford, CA 94305 USA ,0000 0004 0419 2556grid.280747.eVA Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Steve Horvath
- 0000 0000 9632 6718grid.19006.3eDepartment of Human Genetics David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA ,0000 0000 9632 6718grid.19006.3eDepartment of Biostatistics, Fielding School of Public Health, UCLA, Los Angeles, CA 90095 USA
| | - Lei S. Qi
- 0000000419368956grid.168010.eDepartment of Bioengineering, Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, CA 94305 USA
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, Stanford University School of Medicine, Sanford, CA 94305 USA
| | - Thomas A. Rando
- 0000000419368956grid.168010.eDepartment of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.ePaul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000 0004 0419 2556grid.280747.eCenter for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA
| | - Vittorio Sebastiano
- 0000000419368956grid.168010.eInstitute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA ,0000000419368956grid.168010.eDepartment of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
13
|
He G, Yan Z, Sun L, Lv Y, Guo W, Gang X, Wang G. Diabetes mellitus coexisted with progeria: a case report of atypical Werner syndrome with novel LMNA mutations and literature review. Endocr J 2019; 66:961-969. [PMID: 31270292 DOI: 10.1507/endocrj.ej19-0014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Werner syndrome (WS) is a rare, adult-onset progeroid syndrome. Classic WS is caused by WRN mutation and partial atypical WS (AWS) is caused by LMNA mutation. A 19-year-old female patient with irregular menstruation and hyperglycemia was admitted. Physical examination revealed characteristic faces of progeria, graying and thinning of the hair scalp, thinner and atrophic skin over the hands and feet, as well as lipoatrophy of the extremities, undeveloped breasts at Tanner stage 3, and short stature. The patient also suffered from severe insulin-resistant diabetes mellitus, hyperlipidemia, fatty liver, and polycystic ovarian morphology. Possible WS was considered and both WRN and LMNA genes were analyzed. A novel missense mutation p.L140Q (c.419T>A) in the LMNA gene was identified and confirmed the diagnosis of AWS. Her father was a carrier of the same mutation. We carried out therapy for lowering blood glucose and lipid and improving insulin resistance, et al. The fasting glucose, postprandial glucose and triglyceride level was improved after treatment for 9 days. Literature review of AWS was performed to identify characteristics of the disease. Diabetes mellitus is one of the clinical manifestations of WS and attention must give to the differential diagnosis. Gene analysis is critical in the diagnosis of WS. According to the literature, classic and atypical WS differ in incidence, pathogenic gene, and clinical manifestations. Characteristic dermatological pathology may be significantly more important for the initial identification of AWS. Early detection, appropriate treatments, and regular follow-up may improve prognosis and survival of WS patients.
Collapse
Affiliation(s)
- Guangyu He
- The First Hospital of Jilin University, Changchun Jilin, 130021, China
| | - Zi Yan
- The First Hospital of Jilin University, Changchun Jilin, 130021, China
| | - Lin Sun
- The First Hospital of Jilin University, Changchun Jilin, 130021, China
| | - You Lv
- The First Hospital of Jilin University, Changchun Jilin, 130021, China
| | - Weiying Guo
- The First Hospital of Jilin University, Changchun Jilin, 130021, China
| | - Xiaokun Gang
- The First Hospital of Jilin University, Changchun Jilin, 130021, China
| | - Guixia Wang
- The First Hospital of Jilin University, Changchun Jilin, 130021, China
| |
Collapse
|
14
|
Castagna A, Gareri P, Falvo F, Sestito S, Rocca M, Pensabene L, Concolino D, Coppolino G, Ruotolo G. Werner syndrome: a rare mutation. Aging Clin Exp Res 2019; 31:425-429. [PMID: 29876830 DOI: 10.1007/s40520-018-0982-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Affiliation(s)
- Alberto Castagna
- Center for Cognitive Disorders and Dementia, DSS Catanzaro Lido, ASP Catanzaro, Viale Crotone, 88100, Catanzaro, Italy
| | - Pietro Gareri
- Center for Cognitive Disorders and Dementia, DSS Catanzaro Lido, ASP Catanzaro, Viale Crotone, 88100, Catanzaro, Italy.
| | - Francesca Falvo
- Department of Pediatrics, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Simona Sestito
- Department of Pediatrics, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Maurizio Rocca
- Center for Cognitive Disorders and Dementia, DSS Catanzaro Lido, ASP Catanzaro, Viale Crotone, 88100, Catanzaro, Italy
| | - Licia Pensabene
- Department of Pediatrics, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Daniela Concolino
- Department of Pediatrics, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giuseppe Coppolino
- Nephrology and Dialysis Unit, "Pugliese-Ciaccio" Hospital of Catanzaro, Catanzaro, Italy
| | - Giovanni Ruotolo
- SOC Geriatrics, Azienda Ospedaliera Pugliese-Ciaccio, Catanzaro, Italy
| |
Collapse
|
15
|
Studying Werner syndrome to elucidate mechanisms and therapeutics of human aging and age-related diseases. Biogerontology 2019; 20:255-269. [PMID: 30666569 DOI: 10.1007/s10522-019-09798-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/17/2019] [Indexed: 01/22/2023]
Abstract
Aging is a natural and unavoidable part of life. However, aging is also the primary driver of the dominant human diseases, such as cardiovascular disease, cancer, and neurodegenerative diseases, including Alzheimer's disease. Unraveling the sophisticated molecular mechanisms of the human aging process may provide novel strategies to extend 'healthy aging' and the cure of human aging-related diseases. Werner syndrome (WS), is a heritable human premature aging disease caused by mutations in the gene encoding the Werner (WRN) DNA helicase. As a classical premature aging disease, etiological exploration of WS can shed light on the mechanisms of normal human aging and facilitate the development of interventional strategies to improve healthspan. Here, we summarize the latest progress of the molecular understandings of WRN protein, highlight the advantages of using different WS model systems, including Caenorhabditis elegans, Drosophila melanogaster and induced pluripotent stem cell (iPSC) systems. Further studies on WS will propel drug development for WS patients, and possibly also for normal age-related diseases.
Collapse
|
16
|
Wang S, Liu Z, Ye Y, Li B, Liu T, Zhang W, Liu GH, Zhang YA, Qu J, Xu D, Chen Z. Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death Dis 2018; 9:923. [PMID: 30206203 PMCID: PMC6134116 DOI: 10.1038/s41419-018-0948-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The induced pluripotent stem cell (iPSC) technology has provided a unique opportunity to develop disease-specific models and personalized treatment for genetic disorders, and is well suitable for the study of Werner syndrome (WS), an autosomal recessive disease with adult onset of premature aging caused by mutations in the RecQ like helicase (WRN) gene. WS-derived fibroblasts were previously shown to be able to generate iPSCs; however, it remains elusive how WS-derived iPSCs behave and whether they are able to mimic the disease-specific phenotype. The present study was designed to address these issues. Unexpectedly, we found that a specific WS fibroblast line of homozygous truncation mutation was difficult to be reprogrammed by using the Yamanaka factors even under hypoxic conditions due to their defect in induction of hTERT, the catalytic unit of telomerase. Ectopic expression of hTERT restores the ability of this WS fibroblast line to form iPSCs, although with a low efficiency. To examine the phenotype of WRN-deficient pluripotent stem cells, we also generated WRN knockout human embryonic stem (ES) cells by using the CRISPR/Cas9 method. The iPSCs derived from WS-hTERT cells and WRN-/- ESCs are fully pluripotent, express pluripotent markers and can differentiate into three germ layer cells; however, WS-iPSCs and WRN-/- ESCs show S phase defect in cell cycle progression. Moreover, WS-iPSCs and WRN-/- ESCs, like WS patient-derived fibroblasts, remain hypersensitive to topoisomerase inhibitors. Collectively, WS-derived iPSCs and WRN-/- ESCs mimic the intrinsic disease phenotype, which may serve as a suitable disease model, whereas not be good for a therapeutic purpose without gene correction.
Collapse
Affiliation(s)
- Shuyan Wang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongfeng Liu
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yanxia Ye
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingnan Li
- Division of Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Tiantian Liu
- Department of Pathology, Shandong University School of Medicine, Jinan, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Y Alex Zhang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Dawei Xu
- Division of Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Zhiguo Chen
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
17
|
Ravaioli F, Bacalini MG, Franceschi C, Garagnani P. Age-Related Epigenetic Derangement upon Reprogramming and Differentiation of Cells from the Elderly. Genes (Basel) 2018; 9:genes9010039. [PMID: 29337900 PMCID: PMC5793190 DOI: 10.3390/genes9010039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Aging is a complex multi-layered phenomenon. The study of aging in humans is based on the use of biological material from hard-to-gather tissues and highly specific cohorts. The introduction of cell reprogramming techniques posed promising features for medical practice and basic research. Recently, a growing number of studies have been describing the generation of induced pluripotent stem cells (iPSCs) from old or centenarian biologic material. Nonetheless, Reprogramming techniques determine a profound remodelling on cell epigenetic architecture whose extent is still largely debated. Given that cell epigenetic profile changes with age, the study of cell-fate manipulation approaches on cells deriving from old donors or centenarians may provide new insights not only on regenerative features and physiology of these cells, but also on reprogramming-associated and age-related epigenetic derangement.
Collapse
Affiliation(s)
- Francesco Ravaioli
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), Via San Giacomo 12, 40126 Bologna, Italy.
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Via G. Petroni 26, 40126 Bologna, Italy.
| | - Maria G Bacalini
- IRCCS Institute of Neurological Sciences, Via Altura 1-8, 40139 Bologna, Italy.
| | - Claudio Franceschi
- IRCCS Institute of Neurological Sciences, Via Altura 1-8, 40139 Bologna, Italy.
| | - Paolo Garagnani
- Department of Specialty, Diagnostic and Experimental Medicine (DIMES), Via San Giacomo 12, 40126 Bologna, Italy.
- CIG, Interdepartmental Center 'L. Galvani', Alma Mater Studiorum, Via G. Petroni 26, 40126 Bologna, Italy.
- Karolinska Institute, Clinical Chemistry, Department of Laboratory Medicine (LABMED), H5, Huddinge University Hospital, 14186 Stockholm, Sweden.
- CNR Institute of Molecular Genetics, Unit of Bologna, 40136 Bologna, Italy.
- Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, 40138 Bologna, Italy.
| |
Collapse
|
18
|
The Potential of iPSCs for the Treatment of Premature Aging Disorders. Int J Mol Sci 2017; 18:ijms18112350. [PMID: 29112121 PMCID: PMC5713319 DOI: 10.3390/ijms18112350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/20/2022] Open
Abstract
Premature aging disorders including Hutchinson-Gilford progeria syndrome (HGPS) and Werner syndrome, are a group of rare monogenic diseases leading to reduced lifespan of the patients. Importantly, these disorders mimic several features of physiological aging. Despite the interest on the study of these diseases, the underlying biological mechanisms remain unknown and no treatment is available. Recent studies on HGPS (due to mutations of the LMNA gene encoding for the nucleoskeletal proteins lamin A/C) have reported disruptions in cellular and molecular mechanisms modulating genomic stability and stem cell populations, thus giving the nuclear lamina a relevant function in nuclear organization, epigenetic regulation and in the maintenance of the stem cell pool. In this context, modeling premature aging with induced pluripotent stem cells (iPSCs) offers the possibility to study these disorders during self-renewal and differentiation into relevant cell types. iPSCs generated by cellular reprogramming from adult somatic cells allows researchers to understand pathophysiological mechanisms and enables the performance of drug screenings. Moreover, the recent development of precision genome editing offers the possibility to study the complex mechanisms underlying senescence and the possibility to correct disease phenotypes, paving the way for future therapeutic interventions.
Collapse
|
19
|
Abstract
Aging, the universal phenomenon, affects human health and is the primary risk factor for major disease pathologies. Progeroid diseases, which mimic aging at an accelerated rate, have provided cues in understanding the hallmarks of aging. Mutations in DNA repair genes as well as in telomerase subunits are known to cause progeroid syndromes. Werner syndrome (WS), which is characterized by accelerated aging, is an autosomal-recessive genetic disorder. Hallmarks that define the aging process include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulation of nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. WS recapitulates these hallmarks of aging and shows increased incidence and early onset of specific cancers. Genome integrity and stability ensure the normal functioning of the cell and are mainly guarded by the DNA repair machinery and telomeres. WRN, being a RecQ helicase, protects genome stability by regulating DNA repair pathways and telomeres. Recent advances in WS research have elucidated WRN’s role in DNA repair pathway choice regulation, telomere maintenance, resolution of complex DNA structures, epigenetic regulation, and stem cell maintenance.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Oshima J, Sidorova JM, Monnat RJ. Werner syndrome: Clinical features, pathogenesis and potential therapeutic interventions. Ageing Res Rev 2017; 33:105-114. [PMID: 26993153 PMCID: PMC5025328 DOI: 10.1016/j.arr.2016.03.002] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/09/2016] [Accepted: 03/11/2016] [Indexed: 12/20/2022]
Abstract
Werner syndrome (WS) is a prototypical segmental progeroid syndrome characterized by multiple features consistent with accelerated aging. It is caused by null mutations of the WRN gene, which encodes a member of the RECQ family of DNA helicases. A unique feature of the WRN helicase is the presence of an exonuclease domain in its N-terminal region. Biochemical and cell biological studies during the past decade have demonstrated involvements of the WRN protein in multiple DNA transactions, including DNA repair, recombination, replication and transcription. A role of the WRN protein in telomere maintenance could explain many of the WS phenotypes. Recent discoveries of new progeroid loci found in atypical Werner cases continue to support the concept of genomic instability as a major mechanism of biological aging. Based on these biological insights, efforts are underway to develop therapeutic interventions for WS and related progeroid syndromes.
Collapse
Affiliation(s)
- Junko Oshima
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Chiba University, Chiba, Japan.
| | - Julia M Sidorova
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Raymond J Monnat
- Department of Pathology, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Yokote K, Chanprasert S, Lee L, Eirich K, Takemoto M, Watanabe A, Koizumi N, Lessel D, Mori T, Hisama FM, Ladd PD, Angle B, Baris H, Cefle K, Palanduz S, Ozturk S, Chateau A, Deguchi K, Easwar TKM, Federico A, Fox A, Grebe TA, Hay B, Nampoothiri S, Seiter K, Streeten E, Piña-Aguilar RE, Poke G, Poot M, Posmyk R, Martin GM, Kubisch C, Schindler D, Oshima J. WRN Mutation Update: Mutation Spectrum, Patient Registries, and Translational Prospects. Hum Mutat 2016; 38:7-15. [PMID: 27667302 DOI: 10.1002/humu.23128] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 12/19/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder characterized by a constellation of adult onset phenotypes consistent with an acceleration of intrinsic biological aging. It is caused by pathogenic variants in the WRN gene, which encodes a multifunctional nuclear protein with exonuclease and helicase activities. WRN protein is thought to be involved in optimization of various aspects of DNA metabolism, including DNA repair, recombination, replication, and transcription. In this update, we summarize a total of 83 different WRN mutations, including eight previously unpublished mutations identified by the International Registry of Werner Syndrome (Seattle, WA) and the Japanese Werner Consortium (Chiba, Japan), as well as 75 mutations already reported in the literature. The Seattle International Registry recruits patients from all over the world to investigate genetic causes of a wide variety of progeroid syndromes in order to contribute to the knowledge of basic mechanisms of human aging. Given the unusually high prevalence of WS patients and heterozygous carriers in Japan, the major goal of the Japanese Consortium is to develop effective therapies and to establish management guidelines for WS patients in Japan and elsewhere. This review will also discuss potential translational approaches to this disorder, including those currently under investigation.
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sirisak Chanprasert
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Lin Lee
- Department of Pathology, University of Washington, Seattle, Washington
| | - Katharina Eirich
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Minoru Takemoto
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Aki Watanabe
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Naoko Koizumi
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Takayasu Mori
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, Washington
| | - Fuki M Hisama
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington
| | - Paula D Ladd
- Department of Pathology, University of Washington, Seattle, Washington
| | - Brad Angle
- Advocate Lutheran General Hospital and Advocate Children's Hospital, Park Ridge, Illinois
| | - Hagit Baris
- The Genetics Institute, Rambam Health Care Campus and Rappaport School of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kivanc Cefle
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Palanduz
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Sukru Ozturk
- Department of Internal Medicine, Division of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Turkey
| | - Antoinette Chateau
- Department of Dermatology, Greys Hospital, Pietermaritzburg, South Africa
| | - Kentaro Deguchi
- Department of Neurology, Okayama City Hospital, Okayama, Japan
| | | | - Antonio Federico
- Department of Medicine, Surgery and Neurosciences, Unit Clinical Neurology and Neurometabolic Diseases, Medical School, University of Siena, Siena, Italy
| | - Amy Fox
- Department of Dermatology, University of North Carolina, Chapel Hill, North Carolina
| | - Theresa A Grebe
- Division of Genetics and Metabolism, Phoenix Children's Hospital, Phoenix, Arizona
| | - Beverly Hay
- Division of Genetics, UMass Memorial Medical Center, Worcester, Massachusetts
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Center, Kochi, Kerala, India
| | - Karen Seiter
- Department of Medicine, New York Medical College, Hawthorne, New York
| | - Elizabeth Streeten
- Division of Genetics, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Gemma Poke
- Genetic Health Service NZ, Wellington, New Zealand
| | - Martin Poot
- University Medical Center, Utrecht, Netherlands
| | - Renata Posmyk
- Department of Clinical Genetics, Podlaskie Medical Center, Bialystok, Poland
- Department of Perinatology, Medical University of Bialystok, Bialystok, Poland
| | - George M Martin
- Department of Pathology, University of Washington, Seattle, Washington
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Detlev Schindler
- Department of Human Genetics, University of Wuerzburg, Wuerzburg, Germany
| | - Junko Oshima
- Department of Clinical Cell Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Mungenast AE, Siegert S, Tsai LH. Modeling Alzheimer's disease with human induced pluripotent stem (iPS) cells. Mol Cell Neurosci 2016; 73:13-31. [PMID: 26657644 PMCID: PMC5930170 DOI: 10.1016/j.mcn.2015.11.010] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the last decade, induced pluripotent stem (iPS) cells have revolutionized the utility of human in vitro models of neurological disease. The iPS-derived and differentiated cells allow researchers to study the impact of a distinct cell type in health and disease as well as performing therapeutic drug screens on a human genetic background. In particular, clinical trials for Alzheimer's disease (AD) have been failing. Two of the potential reasons are first, the species gap involved in proceeding from initial discoveries in rodent models to human studies, and second, an unsatisfying patient stratification, meaning subgrouping patients based on the disease severity due to the lack of phenotypic and genetic markers. iPS cells overcome this obstacles and will improve our understanding of disease subtypes in AD. They allow researchers conducting in depth characterization of neural cells from both familial and sporadic AD patients as well as preclinical screens on human cells. In this review, we briefly outline the status quo of iPS cell research in neurological diseases along with the general advantages and pitfalls of these models. We summarize how genome-editing techniques such as CRISPR/Cas9 will allow researchers to reduce the problem of genomic variability inherent to human studies, followed by recent iPS cell studies relevant to AD. We then focus on current techniques for the differentiation of iPS cells into neural cell types that are relevant to AD research. Finally, we discuss how the generation of three-dimensional cell culture systems will be important for understanding AD phenotypes in a complex cellular milieu, and how both two- and three-dimensional iPS cell models can provide platforms for drug discovery and translational studies into the treatment of AD.
Collapse
Affiliation(s)
- Alison E Mungenast
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Sandra Siegert
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
23
|
Modifiable Factors Influencing Telomere Length and Aging. INFLAMMATION, AGING, AND OXIDATIVE STRESS 2016. [DOI: 10.1007/978-3-319-33486-8_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Uchiumi F, Seki M, Furuichi Y. Helicases and human diseases. Front Genet 2015; 6:39. [PMID: 25729389 PMCID: PMC4325929 DOI: 10.3389/fgene.2015.00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of ScienceNoda, Japan
| | - Masayuki Seki
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical UniversitySendai, Japan
| | | |
Collapse
|