1
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
2
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Zhai S, Li X, Lin T. Obese Mouse Fat Cell-derived Extracellular Vesicles Transport miR-99a-5p to Mitigate the Proliferation and Migration of Non-small Cell Lung Cancer Cells. Comb Chem High Throughput Screen 2024; 27:214-226. [PMID: 36927435 DOI: 10.2174/1386207326666230316103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/29/2022] [Accepted: 01/20/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Fat cells-derived extracellular vesicles (FC-EVs) play a role in regulating the tumor microenvironment in cancers by transporting RNAs. MicroRNAs (miRNAs) are vital regulators of cancer development. This study was conducted to explore the role of FC-EVs in the proliferation and migration of non-small cell lung cancer (NSCLC) cells, providing targets for NSCLC treatment. METHODS The obese mouse model was established via high-fat diet (HFD), followed by separation and characterization of FC-EVs (HFD-EVs). The levels of miR-99a-5p, precursor-miR-99a-5p, and heparan sulfate-glucosamine 3-sulfotransferase 3B1 (HS3ST3B1) were measured by RT-qPCR or Western blot assay. Cell proliferation and migration were evaluated by 3-(4, 5-dimethylthiazol- 2-yl)-2, 5-diphenyltetrazolium bromide and wound healing assays. The expression of Cy3-labeled miR-99a-5p in A549 cells (one NSCLC cell line) was observed via confocal microscopy. The binding of miR-99a-5p to HS3ST3B1 was analyzed by the dual luciferase assay. Rescue experiments were performed to confirm the role of HS3ST3B1 in NSCLC cells. RESULTS miR-99a-5p was upregulated in adipose tissues, FCs, and HFD-EVs. HFD-EVs mitigated the proliferation and migration of NSCLC cells. HFD-EVs transported miR-99a-5p into A549 cells, which upregulated miR-99a-5p expression and inhibited HS3ST3B1 expression in A549 cells. HS3ST3B1 overexpression reversed the inhibition of HFD-EVs on the proliferation and migration of NSCLC cells. CONCLUSION HFD-EVs transported miR-99a-5p into NSCLC cells and inhibited HS3ST3B1, thereby inhibiting proliferation and migration of NSCLC cells.
Collapse
Affiliation(s)
- Shengping Zhai
- Department of General Practice, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Xiaoping Li
- Department of Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| | - Tiantian Lin
- Respiratory Intensive Care Unit, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, 264000, China
| |
Collapse
|
4
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Sadat Razavi Z, Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242. [PMID: 37531786 DOI: 10.1016/j.biopha.2023.115242] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, IZMIR, Turkey
| | - Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
5
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
6
|
Liu X, Zhang W, Wan J, Xiao D, Wei M. Landscape and Construction of a Novel N6-methyladenosine-related LncRNAs in Cervical Cancer. Reprod Sci 2023; 30:903-913. [PMID: 36074248 DOI: 10.1007/s43032-022-01074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Cervical cancer is a crucial clinical problem with high mortality. Despite much research in therapy, the prognosis of patients with cervical cancer is still not ideal. The data on cervical cancer were downloaded from The Cancer Genome Atlas (TCGA) portal. R language was used to screen out the N6-methyladenosine (m6A)-related lncRNAs (long non-coding RNA). A consensus clustering algorithm was performed to identify m6A-related lncRNAs in cervical cancer; 10 m6A-related lncRNAs showing a significant association with survival were filtrated through a gradually univariate Cox regression model, least absolute shrinkage and selection operator (LASSO) algorithm, and multivariate Cox regression preliminarily. Furthermore, we conducted Kaplan-Meier curves, receiver operating curve (ROC) analyses, and proportional hazards model to quantify the underlying character of the m6A-related model in the prevision of cervical cancer patients. Gene set enrichment analysis (GSEA) was used to explore several pathways significantly. Finally, cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) was applied to estimate the immune cell infiltration in the profiling. In the present study, 10 m6A-related lncRNAs make up our prediction model. This prediction model can do duty for an independent predictive biomolecular element. Subsequently, we then found that the model was still valid in further validation of the training group and the test group. Our signature was correlated with immune cell infiltration and partial signaling pathway. These lncRNAs played a no negligible biomolecular role in contributing to the prognosis of cervical cancer.
Collapse
Affiliation(s)
- Xin Liu
- Department of Blood Transfusion Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Weijie Zhang
- Department of Pharmacy Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jun Wan
- Department of General Practice Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Diming Xiao
- Department of Blood Transfusion Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Ming Wei
- Department of Blood Transfusion Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China.
| |
Collapse
|
7
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
8
|
Li F, Zheng Z, Chen W, Li D, Zhang H, Zhu Y, Mo Q, Zhao X, Fan Q, Deng F, Han C, Tan W. Regulation of cisplatin resistance in bladder cancer by epigenetic mechanisms. Drug Resist Updat 2023; 68:100938. [PMID: 36774746 DOI: 10.1016/j.drup.2023.100938] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.
Collapse
Affiliation(s)
- Fei Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Institute of Precision Medicine, Zigong Forth People's Hospital, Zigong, Sichuan, China
| | - Dongqing Li
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Henghui Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qixin Mo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinlei Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
lncRNA-mediated ceRNA network in bladder cancer. Noncoding RNA Res 2022; 8:135-145. [PMID: 36605618 PMCID: PMC9792360 DOI: 10.1016/j.ncrna.2022.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a common disease associated with high rates of morbidity and mortality. Although immunotherapy approaches such as adoptive T-cell therapy and immune checkpoint blockade have been investigated for the treatment of bladder cancer, their off-target effects and ability to affect only single targets have led to clinical outcomes that are far from satisfactory. Therefore, it is important to identify novel targets that can effectively control tumor growth and metastasis. It is well known that long noncoding RNAs (lncRNAs) are powerful regulators of gene expression. Increasing evidence has shown that dysregulated lncRNAs in bladder cancer are involved in cancer cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). In this review, we focus on the roles and underlying mechanisms of lncRNA-mediated competing endogenous RNA (ceRNA) networks in the regulation of bladder cancer progression. In addition, we discuss the potential of targeting lncRNA-mediated ceRNA networks to overcome cancer treatment resistance and its association with clinicopathological features and outcomes in bladder cancer patients. We hope this review will stimulate research to develop more effective therapeutic approaches for bladder cancer treatment.
Collapse
|
10
|
Ma L, Wang R, Feng S, Yang X, Li J, Zhang Z, Zhan H, Wang Y, Xia Z, Wang CC, Kang L. Genomic insight into the population history and biological adaptations of high-altitude Tibetan highlanders in Nagqu. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.930840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tibetan, one of the largest indigenous populations living in the high-altitude region of the Tibetan Plateau (TP), has developed a suite of physiological adaptation strategies to cope with the extreme highland environment in TP. Here, we reported genome-wide SNP data from 48 Kham-speaking Nagqu Tibetans and analyzed it with published data from 1,067 individuals in 167 modern and ancient populations to characterize the detailed Tibetan subgroup history and population substructure. Overall, the patterns of allele sharing and haplotype sharing suggested (1) the relatively genetic homogeny between the studied Nagqu Tibetans and ancient Nepalese as well as present-day core Tibetans from Lhasa, Nagqu, and Shigatse; and (2) the close relationship between our studied Kham-speaking Nagqu Tibetans and Kham-speaking Chamdo Tibetans. The fitted qpAdm models showed that the studied Nagqu Tibetans could be fitted as having the main ancestry from late Neolithic upper Yellow River millet farmers and deeply diverged lineages from Southern East Asians (represented by Upper Paleolithic Guangxi_Longlin and Laos_Hoabinhian), and a non-neglectable western Steppe herder-related ancestry (∼3%). We further scanned the candidate genomic regions of natural selection for our newly generated Nagqu Tibetans and the published core Tibetans via FST, iHS, and XP-EHH tests. The genes overlapping with these regions were associated with essential human biological functions such as immune response, enzyme activity, signal transduction, skin development, and energy metabolism. Together, our results shed light on the admixture and evolutionary history of Nagqu Tibetan populations.
Collapse
|
11
|
Ma HN, Chen HJ, Liu JQ, Li WT. Long non-coding RNA DLEU1 promotes malignancy of breast cancer by acting as an indispensable coactivator for HIF-1α-induced transcription of CKAP2. Cell Death Dis 2022; 13:625. [PMID: 35853854 PMCID: PMC9296616 DOI: 10.1038/s41419-022-04880-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 02/16/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
Earlier studies have suggested deleted in lymphocytic leukemia 1 (DLEU1), a long non-coding RNA, is a prognostic biomarker for breast cancer. Here we explored the malignant behaviors and underlying mechanisms regulated by DLEU1 in breast cancer. We demonstrated that up-regulation of DLEU1 was detected in breast cancer tissues and cells, particularly in tumors of higher malignancy. DLEU1 knockdown inhibited the growth and the motility of breast cancer cells. Mechanistically, DLEU1 interacted with HIF-1α to collectively activate the transcription of CKAP2. By activating ERK and STAT3 signaling, CKAP2 essentially mediated the pro-tumor activities of DLEU1. In vivo, depletion of DLEU1 inhibited xenograft growth and metastasis of breast cancer cells. Therefore, DLEU1, by acting as a coactivator for HIF-1α, up-regulates CKAP2 expression and promotes malignancy of breast cancer. Targeting DLEU1, HIF-1α, or CKAP2 may thus benefit breast cancer treatment.
Collapse
Affiliation(s)
- He Nan Ma
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| | - Hai Jun Chen
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| | - Ji Quan Liu
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| | - Wen Tao Li
- grid.414011.10000 0004 1808 090XDepartment of Breast Surgery, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, 450003 Henan Province China
| |
Collapse
|
12
|
Makgoo L, Mosebi S, Mbita Z. Long noncoding RNAs (lncRNAs) in HIV-mediated carcinogenesis: Role in cell homeostasis, cell survival processes and drug resistance. Noncoding RNA Res 2022; 7:184-196. [PMID: 35991514 PMCID: PMC9361211 DOI: 10.1016/j.ncrna.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
There is accruing data implicating long non-coding RNAs (lncRNAs) in the development and progression of non-communicable diseases such as cancer. These lncRNAs have been implicated in many diverse HIV-host interactions, some of which are beneficial to HIV propagation. The virus-host interactions induce the expression of HIV-regulated long non-coding RNAs, which are implicated in the carcinogenesis process, therefore, it is critical to understand the molecular mechanisms that underpin these HIV-regulated lncRNAs, especially in cancer formation. Herein, we summarize the role of HIV-regulated lncRNAs targeting cancer development-related processes including apoptosis, cell cycle, cell survival signalling, angiogenesis and drug resistance. It is unclear how lncRNAs regulate cancer development, this review also discuss recent discoveries regarding the functions of lncRNAs in cancer biology. Innovative research in this field will be beneficial for the future development of therapeutic strategies targeting long non-coding RNAs that are regulated by HIV, especially in HIV associated cancers.
Collapse
|
13
|
Li Q, Zhang Z, Jiang H, Hou J, Chai Y, Nan H, Li F, Wang L. DLEU1 promotes cell survival by preventing DYNLL1 degradation in esophageal squamous cell carcinoma. J Transl Med 2022; 20:245. [PMID: 35619131 PMCID: PMC9134706 DOI: 10.1186/s12967-022-03449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Emerging evidence has highlighted the critical roles of long noncoding RNAs (lncRNAs) in tumor development and progression. However, the biological functions and underlying mechanisms of DLEU1 in esophageal squamous cell carcinoma (ESCC) remain unclear. METHODS LncRNA expression in ESCC tissues was explored using lncRNA microarray datasets. The functional roles of DLEU1 in ESCC were demonstrated by a series of in vitro and in vivo experiments. RNA pull-down and immunoprecipitation assays were performed to demonstrate the potential mechanisms of DLEU1. RESULTS In a screen for differentially expressed lncRNAs in ESCC, we determined that DLEU1 was one of the most overexpressed lncRNAs in ESCC tissues and that upregulated DLEU1 expression was associated with a worse prognosis. Functional assays showed that DLEU1 promoted tumor growth by inhibiting cell apoptosis. Mechanistically, DLEU1 could bind and stabilize DYNLL1 by interfering with RNF114-mediated ubiquitination and proteasomal degradation. The DLEU1/DYNLL1 axis subsequently upregulated antiapoptotic BCL2 and promoted cell survival. Furthermore, DLEU1 upregulation was at least partly facilitated by promoter hypomethylation. Notably, targeting DLEU1 sensitized ESCC cells to cisplatin-induced death. CONCLUSIONS Our findings suggest that DLEU1-mediated stabilization of DYNLL1 is critical for cell survival and that the DLEU1/DYNLL1 axis may be a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Qihang Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Zhiyu Zhang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - HongChao Jiang
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Yuhang Chai
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Hongxing Nan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Feng Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China. .,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, Xinjiang, China. .,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
14
|
Wu X, Yin S, Yan L, Liu Y, Shang L, Liu J. lncRNA DLEU1 Modulates Proliferation, Inflammation, and Extracellular Matrix Degradation of Chondrocytes through Regulating miR-671-5p. J Immunol Res 2022; 2022:1816217. [PMID: 35647200 PMCID: PMC9132666 DOI: 10.1155/2022/1816217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 01/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been shown to be involved in the development of osteoarthritis. However, the expression, function, and mechanism of DLEU1 in OA development remain largely unclear. The present reference demonstrates that DLEU1 is overexpressed in OA specimens compared to control cartilages. Inflammatory cytokines IL-1β, TNF-α, and IL-6 induce DLEU1 expression in chondrocytes. Ectopic expression of DLEU1 induces chondrocyte proliferation, degradation of ECM, and inflammation mediators such as IL-6, IL-8, and TNF-α secretion. Moreover, we demonstrated that DLEU1 targets miR-671-5p expression in chondrocytes. Overexpression of DLEU1 suppresses miR-671-5p expression in chondrocytes. The expression of miR-671-5p is decreased in OA specimens compared to control cartilages. There is a negative correlation between the expression of miR-671-5p and DLEU1 in OA specimens. Inflammatory mediators IL-1β, TNF-α, and IL-6 suppress miR-671-5p expression in OA specimens. Elevated expression of miR-671-5p suppresses chondrocyte proliferation, degradation of ECM, and secretion of inflammation mediators. DLEU1 overexpression promotes chondrocytes proliferation, degradation of ECM, and secretion of inflammation mediators via regulating miR-671-5p. These results suggested that DLEU1 acts as one destructive role in OA development via regulating miR-671-5p.
Collapse
Affiliation(s)
- Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Shuai Yin
- Graduate School of Tianjin Medical University, Tianjin, China
| | - Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Lilin Shang
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China 473000
| | - Jun Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin 300211, China
| |
Collapse
|
15
|
Hatanaka Y, Niinuma T, Kitajima H, Nishiyama K, Maruyama R, Ishiguro K, Toyota M, Yamamoto E, Kai M, Yorozu A, Sekiguchi S, Ogi K, Dehari H, Idogawa M, Sasaki Y, Tokino T, Miyazaki A, Suzuki H. DLEU1 promotes oral squamous cell carcinoma progression by activating interferon-stimulated genes. Sci Rep 2021; 11:20438. [PMID: 34650128 PMCID: PMC8516910 DOI: 10.1038/s41598-021-99736-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/30/2021] [Indexed: 11/09/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are deeply involved in cancer development. We previously reported that DLEU1 (deleted in lymphocytic leukemia 1) is one of the lncRNAs overexpressed in oral squamous cell carcinoma (OSCC) cells, where it exhibits oncogenic activity. In the present study, we further clarified the molecular function of DLEU1 in the pathogenesis of OSCC. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis revealed that DLEU1 knockdown induced significant changes in the levels of histone H3 lysine 4 trimethylation (H3K4me3) and H3K27 acetylation (H3K27ac) in OSCC cells. Notably, DLEU1 knockdown suppressed levels of H3K4me3/ H3K27ac and expression of a number of interferon-stimulated genes (ISGs), including IFIT1, IFI6 and OAS1, while ectopic DLEU1 expression activated these genes. Western blot analysis and reporter assays suggested that DLEU1 upregulates ISGs through activation of JAK-STAT signaling in OSCC cells. Moreover, IFITM1, one of the ISGs induced by DLUE1, was frequently overexpressed in primary OSCC tumors, and its knockdown inhibited OSCC cell proliferation, migration and invasion. These findings suggest that DLEU1 exerts its oncogenic effects, at least in part, through activation of a series ISGs in OSCC cells.
Collapse
Affiliation(s)
- Yui Hatanaka
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Koyo Nishiyama
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuya Ishiguro
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shohei Sekiguchi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuhiro Ogi
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hironari Dehari
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yasushi Sasaki
- Biology Division, Department of Liberal Arts and Sciences, Center for Medical Education, Sapporo Medical University, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akihiro Miyazaki
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
16
|
Biological functions and clinical significance of long noncoding RNAs in bladder cancer. Cell Death Discov 2021; 7:278. [PMID: 34611133 PMCID: PMC8492632 DOI: 10.1038/s41420-021-00665-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BCa) is one of the 10 most common cancers with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNAs), a large class of noncoding RNA transcripts, consist of more than 200 nucleotides and play a significant role in the regulation of molecular interactions and cellular pathways during the occurrence and development of various cancers. In recent years, with the rapid advancement of high-throughput gene sequencing technology, several differentially expressed lncRNAs have been discovered in BCa, and their functions have been proven to have an impact on BCa development, such as cell growth and proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug-resistance. Furthermore, evidence suggests that lncRNAs are significantly associated with BCa patients' clinicopathological characteristics, especially tumor grade, TNM stage, and clinical progression stage. In addition, lncRNAs have the potential to more accurately predict BCa patient prognosis, suggesting their potential as diagnostic and prognostic biomarkers for BCa patients in the future. In this review, we briefly summarize and discuss recent research progress on BCa-associated lncRNAs, while focusing on their biological functions and mechanisms, clinical significance, and targeted therapy in BCa oncogenesis and malignant progression.
Collapse
|
17
|
Mirzaei S, Paskeh MDA, Hashemi F, Zabolian A, Hashemi M, Entezari M, Tabari T, Ashrafizadeh M, Raee P, Aghamiri S, Aref AR, Leong HC, Kumar AP, Samarghandian S, Zarrabi A, Hushmandi K. Long non-coding RNAs as new players in bladder cancer: Lessons from pre-clinical and clinical studies. Life Sci 2021; 288:119948. [PMID: 34520771 DOI: 10.1016/j.lfs.2021.119948] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
The clinical management of bladder cancer (BC) has become an increasing challenge due to high incidence rate of BC, malignant behavior of cancer cells and drug resistance. The non-coding RNAs are considered as key factors involved in BC progression. The long non-coding RNAs (lncRNAs) are RNA molecules and do not encode proteins. They have more than 200 nucleotides in length and affect gene expression at epigenetic, transcriptional and post-transcriptional phases. The lncRNAs demonstrate abnormal expression in BC cells and tissues. The present aims to identifying lncRNAs with tumor-suppressor and tumor-promoting roles, and evaluating their roles as regulatory of growth and migration. Apoptosis, glycolysis and EMT are tightly regulated by lncRNAs in BC. Response of BC cells to cisplatin, doxorubicin and gemcitabine chemotherapy is modulated by lncRNAs. LncRNAs regulate immune cell infiltration in tumor microenvironment and affect response of BC cells to immunotherapy. Besides, lncRNAs are able to regulate microRNAs, STAT3, Wnt, PTEN and PI3K/Akt pathways in affecting both proliferation and migration of BC cells. Noteworthy, anti-tumor compounds and genetic tools such as siRNA, shRNA and CRISPR/Cas systems can regulate lncRNA expression in BC. Finally, lncRNAs and exosomal lncRNAs can be considered as potential diagnostic and prognostic tools in BC.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Teimour Tabari
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Hin Chong Leong
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
18
|
Long Noncoding RNA LINC01554 as a Novel Biomarker for Diagnosis and Prognosis Prediction of Epithelial Ovarian Cancer. DISEASE MARKERS 2021; 2021:1244612. [PMID: 34422133 PMCID: PMC8371612 DOI: 10.1155/2021/1244612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022]
Abstract
Objective This study was aimed at exploring the diagnostic and prognostic value of long noncoding RNA LINC01554 (LINC01554) in epithelial ovarian cancer (EOC) patients. Patients and Methods. The expressions of LINC01554 in 161 EOC patients were analyzed using RT-PCR. The area under the ROC curve (AUC) was used to estimate the effectiveness of LINC01554 for prediction. The chi-square test was performed to explore the association between LINC01554 expressions and clinical characteristics in EOC patients. Kaplan-Meier assays were conducted for the examination of the influence of LINC01554 expression on the overall survival of EOC patients. Multivariate analyses were carried out to further determine prognostic values of LINC01554 expression in EOC patients. Results LINC01554 expressions were strongly downregulated in EOC specimens compared with matched nontumor specimens (p < 0.01). Importantly, LINC01554 provided a high diagnostic performance for the detection of EOC specimens (AUC = 0.7827; p < 0.001). Low expression of LINC01554 was distinctly associated with the FIGO stage (p = 0.034) and distant metastasis (p = 0.007). The assays of survival data (five years) revealed that the 5-year overall survival of the low LINC01554 expression group was distinctly shorter than that of the high LINC01554 expression group (p = 0.0017). Finally, in the multivariate Cox model, LINC01554 expression (RR = 2.863, 95% CI: 1.185-4.421, p = 0.014) was demonstrated to be an independent prognostic factor for overall survival of EOC patients. Conclusions Our findings suggested that LINC01554 is an important EOC-related lncRNA, providing a potential diagnostic, prognostic biomarker and therapeutic target for EOC patients.
Collapse
|
19
|
Xu D, Yang F, Fan Y, Jing W, Wen J, Miao W, Ding X, Yang H. LncRNA DLEU1 Contributes to the Growth and Invasion of Colorectal Cancer via Targeting miR-320b/PRPS1. Front Oncol 2021; 11:640276. [PMID: 34113562 PMCID: PMC8185642 DOI: 10.3389/fonc.2021.640276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Growing evidences suggest that long non-coding RNAs (lncRNAs) are closely correlated to the development of human cancer, such as colorectal cancer (CRC). A previous report suggested that DLEU1 accelerated CRC development. However, DLEU1's underlying mechanism in CRC remains unclear. In our study, the level of DLEU1 in CRC tissues is investigated by qRT-PCR. Our data exhibited that DLEU1 level was observably increased in CRC tissues and CRC cell lines and was closely associated with bad prognosis of CRC patients. CRC cell proliferation was repressed by sh-LncRNA DLEU1, whereas cell apoptosis was markedly stimulated. Moreover, knockdown of DLEU1 inhibited cell migration and invasion. Mechanistically, through interacting with miR-320b in CRC, DLEU1 promoted the level of PRPS1 which was a target of miR-320b. The rescue experiment confirmed that knockdown of DLEU1 repressed cell proliferation, migration and invasion while stimulated cell apoptosis via miR-320b/phosphoribosyl pyrophosphate synthetase 1 (PRPS1) axis. Meanwhile, the data of xenograft model exhibited that inhibition of DLEU1 suppressed tumor growth in vivo. In summary, DLEU1 knockdown may repress PRPS1 expression via miR-320b, and then repress cell proliferation, migration and invasion while stimulate cell apoptosis. Our research may provide a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Dong Xu
- Department of General Surgery, Gaochun People's Hospital, Nanjing, China
| | - Fei Yang
- Department of Internal Medicine, Gaochun People's Hospital, Nanjing, China
| | - Yongchao Fan
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Wanling Jing
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Jianfei Wen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Miao
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Ding
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
Lv T, Liu H, Wu Y, Huang W. Knockdown of lncRNA DLEU1 inhibits the tumorigenesis of oral squamous cell carcinoma via regulation of miR‑149‑5p/CDK6 axis. Mol Med Rep 2021; 23:447. [PMID: 33880596 PMCID: PMC8060799 DOI: 10.3892/mmr.2021.12086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a frequent malignant tumor worldwide. Long non-coding RNAs (lncRNAs) are known to play key roles in different types of cancer, including OSCC. It was previously reported that lncRNA deleted in lymphocytic leukemia 1 (DLEU1) is notably upregulated in OSCC; however, the role of DLEU1 in OSCC remains unclear. Gene and protein expression levels in OSCC cells were detected by reverse transcription-quantitative PCR and western blotting, respectively, in the present study. A Transwell assay was performed to measure cell migration and invasion. Flow cytometry was used to detect cell apoptosis, and the dual-luciferase reporter assay was applied to confirm the interaction between DLEU1, microRNA (miR)-149-5p and CDK6 in OSCC cells. DLEU1 expression was negatively associated with the survival rate of patients with OSCC. In addition, silencing of DLEU1 notably inhibited the proliferation of OSCC cells by inducing apoptosis. Meanwhile, DLEU1 directly bound to miR-149-5p, and CDK6 was found to be the direct target of miR-149-5p. Furthermore, DLEU1 knockdown-induced inhibition of OSCC cell proliferation was significantly reversed by the miR-149-5p antagomir. Knockdown of lncRNA DLEU1 reversed the proliferation of OSCC cells via regulation of the miR-149-5p/CDK6 axis. Thus, DLEU1 may serve as a novel target for treating OSCC.
Collapse
Affiliation(s)
- Tianzhu Lv
- Department of Emergency General, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Hongjing Liu
- Department of Emergency General, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Yadong Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Wentao Huang
- Department of Basic Stomatology, School of Savaid Stomatology, Hangzhou Medical College, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
21
|
Hsa_circ_0026134 expression promoted TRIM25- and IGF2BP3-mediated hepatocellular carcinoma cell proliferation and invasion via sponging miR-127-5p. Biosci Rep 2021; 40:225757. [PMID: 32648571 PMCID: PMC7364856 DOI: 10.1042/bsr20191418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence shows that circular RNAs (circRNAs) play a regulatory role in cancer. In the present study, we aimed to investigate the characteristics and effects of hsa_circ_0026134 in hepatocellular carcinoma (HCC). We investigated hsa_circ_0026134 expression in 20 pairs of clinical tissues from HCC patients; expression of hsa_circ_0026134 in different cell lines; effect of hsa_circ_0026134 on proliferation and invasion of HCC cell lines; and the regulatory mechanisms and interactions among hsa_circ_0026134, miR-127-5p, tripartite motif-containing protein 25 (TRIM25) and insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3). hsa_circ_0026134 expression was increased in HCC samples and cell lines. Down-regulation of hsa_circ_0026134 attenuated HCC cell proliferation and metastatic properties. Micro (mi)RNA (miR)-127-5p was sponged by hsa_circ_0026134. Rescue experiments indicated that inhibition of miR-127-5p expression promoted cell proliferation and invasion even after hsa_circ_0026134 silencing. TRIM25 and IGF2BP3 were targets of miR-127-5p. Overexpression of TRIM25 or IGF2BP3 promoted cell proliferation and invasion in cells overexpressing miR-127-5p. Down-regulation of hsa_circ_0026134 suppressed TRIM25- and IGF2BP3-mediated HCC cell proliferation and invasion via promotion of miR-127-5p expression, which have been confirmed by luciferase reporter assay. The present study provides a new treatment target for HCC.
Collapse
|
22
|
Taheri M, Shoorei H, Tondro Anamag F, Ghafouri-Fard S, Dinger ME. LncRNAs and miRNAs participate in determination of sensitivity of cancer cells to cisplatin. Exp Mol Pathol 2021; 123:104602. [PMID: 33422487 DOI: 10.1016/j.yexmp.2021.104602] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 02/08/2023]
Abstract
Cisplatin is an extensively used chemotherapeutic substance for various types of human malignancies including sarcomas, carcinomas and lymphomas. Yet, the vast application of this drug is hampered by the emergence of chemoresistance in some treated patients. Several mechanisms such as degradation of the membrane transporters by cisplatin have been implicated in the pathogenesis of this event. Recent researches have also indicated the role of long non-coding RNAs (lncRNAs) as well as micoRNAs (miRNAs) in the emergence of resistance to cisplatin in several cancer types. For instance, up-regulation of miR-21 has been associated with resistance to this agent in ovarian cancer, oral squamous cell cancer, gastric malignancy and non-small cell lung cancer (NSCLC). On the other hand, down-regulation of miR-218 has been implicated in emergence of chemoresistance in breast cancer and esophageal squamous cell carcinoma. MALAT1 is implicated in the chemoresistance of bladder cancer cells, NSCLC, gastric cancer and cervical cancer. Most notably, the expression profile of resistance-associated miRNAs and lncRNAs can predict overall survival of cancer patients. Mechanistic assays have revealed that interference with expression of some miRNAs and lncRNAs can reverse the resistance phenotype in cancer cells. In this paper, we review the scientific writings on the role of lncRNAs and miRNAs in the evolution of chemoresistance to cisplatin in cancer cells.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
23
|
Lv QL, Wang LC, Li DC, Lin QX, Shen XL, Liu HY, Li M, Ji YL, Qin CZ, Chen SH. Knockdown lncRNA DLEU1 Inhibits Gliomas Progression and Promotes Temozolomide Chemosensitivity by Regulating Autophagy. Front Pharmacol 2020; 11:560543. [PMID: 33362537 PMCID: PMC7756250 DOI: 10.3389/fphar.2020.560543] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most fatal malignant cerebral tumors. Temozolomide (TMZ), as the primary chemotherapy drug, has been widely used in clinics. However, resistance of TMZ still remains to poor defined. LncRNAs have been reported to play crucial roles in progression of various cancers and resistance of multiple drugs. However, the biological function and underlying mechanisms of most lncRNAs in glioma still remains unclear. Based on the TCGA database, a total of 94 differentially expressed lncRNAs, including 16 up-regulated genes and 78 downregulated genes were identified between gliomas and normal brain tissues. Subsequently, lncRNA DLEU1, HOTAIR, and LOC00132111 were tested to be significantly related to overall survival (OS) between high- and low-expression groups. Additionally, we verified that lncRNA DLEU1 was high expressed in 108 gliomas, compared with 19 normal brain tissues. And high expression of lncRNA DLEU1 predicted a poor prognosis (HR = 1.703, 95%CI: 1.133–2.917, p-value = 0.0159). Moreover, functional assays revealed that knockdown of lncRNA DLEU1 could suppress the proliferation by inducing cell cycle arrest at G1 phase and reducing the S phase by down-regulating the CyclinD1 and p-AKT, as the well as migration and invasion by inhibiting the epithelial–mesenchymal transition (EMT) markers, such as ZEB1, N-cadherin, β-catenin and snail in glioma cells. Furthermore, silencing lncRNA DLEU1 suppressed TMZ-activated autophagy via regulating the expression of P62 and LC3, and promoted sensitivity of glioma cells to TMZ by triggering apoptosis. Conclusively, our study indicated that lncRNA DLEU1 might perform as a prognostic potential target and underlying therapeutic target for sensitivity of glioma to TMZ.
Collapse
Affiliation(s)
- Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Li-Chong Wang
- Jiangxi Key Laboratory of Translational Cancer Research, Department of Head and Neck Surgery, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China.,Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dang-Chi Li
- Jiangxi University of Technology High School, Nanchang, China
| | - Qian-Xia Lin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Li Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Yun Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Min Li
- Department of Head and Neck Surgery, Jiangxi Cancer Hospital, Nanchang, China
| | - Yu-Long Ji
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chong-Zhen Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Song C, Zhang J, Zhao Z, Yang Y, Meng D, Wang J, Guo C, Yuan C. DLEU1: A Functional Long Noncoding RNA in Tumorigenesis. Curr Pharm Des 2020; 26:1742-1748. [PMID: 31969095 DOI: 10.2174/1381612826666200122145305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND LncRNA DLEU1 participates in various biological processes, playing an indispensable role in the pathophysiology of human diseases, especially in tumorigenesis and other processes. Besides, it may represent a promising target for biotherapy in numerous tumors. The aim of this review was to reveal the pathophysiological functions and mechanisms of lncRNA DLEU1 in different types of cancer. METHODS In this review, current studies concerning the biological functions and mechanisms of DLEU1 in tumor development are summarized and analyzed; the related researches are collected through a systematic retrieval of PubMed. RESULTS DLEU1 is a novel cancer-associated lncRNA that has been proved to be abnormally elevated in various malignancies, containing osteosarcoma, glioma, glioblastoma multiforme, hepatocellular carcinoma, bladder cancer, cervical cancer, non-small cell lung cancer, pancreatic ductal adenocarcinoma, colorectal cancer, oral squamous cell carcinoma, endometrial cancer, gastric cancer, Burkitt lymphoma and ovarian carcinoma. Besides, lncRNA LDEU1 has been demonstrated involving in the procession of proliferation, migration, invasion and inhibition of apoptosis of cancer cells. CONCLUSION Long non-coding RNA DLEU1 is likely to represent an available biomarker or a potential therapeutic target in multiple tumors.
Collapse
Affiliation(s)
- Chaoying Song
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Jiali Zhang
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Zongyao Zhao
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Yuxia Yang
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Di Meng
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Jing Wang
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Chong Guo
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| | - Chengfu Yuan
- China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Department of Biochemistry and Molecular Biology, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Tumor Microenvironment and Immunotherapy Key Laboratory of Hubei province, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, School of Medicine, Yichang, 443002, Hubei, China
| |
Collapse
|
25
|
Non coding RNAs as the critical factors in chemo resistance of bladder tumor cells. Diagn Pathol 2020; 15:136. [PMID: 33183321 PMCID: PMC7659041 DOI: 10.1186/s13000-020-01054-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the ninth frequent and 13th leading cause of cancer related deaths in the world which is mainly observed among men. There is a declining mortality rates in developed countries. Although, the majority of BCa patients present Non-Muscle-Invasive Bladder Cancer (NMIBC) tumors, only 30% of patients suffer from muscle invasion and distant metastases. Radical cystoprostatectomy, radiation, and chemotherapy have proven to be efficient in metastatic tumors. However, tumor relapse is observed in a noticeable ratio of patients following the chemotherapeutic treatment. Non-coding RNAs (ncRNAs) are important factors during tumor progression and chemo resistance which can be used as diagnostic and prognostic biomarkers of BCa. MAIN BODY In present review we summarized all of the lncRNAs and miRNAs associated with chemotherapeutic resistance in bladder tumor cells. CONCLUSIONS This review paves the way of introducing a prognostic panel of ncRNAs for the BCa patients which can be useful to select a proper drug based on the lncRNA profiles of patients to reduce the cytotoxic effects of chemotherapy in such patients.
Collapse
|
26
|
Li R, Wan T, Qu J, Yu Y, Zheng R. Long non-coding RNA DLEUI promotes papillary thyroid carcinoma progression by sponging miR-421 and increasing ROCK1 expression. Aging (Albany NY) 2020; 12:20127-20138. [PMID: 32910787 PMCID: PMC7655200 DOI: 10.18632/aging.103642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
We investigated the role of long non-coding RNA DLEU1 (deleted in lymphocytic leukemia 1) in the progression of papillary thyroid carcinoma (PTC). DLEU1 levels were higher in PTC cell lines (BHP5-16, TPC-1,8505C, and SW1736) and patient tissues (n=54) than in a human thyroid follicular epithelial cell line (Nthy-ori3-1) or adjacent normal thyroid tissues. High DLEU1 expression correlated positively with lymph node metastasis and advanced clinical stages in PTC patients. Bioinformatics, dual luciferase reporter, and RNA pulldown assays confirmed that DLEU1 directly binds to miR-421. Moreover, bioinformatics and dual luciferase reporter assays showed that miR-421 directly binds to the 3'untranslated region of the rho-related coiled-coil kinase 1 (ROCK1) in TPC-1 cells. PTC patient tissues and cell lines showed high ROCK1 mRNA and protein levels as well as low miR-421 levels. CCK-8, flow cytometry, wound healing, and Transwell invasion assays demonstrated that DLEU1 silencing decreases TPC-1 cell proliferation, survival and progression, but they can be rescued by miR-421 knockdown or ROCK1 overexpression. DLEU1 knockdown in TPC-1 cells decreased in vivo xenograft tumor size and weight compared to controls in nude mice. These findings demonstrate that DLEU1 promotes PTC progression by sponging miR-421 and increasing ROCK1 expression.
Collapse
Affiliation(s)
- Rui Li
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China
| | - Taihu Wan
- Department of Division of Interventional Radiology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jie Qu
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Yu
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ruipeng Zheng
- Department of Interventional Therapy, The First Hospital of Jilin University, Changchun 130021, P.R. China
| |
Collapse
|
27
|
LncRNA KCNQ1OT1 facilitates the progression of bladder cancer by targeting MiR-218-5p/HS3ST3B1. Cancer Gene Ther 2020; 28:212-220. [PMID: 32820233 DOI: 10.1038/s41417-020-00211-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 08/05/2020] [Indexed: 11/09/2022]
Abstract
Long non-coding RNA (lncRNA) is characterized by biological function in diverse cancers. LncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) is well acknowledged to regulate various cancers, while its role in bladder cancer remains unclear. In the present study, we aimed at probing into the impact and detailed mechanisms of KCNQ1OT1 in bladder cancer progression. In this study, we demonstrated that KCNQ1OT1 expression in bladder cancer tissues was notably up-regulated compared with in normal adjacent tissues, and KCNQ1OT1 modulated the malignant phenotypes of bladder cancer cells. Moreover, it was validated that KCNQ1OT1 could specifically bind to miR-218-5p and reduce its expression. Overexpressed miR-218-5p would inhibit the proliferation and metastasis of bladder cancer cells while facilitating apoptosis. In terms of Mechanism, Heparan Sulfate-Glucosamine 3-Sulfotransferase 3B1 (HS3ST3B1) was validated as a target gene of miR-218-5p, and could be regulated by KCNQ1OT1 indirectly. In conclusion, KCNQ1OT1 can promote the progression of bladder cancer through regulation of miR-218-5p/HS3ST3B1, which is expected to serve as a new therapeutic target for bladder cancer.
Collapse
|
28
|
Barth DA, Juracek J, Slaby O, Pichler M, Calin GA. lncRNA and Mechanisms of Drug Resistance in Cancers of the Genitourinary System. Cancers (Basel) 2020; 12:cancers12082148. [PMID: 32756406 PMCID: PMC7463785 DOI: 10.3390/cancers12082148] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
Available systemic treatment options for cancers of the genitourinary system have experienced great progress in the last decade. However, a large proportion of patients eventually develop resistance to treatment, resulting in disease progression and shorter overall survival. Biomarkers indicating the increasing resistance to cancer therapies are yet to enter clinical routine. Long non-coding RNAs (lncRNA) are non-protein coding RNA transcripts longer than 200 nucleotides that exert multiple types of regulatory functions of all known cellular processes. Increasing evidence supports the role of lncRNAs in cancer development and progression. Additionally, their involvement in the development of drug resistance across various cancer entities, including genitourinary malignancies, are starting to be discovered. Consequently, lncRNAs have been suggested as factors in novel therapeutic strategies to overcome drug resistance in cancer. In this review, the existing evidences on lncRNAs and their involvement in mechanisms of drug resistance in cancers of the genitourinary system, including renal cell carcinoma, bladder cancer, prostate cancer, and testicular cancer, will be highlighted and discussed to facilitate and encourage further research in this field. We summarize a significant number of lncRNAs with proposed pathways in drug resistance and available reported studies.
Collapse
Affiliation(s)
- Dominik A. Barth
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaroslav Juracek
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Ondrej Slaby
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic;
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Martin Pichler
- Research Unit of Non-Coding RNAs and Genome Editing in Cancer, Division of Clinical Oncology, Department of Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria; (D.A.B.); (M.P.)
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence:
| |
Collapse
|
29
|
Li H, Huang J, Yu S, Lou Z. Long Non-Coding RNA DLEU1 Up-Regulates BIRC6 Expression by Competitively Sponging miR-381-3p to Promote Cisplatin Resistance in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:2037-2045. [PMID: 32214823 PMCID: PMC7082798 DOI: 10.2147/ott.s237456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cisplatin (DDP) resistance has become an obstacle to chemotherapy for nasopharyngeal carcinoma (NPC) patients. Recent evidences indicate that long noncoding RNAs (lncRNAs) are involved in tumorigenesis and chemoresistance. However, the potential role of lncRNAs in NPC progression remains largely unknown. Methods First, lncRNA expression profiling in NPC was performed via microarray analysis. To explore the involvement of DLEU1 in DDP resistance, loss-of-function experiments were employed in vitro and in vivo. Bioinformatics analysis, luciferase reporter assay, qRT-PCR, and Western blot assays were used to investigate the underlying mechanisms. Results Here, we identified 153 differentially expressed lncRNAs. Among them, DLEU1 was remarkably up-regulated in NPC tissues and associated with worse outcome. Knock-down of DLEU1 could sensitize NPC cells to DDP in vitro and in vivo. Further investigations revealed that DLEU1 positively regulated BIRC6 expression via its competing endogenous RNA (ceRNA) activity on miR-381-3p. We also observed that BIRC6 overexpression or miR-381-3p silence could significantly reverse DLEU1-dependent DDP resistance. Conclusion Our data suggest that DLEU1 acts as an oncogene to promote DDP resistance and BIRC6 expression in NPC through interacting with miR-381-3p, which may help to develop new strategy against NPC chemoresistance.
Collapse
Affiliation(s)
- Hangbo Li
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| | - Jia Huang
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| | - Sa Yu
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| | - Zhiping Lou
- Department of Otolaryngology, Zhuji People's Hospital, Zhuji 311800, People's Republic of China
| |
Collapse
|
30
|
Upregulation of long non-coding RNA ROR1-AS1 promotes cell growth and migration in bladder cancer by regulation of miR-504. PLoS One 2020; 15:e0227568. [PMID: 31929567 PMCID: PMC6957147 DOI: 10.1371/journal.pone.0227568] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022] Open
Abstract
Background Increasing evidence has suggested that multiple long non-coding RNAs (lncRNAs) act key regulatory functions in the pathogenesis of bladder cancer. This study aimed to determine the expression and clinical significance of lncRNA ROR1 antisense RNA 1 (ROR1-AS1) from patients with bladder cancer, and to explore the potential role and mechanism underlying ROR1-AS1-related cancer progression. Methods Real time quantitative PCR (RT-qPCR) was conducted to detected the expression levels of ROR1-AS1 and miR-504 in bladder cancer samples and cell lines. Chi-square test was used for correlation analysis. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and wound scratch assays were applied to assesses the effects of ROR1-AS1 overexpression and knockdown on bladder cancer cell growth and migration in vitro, respectively. The prognosis of bladder cancer patients was evaluated by survival curves with Kaplan-Meier method. The regulatory mechanism of ROR1-AS1 on miR-504 was confirmed by bioinformatics analysis and luciferase reporter gene assay. Results ROR1-AS1 levels were obviously upregulated in bladder cancer tissues than matched normal bladder tissues. High expression of ROR1-AS1 was remarkably correlated with higher histological grade, advanced tumor stage, and positive lymph node metastasis. High ROR1-AS1 expression was markedly correlated with shorter overall survival of bladder cancer patients. Moreover, knockdown of ROR1-AS1 notably repressed T24 and 5637 cell growth and migration. ROR1-AS1 directly bound with miR-504 and act as a molecular sponge to decrease miR-504 expression. Silencing of miR-504 partly abrogated ROR1-AS1 knockdown-induced inhibitory effects on bladder cancer cell growth and migration. Conclusions Our data demonstrated that increased ROR1-AS1 promotes cell growth and migration of bladder cancer via regulation of miR-504, indicating ROR1-AS1 may be used as a prognostic biomarker and therapeutic target for bladder cancer.
Collapse
|
31
|
Li Z, Wang Y. Long non-coding RNA FTH1P3 promotes the metastasis and aggressiveness of non-small cell lung carcinoma by inducing epithelial-mesenchymal transition. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3782-3790. [PMID: 31933766 PMCID: PMC6949746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) ferritin heavy chain 1 pseudogene 3 (FTH1P3) has been suggested to act as an oncogene in many types of human malignancy, but its role in non-small cell lung carcinoma (NSCLC) remains unknown. This study aimed to characterize the biologic functions of FTH1P3 in NSCLC and illuminate its clinical significance. The expression levels of FTH1P3 in NSCLC tissues and cell lines were detected by quantitative real-time PCR assay. The relationship of FTH1P3 expression with clinicopathologic features was evaluated by chi-square test, and its correlation with prognosis of NSCLC patients was analyzed by Kaplan-Meier method with log-rank test. Wound healing and transwell invasion assays were applied to evaluate cell migration and invasion abilities, respectively. Western blotwas performed to detect the changes of epithelial-mesenchymal transition (EMT) related protein expression. The results showed that FTH1P3 was highly expressed in NSCLC tumor tissues and NSCLC-derived cell lines, and high expression of FTH1P3 was associated with advanced TNM stage and lymph node metastasis. NSCLC patients with high FTH1P3 expression had a poor overall survival relative to patients with low FTH1P3 expression. Through loss-of-function studies, FTH1P3 inhibition was demonstrated to suppress NSCLC cell migration and invasion in vitro. Notably, FTH1P3 knockdown could decrease expression of N-cadherin, vimentin and Snail protein of NSCLC cells, but promote E-cadherin protein expression, which was in accordance with its effect on cell migration and invasion. To sum up, our data demonstrated that FTH1P3 predicts a poor prognosis and promotes metastasis and aggressiveness in NSCLC by inducing EMT, suggesting FTH1P3 may be a promising target for gene therapy of NSCLC.
Collapse
Affiliation(s)
- Zhengxiong Li
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510282, Guangdong Province, People’s Republic of China
- Department of Oncology, Shenzhen Longhua District Central HospitalShenzhen 518110, Guangdong Province, People’s Republic of China
- Department of Radiation Therapy, The Seventh Medical Center of PLA General HospitalBeijing 100700, People’s Republic of China
| | - Yadi Wang
- The Second School of Clinical Medicine, Southern Medical UniversityGuangzhou 510282, Guangdong Province, People’s Republic of China
- Department of Radiation Therapy, The Seventh Medical Center of PLA General HospitalBeijing 100700, People’s Republic of China
| |
Collapse
|
32
|
Chen X, Zhang C, Wang X. Long noncoding RNA DLEU1 aggravates osteosarcoma carcinogenesis via regulating the miR-671-5p/DDX5 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3322-3328. [PMID: 31379208 DOI: 10.1080/21691401.2019.1648285] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xinxin Chen
- Department of Orthopedics, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| | - Chengyong Zhang
- Department of Orthopedics, The Second People’s Hospital of Nanyang City, Nanyang, Henan, China
| | - Xiao Wang
- Department of Orthopedics, Huaihe Hospital of Henan University, Kaifeng, Henan, China
| |
Collapse
|