1
|
Reed EK, Smith KA. Using our understanding of interactions between helminth metabolism and host immunity to target worm survival. Trends Parasitol 2024; 40:549-561. [PMID: 38853079 DOI: 10.1016/j.pt.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Helminths can adapt to environmental conditions in the host, utilising anaerobic processes like fermentation and malate dismutation to produce energy from carbohydrate. Although targeting carbohydrate metabolism is an established therapeutic strategy to combat helminth infection, questions remain over the metabolic pathways they employ as adults to survive and evade host immunity. Helminths also use amino acid, polyunsaturated fatty acid (PUFA), and cholesterol metabolism, a possible strategy favouring the production of immunomodulatory compounds that may influence survival in the host. Here, we discuss the significance of these differing metabolic pathways and whether targeting of helminth metabolic pathways may allow for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Ella K Reed
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
2
|
Church MC, Workman JL. The SWI/SNF chromatin remodeling complex: a critical regulator of metabolism. Biochem Soc Trans 2024; 52:1327-1337. [PMID: 38666605 PMCID: PMC11346436 DOI: 10.1042/bst20231141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
The close relationship between chromatin and metabolism has been well-studied in recent years. Many metabolites have been found to be cofactors used to modify chromatin, and these modifications can in turn affect gene transcription. One chromatin-associated factor responsible for regulating transcription is the SWI/SNF complex, an ATP-dependent chromatin remodeler conserved throughout eukaryotes. SWI/SNF was originally described in yeast as regulating genes involved in carbon source metabolism and mating type switching, and its mammalian counterpart has been extensively studied for its role in diseases such as cancer. The yeast SWI/SNF complex is closely associated with activation of stress response genes, many of which have metabolic functions. It is now recognized that this is a conserved function of the complex, and recent work has shown that mammalian SWI/SNF is also a key regulator of metabolic transcription. Emerging evidence suggests that loss of SWI/SNF introduces vulnerabilities to cells due to this metabolic influence, and that this may present opportunities for treatment of SWI/SNF-deficient cancers.
Collapse
Affiliation(s)
- Michael C. Church
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| | - Jerry L. Workman
- Stowers Institute of Medical Research, 1000 E 50th Street, Kansas City, MO 64118, U.S.A
| |
Collapse
|
3
|
Chen J, Garfinkel DJ, Bergman CM. Horizontal transfer and recombination fuel Ty4 retrotransposon evolution in Saccharomyces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572574. [PMID: 38187645 PMCID: PMC10769310 DOI: 10.1101/2023.12.20.572574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely-related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains. We find evidence for multiple independent HTT events introducing the Tsu4 subfamily into specific lineages of S. paradoxus, S. cerevisiae, S. eubayanus, S. kudriavzevii and the ancestor of the S. mikatae/S. jurei species pair. In both S. mikatae and S. kudriavzevii, we identified novel Ty4 clades that were independently generated through recombination between resident and horizontally-transferred subfamilies. Our results reveal that recurrent HTT and lineage-specific extinction events lead to a complex pattern of Ty4 subfamily content across the genus Saccharomyces. Moreover, our results demonstrate how HTT can lead to coexistence of related retrotransposon subfamilies in the same genome that can fuel evolution of new retrotransposon clades via recombination.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
4
|
Kobayashi Y, Kayamori A, Aoki K, Shiwa Y, Matsutani M, Fujita N, Sugita T, Iwasaki W, Tanaka N, Takashima M. Chromosome-level genome assemblies of Cutaneotrichosporon spp. (Trichosporonales, Basidiomycota) reveal imbalanced evolution between nucleotide sequences and chromosome synteny. BMC Genomics 2023; 24:609. [PMID: 37821828 PMCID: PMC10568926 DOI: 10.1186/s12864-023-09718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Since DNA information was first used in taxonomy, barcode sequences such as the internal transcribed spacer (ITS) region have greatly aided fungal identification; however, a barcode sequence alone is often insufficient. Thus, multi-gene- or whole-genome-based methods were developed. We previously isolated Basidiomycota yeasts classified in the Trichosporonales. Some strains were described as Cutaneotrichosporon cavernicola and C. spelunceum, whereas strain HIS471 remained unidentified. We analysed the genomes of these strains to elucidate their taxonomic relationship and genetic diversity. RESULTS The long-read-based assembly resulted in chromosome-level draft genomes consisting of seven chromosomes and one mitochondrial genome. The genome of strain HIS471 has more than ten chromosome inversions or translocations compared to the type strain of C. cavernicola despite sharing identical ITS barcode sequences and displaying an average nucleotide identity (ANI) above 93%. Also, the chromosome synteny between C. cavernicola and the related species, C. spelunceum, showed significant rearrangements, whereas the ITS sequence identity exceeds 98.6% and the ANI is approximately 82%. Our results indicate that the relative evolutionary rates of barcode sequences, whole-genome nucleotide sequences, and chromosome synteny in Cutaneotrichosporon significantly differ from those in the model yeast Saccharomyces. CONCLUSIONS Our results revealed that the relative evolutionary rates of nucleotide sequences and chromosome synteny are different among fungal clades, likely because different clades have diverse mutation/repair rates and distinct selection pressures on their genomic sequences and syntenic structures. Because diverse syntenic structures can be a barrier to meiotic recombination and may lead to speciation, the non-linear relationships between nucleotide and synteny diversification indicate that sequence-level distances at the barcode or whole-genome level are not sufficient for delineating species boundaries.
Collapse
Affiliation(s)
- Yuuki Kobayashi
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI), Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| | - Ayane Kayamori
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Keita Aoki
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI), Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Minenosuke Matsutani
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Nobuyuki Fujita
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-0882, Japan
| | - Naoto Tanaka
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Masako Takashima
- Laboratory of Yeast Systematics, Tokyo NODAI Research Institute (TNRI), Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
5
|
Wang WH, Lai TX, Wu YC, Chen ZT, Tseng KY, Lan CY. Associations of Rap1 with Cell Wall Integrity, Biofilm Formation, and Virulence in Candida albicans. Microbiol Spectr 2022; 10:e0328522. [PMID: 36416583 PMCID: PMC9769648 DOI: 10.1128/spectrum.03285-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Rap1 (repressor activator protein 1) is a multifunctional protein, playing important roles in telomeric and nontelomeric functions in many eukaryotes. Candida albicans Rap1 has been previously shown to be involved in telomeric regulation, but its other functions are still mostly unknown. In this study, we found that the deletion of the RAP1 gene altered cell wall properties, composition, and gene expression. In addition, deletion of RAP1 affected C. albicans biofilm formation and modulated phagocytosis and cytokine release by host immune cells. Finally, the RAP1 gene deletion mutant showed attenuation of C. albicans virulence in a Galleria mellonella infection model. Therefore, these findings provide new insights into Rap1 functions that are particularly relevant to pathogenesis and virulence of C. albicans. IMPORTANCE C. albicans is an important fungal pathogen of humans. The cell wall is the outermost layer of C. albicans and is important for commensalism and infection by this pathogen. Moreover, the cell wall is also an important target for antifungals. Studies of how C. albicans maintains its cell wall integrity are critical for a better understanding of fungal pathogenesis and virulence. This work focuses on exploring unknown functions of C. albicans Rap1 and reveals its contribution to cell wall integrity, biofilm formation, and virulence. Notably, these findings will also improve our general understanding of complex machinery to control pathogenesis and virulence of fungal pathogens.
Collapse
Affiliation(s)
- Wen-Han Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Ting-Xiu Lai
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Chia Wu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Zzu-Ting Chen
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Kuo-Yun Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Township, Miaoli County, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
6
|
'Warburg effect' controls tumor growth, bacterial, viral infections and immunity - Genetic deconstruction and therapeutic perspectives. Semin Cancer Biol 2022; 86:334-346. [PMID: 35820598 DOI: 10.1016/j.semcancer.2022.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
The evolutionary pressure for life transitioning from extended periods of hypoxia to an increasingly oxygenated atmosphere initiated drastic selections for a variety of biochemical pathways supporting the robust life currently present on the planet. First, we discuss how fermentative glycolysis, a primitive metabolic pathway present at the emergence of life, is instrumental for the rapid growth of cancer, regenerating tissues, immune cells but also bacteria and viruses during infections. The 'Warburg effect', activated via Myc and HIF-1 in response to growth factors and hypoxia, is an essential metabolic and energetic pathway which satisfies nutritional and energetic demands required for rapid genome replication. Second, we present the key role of lactic acid, the end-product of fermentative glycolysis able to move across cell membranes in both directions via monocarboxylate transporting proteins (i.e. MCT1/4) contributing to cell-pH homeostasis but also to the complex immune response via acidosis of the tumour microenvironment. Importantly lactate is recycled in multiple organs as a major metabolic precursor of gluconeogenesis and energy source protecting cells and animals from harsh nutritional or oxygen restrictions. Third, we revisit the Warburg effect via CRISPR-Cas9 disruption of glucose-6-phosphate isomerase (GPI-KO) or lactate dehydrogenases (LDHA/B-DKO) in two aggressive tumours (melanoma B16-F10, human adenocarcinoma LS174T). Full suppression of lactic acid production reduces but does not suppress tumour growth due to reactivation of OXPHOS. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumour growth as a result of intracellular acidosis. Finally, we briefly discuss the current clinical developments of an MCT1 specific drug AZ3965, and the recent progress for a specific in vivo MCT4 inhibitor, two drugs of very high potential for future cancer clinical applications.
Collapse
|
7
|
Boonekamp FJ, Knibbe E, Vieira-Lara MA, Wijsman M, Luttik MAH, van Eunen K, Ridder MD, Bron R, Almonacid Suarez AM, van Rijn P, Wolters JC, Pabst M, Daran JM, Bakker BM, Daran-Lapujade P. Full humanization of the glycolytic pathway in Saccharomyces cerevisiae. Cell Rep 2022; 39:111010. [PMID: 35767960 DOI: 10.1016/j.celrep.2022.111010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models.
Collapse
Affiliation(s)
- Francine J Boonekamp
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Ewout Knibbe
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Marcel A Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Karen van Eunen
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Reinier Bron
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ana Maria Almonacid Suarez
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands.
| |
Collapse
|
8
|
Askari F, Rasheed M, Kaur R. The yapsin family of aspartyl proteases regulate glucose homeostasis in Candida glabrata. J Biol Chem 2022; 298:101593. [PMID: 35051415 PMCID: PMC8844688 DOI: 10.1016/j.jbc.2022.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
Invasive candidiasis poses a major healthcare threat. The human opportunistic fungal pathogen Candida glabrata, which causes mucosal and deep-seated infections, is armed with distinct virulence attributes, including a family of 11 glycosylphosphatidylinositol-linked aspartyl proteases, CgYapsins. Here, we have profiled total membrane proteomes of the C. glabrata wildtype and 11 proteases-deficient strain, Cgyps1-11Δ, by mass spectrometry analysis and uncovered a novel role for fungal yapsins in glucose sensing and homeostasis. Furthermore, through label-free quantitative membrane proteome analysis, we showed differential abundance of 42% of identified membrane proteins, with electron transport chain and glycolysis proteins displaying lower and higher abundance in Cgyps1-11Δ cells, compared with wildtype cells, respectively. We also demonstrated elevated glucose uptake and upregulation of genes that code for the low-glucose sensor CgSnf3, transcriptional regulators CgMig1 and CgRgt1, and hexose transporter CgHxt2/10 in the Cgyps1-11Δ mutant. We further elucidated a potential underlying mechanism through genetic and transcript measurement analysis under low- and high-glucose conditions and found CgSNF3 deletion to rescue high glucose uptake and attenuated growth of the Cgyps1-11Δ mutant in YPD medium, thereby linking CgYapsins with regulation of the CgSnf3-dependent low-glucose sensing pathway. Last, high ethanol production, diminished mitochondrial membrane potential, and elevated susceptibility to oxidative phosphorylation inhibitors point toward increased fermentative and decreased respiratory metabolism in the Cgyps1-11Δ mutant. Altogether, our findings revealed new possible glucose metabolism-regulatory roles for putative cell surface-associated CgYapsins and advanced our understanding of fungal carbohydrate homeostasis mechanisms.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Mubashshir Rasheed
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.
| |
Collapse
|
9
|
Postma ED, Hassing EJ, Mangkusaputra V, Geelhoed J, de la Torre P, van den Broek M, Mooiman C, Pabst M, Daran JM, Daran-Lapujade P. Modular, synthetic chromosomes as new tools for large scale engineering of metabolism. Metab Eng 2022; 72:1-13. [PMID: 35051627 DOI: 10.1016/j.ymben.2021.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
The construction of powerful cell factories requires intensive genetic engineering for the addition of new functionalities and the remodeling of native pathways and processes. The present study demonstrates the feasibility of extensive genome reprogramming using modular, specialized de novo-assembled neochromosomes in yeast. The in vivo assembly of linear and circular neochromosomes, carrying 20 native and 21 heterologous genes, enabled the first de novo production in a microbial cell factory of anthocyanins, plant compounds with a broad range pharmacological properties. Turned into exclusive expression platforms for heterologous and essential metabolic routes, the neochromosomes mimic native chromosomes regarding mitotic and genetic stability, copy number, harmlessness for the host and editability by CRISPR/Cas9. This study paves the way for future microbial cell factories with modular genomes in which core metabolic networks, localized on satellite, specialized neochromosomes can be swapped for alternative configurations and serve as landing pads for the addition of functionalities.
Collapse
Affiliation(s)
- Eline D Postma
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Else-Jasmijn Hassing
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Venda Mangkusaputra
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Jordi Geelhoed
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Pilar de la Torre
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Christiaan Mooiman
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ, Delft, the Netherlands.
| |
Collapse
|
10
|
Elimination of aromatic fusel alcohols as by-products of Saccharomyces cerevisiae strains engineered for phenylpropanoid production by 2-oxo-acid decarboxylase replacement. Metab Eng Commun 2021; 13:e00183. [PMID: 34584841 PMCID: PMC8450241 DOI: 10.1016/j.mec.2021.e00183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022] Open
Abstract
Engineered strains of the yeast Saccharomyces cerevisiae are intensively studied as production platforms for aromatic compounds such as hydroxycinnamic acids, stilbenoids and flavonoids. Heterologous pathways for production of these compounds use l-phenylalanine and/or l-tyrosine, generated by the yeast shikimate pathway, as aromatic precursors. The Ehrlich pathway converts these precursors to aromatic fusel alcohols and acids, which are undesirable by-products of yeast strains engineered for production of high-value aromatic compounds. Activity of the Ehrlich pathway requires any of four S. cerevisiae 2-oxo-acid decarboxylases (2-OADCs): Aro10 or the pyruvate-decarboxylase isoenzymes Pdc1, Pdc5, and Pdc6. Elimination of pyruvate-decarboxylase activity from S. cerevisiae is not straightforward as it plays a key role in cytosolic acetyl-CoA biosynthesis during growth on glucose. In a search for pyruvate decarboxylases that do not decarboxylate aromatic 2-oxo acids, eleven yeast and bacterial 2-OADC-encoding genes were investigated. Homologs from Kluyveromyces lactis (KlPDC1), Kluyveromyces marxianus (KmPDC1), Yarrowia lipolytica (YlPDC1), Zymomonas mobilis (Zmpdc1) and Gluconacetobacter diazotrophicus (Gdpdc1.2 and Gdpdc1.3) complemented a Pdc− strain of S. cerevisiae for growth on glucose. Enzyme-activity assays in cell extracts showed that these genes encoded active pyruvate decarboxylases with different substrate specificities. In these in vitro assays, ZmPdc1, GdPdc1.2 or GdPdc1.3 had no substrate specificity towards phenylpyruvate. Replacing Aro10 and Pdc1,5,6 by these bacterial decarboxylases completely eliminated aromatic fusel-alcohol production in glucose-grown batch cultures of an engineered coumaric acid-producing S. cerevisiae strain. These results outline a strategy to prevent formation of an important class of by-products in ‘chassis’ yeast strains for production of non-native aromatic compounds. Identification of pyruvate decarboxylases active with pyruvate but not with aromatic 2-oxo acids. Zymomonas mobilis pyruvate decarboxylase can replace the native yeast enzymes. Expression of Z. mobilis pyruvate decarboxylase removes formation of fusel alcohols. Elimination of fusel alcohol by products improves formation of coumaric acid. Decarboxylase swapping is a beneficial strategy for production of non-native aromatics.
Collapse
|
11
|
Randazzo P, Bennis NX, Daran JM, Daran-Lapujade P. gEL DNA: A Cloning- and Polymerase Chain Reaction-Free Method for CRISPR-Based Multiplexed Genome Editing. CRISPR J 2021; 4:896-913. [PMID: 33900846 DOI: 10.1089/crispr.2020.0028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Even for the genetically accessible yeast Saccharomyces cerevisiae, the CRISPR-Cas DNA editing technology has strongly accelerated and facilitated strain construction. Several methods have been validated for fast and highly efficient single editing events, and diverse approaches for multiplex genome editing have been described in the literature by means of SpCas9 or FnCas12a endonucleases and their associated guide RNAs (gRNAs). The gRNAs used to guide the Cas endonuclease to the editing site are typically expressed from plasmids using native Pol II or Pol III RNA polymerases. These gRNA expression plasmids require laborious, time-consuming cloning steps, which hampers their implementation for academic and applied purposes. In this study, we explore the potential of expressing gRNA from linear DNA fragments using the T7 RNA polymerase (T7RNAP) for single and multiplex genome editing in Saccharomyces cerevisiae. Using FnCas12a, this work demonstrates that transforming short, linear DNA fragments encoding gRNAs in yeast strains expressing T7RNAP promotes highly efficient single and duplex DNA editing. These DNA fragments can be custom ordered, which makes this approach highly suitable for high-throughput strain construction. This work expands the CRISPR toolbox for large-scale strain construction programs in S. cerevisiae and promises to be relevant for other less genetically accessible yeast species.
Collapse
Affiliation(s)
- Paola Randazzo
- Department of Biotechnology, Delft University of Biotechnology, Delft, Netherlands
| | - Nicole Xanthe Bennis
- Department of Biotechnology, Delft University of Biotechnology, Delft, Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Biotechnology, Delft, Netherlands
| | | |
Collapse
|
12
|
Perli T, van der Vorm DNA, Wassink M, van den Broek M, Pronk JT, Daran JM. Engineering heterologous molybdenum-cofactor-biosynthesis and nitrate-assimilation pathways enables nitrate utilization by Saccharomyces cerevisiae. Metab Eng 2021; 65:11-29. [PMID: 33617956 DOI: 10.1016/j.ymben.2021.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Metabolic capabilities of cells are not only defined by their repertoire of enzymes and metabolites, but also by availability of enzyme cofactors. The molybdenum cofactor (Moco) is widespread among eukaryotes but absent from the industrial yeast Saccharomyces cerevisiae. No less than 50 Moco-dependent enzymes covering over 30 catalytic activities have been described to date, introduction of a functional Moco synthesis pathway offers interesting options to further broaden the biocatalytic repertoire of S. cerevisiae. In this study, we identified seven Moco biosynthesis genes in the non-conventional yeast Ogataea parapolymorpha by SpyCas9-mediated mutational analysis and expressed them in S. cerevisiae. Functionality of the heterologously expressed Moco biosynthesis pathway in S. cerevisiae was assessed by co-expressing O. parapolymorpha nitrate-assimilation enzymes, including the Moco-dependent nitrate reductase. Following two-weeks of incubation, growth of the engineered S. cerevisiae strain was observed on nitrate as sole nitrogen source. Relative to the rationally engineered strain, the evolved derivatives showed increased copy numbers of the heterologous genes, increased levels of the encoded proteins and a 5-fold higher nitrate-reductase activity in cell extracts. Growth at nM molybdate concentrations was enabled by co-expression of a Chlamydomonas reinhardtii high-affinity molybdate transporter. In serial batch cultures on nitrate-containing medium, a non-engineered S. cerevisiae strain was rapidly outcompeted by the spoilage yeast Brettanomyces bruxellensis. In contrast, an engineered and evolved nitrate-assimilating S. cerevisiae strain persisted during 35 generations of co-cultivation. This result indicates that the ability of engineered strains to use nitrate may be applicable to improve competitiveness of baker's yeast in industrial processes upon contamination with spoilage yeasts.
Collapse
Affiliation(s)
- Thomas Perli
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Daan N A van der Vorm
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Mats Wassink
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands.
| |
Collapse
|
13
|
Parks SK, Mueller-Klieser W, Pouysségur J. Lactate and Acidity in the Cancer Microenvironment. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033556] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentative glycolysis, an ancient evolved metabolic pathway, is exploited by rapidly growing tissues and tumors but also occurs in response to the nutritional and energetic demands of differentiated tissues. The lactic acid it produces is transported across cell membranes through reversible H+/lactate−symporters (MCT1 and MCT4) and is recycled in organs as a major metabolic precursor of gluconeogenesis and an energy source. Concentrations of lactate in the tumor environment, investigated utilizing an induced metabolic bioluminescence imaging (imBI) technique, appear to be dominant biomarkers of tumor response to irradiation and resistance to treatment. Suppression of lactic acid formation by genetic disruption of lactate dehydrogenases A and B in aggressive tumors reactivated OXPHOS (oxidative phosphorylation) to maintain xenograft tumor growth at a halved rate. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Furthermore, the global reduction of tumor acidity contributes to activation of the antitumor immune responses, offering hope for future clinical applications.
Collapse
Affiliation(s)
- Scott K. Parks
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
| | - Wolfgang Mueller-Klieser
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Jacques Pouysségur
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR 7284, INSERM U1081, Centre A. Lacassagne, University Côte d'Azur, 06189 Nice, France
| |
Collapse
|
14
|
Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metab Eng 2019; 56:165-180. [DOI: 10.1016/j.ymben.2019.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 11/19/2022]
|
15
|
Dabirian Y, Li X, Chen Y, David F, Nielsen J, Siewers V. Expanding the Dynamic Range of a Transcription Factor-Based Biosensor in Saccharomyces cerevisiae. ACS Synth Biol 2019; 8:1968-1975. [PMID: 31373795 DOI: 10.1021/acssynbio.9b00144] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metabolite biosensors are useful tools for high-throughput screening approaches and pathway regulation approaches. An important feature of biosensors is the dynamic range. To expand the maximum dynamic range of a transcription factor-based biosensor in Saccharomyces cerevisiae, using the fapO/FapR system from Bacillus subtilis as an example case, five native promoters, including constitutive and glucose-regulated ones, were modified. By evaluating different binding site (BS) positions in the core promoters, we identified locations that resulted in a high maximum dynamic range with low expression under repressed conditions. We further identified BS positions in the upstream element region of the TEF1 promoter that did not influence the native promoter strength but resulted in repression in the presence of a chimeric repressor consisting of FapR and the yeast repressor Mig1. These modified promoters with broad dynamic ranges will provide useful information for the engineering of future biosensors and their use in complex genetic circuits.
Collapse
Affiliation(s)
- Yasaman Dabirian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| |
Collapse
|