1
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Ma Z, Hu L. WRKY Transcription Factor Responses and Tolerance to Abiotic Stresses in Plants. Int J Mol Sci 2024; 25:6845. [PMID: 38999954 PMCID: PMC11241455 DOI: 10.3390/ijms25136845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Plants are subjected to abiotic stresses throughout their developmental period. Abiotic stresses include drought, salt, heat, cold, heavy metals, nutritional elements, and oxidative stresses. Improving plant responses to various environmental stresses is critical for plant survival and perpetuation. WRKY transcription factors have special structures (WRKY structural domains), which enable the WRKY transcription factors to have different transcriptional regulatory functions. WRKY transcription factors can not only regulate abiotic stress responses and plant growth and development by regulating phytohormone signalling pathways but also promote or suppress the expression of downstream genes by binding to the W-box [TGACCA/TGACCT] in the promoters of their target genes. In addition, WRKY transcription factors not only interact with other families of transcription factors to regulate plant defence responses to abiotic stresses but also self-regulate by recognising and binding to W-boxes in their own target genes to regulate their defence responses to abiotic stresses. However, in recent years, research reviews on the regulatory roles of WRKY transcription factors in higher plants have been scarce and shallow. In this review, we focus on the structure and classification of WRKY transcription factors, as well as the identification of their downstream target genes and molecular mechanisms involved in the response to abiotic stresses, which can improve the tolerance ability of plants under abiotic stress, and we also look forward to their future research directions, with a view of providing theoretical support for the genetic improvement of crop abiotic stress tolerance.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Golm, 14476 Potsdam, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
3
|
Zhang X, Yang X, Zhang Q, Wang J, Zeng T, Xi Y, Shen Q. Genome-wide identification and comparative analysis of YABBY transcription factors in oil tea and tea tree. 3 Biotech 2024; 14:113. [PMID: 38515867 PMCID: PMC10951194 DOI: 10.1007/s13205-024-03940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024] Open
Abstract
The plant-specific transcription factor gene family, YABBY, plays an important role in plant development and stress response. Although YABBY genes have been identified in numerous species, a comprehensive characterization of YABBYs in tea tree and oil tea has been lacking. In this study, ten and three YABBY genes were identified in Camellia sinensis and C. oleifera, respectively. YABBY proteins could be divided into five subfamilies. Most YABBY genes in the same clade had similar structures and conserved motifs. Protein evolutionary analysis revealed that FIL/YAB3 displayed high conservation in all positions, followed by INO, YAB2, YAB5, and CRC. Specific site analysis suggested that the YABBY family was polyphyletic during the evolution. Compared to C. oleifera, two segmentally duplicated gene pairs were formed in C. sinensis during recent WGD events generated 30.69 and 45.08 Mya, respectively. Cis-acting element indicated that most YABBY genes contain box4, ARE, and MYB elements. A total of 120 SSR loci were found within CsYABBYs, consisting of six types, while 48 SSR loci were identified within CoYABBY, consisting of three types. Transcriptome results revealed that CRC and INO clades were specifically expressed in floral organs. The expression of CsYABBY10 and CsYABBY5 was significantly up-regulated under drought and salt treatments, respectively, as confirmed by qRT-PCR. CoYABBY genes were more susceptible to salt stress, as CoYABBY3 increased by about 15-fold. Furthermore, functional differentiation may have occurred in duplicated genes. These discoveries provide important information for further research on YABBYs in tea tree and oil tea. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03940-9.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Xianfeng Yang
- College of Tea Sciences, Guizhou University, Guiyang, 550025 China
| | - Qinqin Zhang
- Guizhou Normal University, Guiyang, 550001 China
| | - Jialun Wang
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Tingting Zeng
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Yanan Xi
- Guizhou Tea Research Institute, Guiyang, 550006 China
| | - Qiang Shen
- Guizhou Tea Research Institute, Guiyang, 550006 China
| |
Collapse
|
4
|
Yang X, Xu F, Pan W, Zhang W, Liao H, Zhu B, Xu B, Chen X, Yang H. Comparative Transcriptome Analysis of High- and Low-Growth Genotypes of Eucalyptus urophylla in Response to Long-Term Nitrogen Deficiency. Genes (Basel) 2023; 15:60. [PMID: 38254950 PMCID: PMC10815775 DOI: 10.3390/genes15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Nutrients play important roles in the growth and development of most plant species. However, in perennial trees, the function of nutrients in different genotypes is poorly understood. Three different nutrient levels (low, sufficient, and high nutrient levels) were applied to two contrasting Eucalyptus urophylla cultivars (a high-growth cultivar ZQUA44 and a low-growth cultivar ZQUB15), and growth and expression levels were analyzed. Although the growth traits of both genotypes under nutrient starvation treatment were much lower than under abundant nutrients, tree height, crown width, and biomass of different ZQUA44 tissues were much higher than those of ZQUB15 at all three nutrient levels. Differentially expressed genes (DEGs) clustered into six subclusters based on their expression patterns, and functional annotation showed that the DEGs involved in glutathione metabolism and flavonoid biosynthesis may be responsible for nutrient starvation across different genotypes, while the DEGs involved in carotenoid biosynthesis and starch and sucrose metabolism may have a range of functions in different genotypes. The DEGs encoding the MYB-related family may be responsible for nutrient deficiency in all genotypes, while B3 may have different functions in different genotypes. Our results demonstrate that different genotypes may form different pathways to coordinate plant survival when they face abiotic stresses.
Collapse
Affiliation(s)
- Xiaohui Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Fang Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Wen Pan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Huanqin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Baozhu Zhu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Xinyu Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Huixiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| |
Collapse
|
5
|
Meher J, Sarkar A, Sarma BK. Binding of stress-responsive OsWRKY proteins through WRKYGQK heptapeptide residue with the promoter region of two rice blast disease resistance genes Pi2 and Pi54 is important for development of blast resistance. 3 Biotech 2023; 13:294. [PMID: 37560615 PMCID: PMC10407006 DOI: 10.1007/s13205-023-03711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Molecular docking was done to investigate the interactions between five differentially expressed rice WRKY proteins when challenged with the rice blast disease caused by Magnaporthe oryzae and drought stresses applied either individually or overlapped, with the promoter region of two blast resistance genes (Pi2 and Pi54). Molecular docking was performed using the HDOCK server. Initially, the homology models for each of the five rice WRKY proteins were prepared using I-TASSER server, and then the secondary structure as well as the DNA-binding pockets were predicted using PSIPRED and BindUP servers, respectively. The molecular docking study revealed a differential binding pattern of the rice WRKYs with the two blast resistance genes. The WRKY proteins (OsWRKY88 and OsWRKY102), whose transcript levels decrease when drought and blast stresses are overlapped, interact with the two resistance genes mostly involving the residues of the zinc finger structure. On the other hand, the WRKY proteins (OsWRKY53-1 and OsWRKY113), whose transcript levels did not reduce significantly when challenged by drought and blast overlapped condition compared to individual treatment of blast, interact mostly involving the residues of the conserved WRKYGQK heptapeptide sequence. Interestingly, the protein OsWRKY74 whose transcript levels are unaffected in both individual and overlapped stresses, interacts with both the blast resistance genes involving few residues of both WRKYGQK heptapeptide and the zinc finger structure. The findings thus indicate that the interaction of OsWRKY proteins involving the conserved WRKYGQK heptapeptide sequence with the blast resistance genes Pi2 and Pi54 is important to mitigate the blast challenge in rice even during overlapping challenges of drought. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03711-y.
Collapse
Affiliation(s)
- Jhumishree Meher
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
6
|
Zhang T, Zhang C, Zhang X, Liang Z, Xia P. Multi-algorithm cooperation research of WRKY genes under nitrogen stress in Panax notoginseng. PROTOPLASMA 2023; 260:1081-1096. [PMID: 36564534 DOI: 10.1007/s00709-022-01832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/17/2022] [Indexed: 06/07/2023]
Abstract
WRKY transcription factors play an important role in the immune system and the innate defense response of plants. WRKY transcription factors have great feedback on nitrogen stress. In this study, bioinformatics was used to detect the WRKYs of Panax notoginseng (PnWRKYs). The response of PnWRKYs under nitrogen stress was also well studied. PnWRKYs were distributed on 11 chromosomes. According to PnWRKY and Arabidopsis thaliana WRKY (AtWRKY) domains, these PnWRKY proteins were divided into three groups by phylogenetic analysis. MEME analysis showed that almost every member contained motif 1 and motif 2. PlantCARE online predicted the cis-acting elements of the promoter. PnWRKY gene family members obtained 22 pairs of repeat fragments by collinearity analysis. The expression levels of PnWRKYs in different parts (roots, flowers, and leafs) were analyzed by the gene expression pattern. They reflected tissue-specific expressions. The qRT-PCR experiments were used to detect 74 PnWRKYs under nitrogen stress. The results showed that the expression levels of 8 PnWRKYs were significantly induced. The PnWRKY gene family may be involved in biotic/abiotic stresses and hormone induction. This study will not only lay the foundation to explore the functions of PnWRKYs but also provide candidate genes for the future improvement of P. notoginseng.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Caijuan Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xuemin Zhang
- Tianjin TASLY Modern Chinese Medicine Resources Co., Ltd, Tianjin, 300402, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
7
|
Saad KR, Kumar G, Puthusseri B, Srinivasa SM, Giridhar P, Shetty NP. Genome-wide identification of MATE, functional analysis and molecular dynamics of DcMATE21 involved in anthocyanin accumulation in Daucus carota. PHYTOCHEMISTRY 2023; 210:113676. [PMID: 37059287 DOI: 10.1016/j.phytochem.2023.113676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 06/19/2023]
Abstract
Anthocyanins are a subclass of flavonoids that are synthesized in the endoplasmic reticulum and then transported to the vacuole in plants. Multidrug and toxic compound extrusion transporters (MATE) is a family of membrane transporters that transport ions and secondary metabolites, such as anthocyanins, in plants. Although various studies on MATE transporters have been carried out on different plant species, this is the first comprehensive report to mine the Daucus carota genome to identify the MATE gene family. Our study identified 45 DcMATEs through genome-wide analysis and detected five segmental and six tandem duplications from the genome. The chromosome distribution, phylogenetic analysis, and cis-regulatory elements revealed the structural diversity and numerous functions associated with the DcMATEs. In addition, we analyzed RNA-seq data obtained from the European Nucleotide Archive to screen for the expression of DcMATEs involved in anthocyanin biosynthesis. Among the identified DcMATEs, DcMATE21 correlated with anthocyanin content in the different D. carota varieties. In addition, the expression of DcMATE21 and anthocyanin biosynthesis genes was correlated under abscisic acid, methyl jasmonate, sodium nitroprusside, salicylic acid, and phenylalanine treatments, which were substantiated by anthocyanin accumulation in the in vitro cultures. Further molecular membrane dynamics of DcMATE21 with anthocyanin (cyanidin-3-glucoside) identified the binding pocket, showing extensive H-bond interactions with 10 crucial amino acids present in the transmembrane helix of 7, 8, and 10 of DcMATE21. The current investigation, using RNA-seq, in vitro cultures, and molecular dynamics studies revealed the involvement of DcMATE21 in anthocyanin accumulation in vitro cultures of D. carota.
Collapse
Affiliation(s)
- Kirti R Saad
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Gyanendra Kumar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Sudhanva M Srinivasa
- Faculty of Natural Sciences, Adichunchanagiri University, BG Nagara, 571448, Karnataka, India.
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| | - Nandini P Shetty
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.
| |
Collapse
|
8
|
Wang C, Ye D, Li Y, Hu P, Xu R, Wang X. Genome-wide identification and bioinformatics analysis of the WRKY transcription factors and screening of candidate genes for anthocyanin biosynthesis in azalea ( Rhododendron simsii). Front Genet 2023; 14:1172321. [PMID: 37234867 PMCID: PMC10206045 DOI: 10.3389/fgene.2023.1172321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
WRKY transcription factors have been demonstrated to influence the anthocyanin biosynthesis in many plant species. However, there is limited knowledge about the structure and function of WRKY genes in the major ornamental plant azalea (Rhododendron simsii). In this study, we identified 57 RsWRKY genes in the R. simsii genome and classified them into three main groups and several subgroups based on their structural and phylogenetic characteristics. Comparative genomic analysis suggested WRKY gene family has significantly expanded during plant evolution from lower to higher species. Gene duplication analysis indicated that the expansion of the RsWRKY gene family was primarily due to whole-genome duplication (WGD). Additionally, selective pressure analysis (Ka/Ks) suggested that all RsWRKY duplication gene pairs underwent purifying selection. Synteny analysis indicated that 63 and 24 pairs of RsWRKY genes were orthologous to Arabidopsis thaliana and Oryza sativa, respectively. Furthermore, RNA-seq data was used to investigate the expression patterns of RsWRKYs, revealing that 17 and 9 candidate genes may be associated with anthocyanin synthesis at the bud and full bloom stages, respectively. These findings provide valuable insights into the molecular mechanisms underlying anthocyanin biosynthesis in Rhododendron species and lay the foundation for future functional studies of WRKY genes.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Dan Ye
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Yan Li
- Department of Biology and Chemical Engineering, Weihai Vocational College, Weihai, China
| | - Peiling Hu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Run Xu
- Key Laboratory for Quality Control of Characteristic Fruits and Vegetables of Hubei Province, College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, China
| |
Collapse
|
9
|
Feng X, Li G, Wu W, Lyu H, Wang J, Liu C, Zhong C, Shi S, He Z. Expansion and adaptive evolution of the WRKY transcription factor family in Avicennia mangrove trees. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:155-168. [PMID: 37275537 PMCID: PMC10232687 DOI: 10.1007/s42995-023-00177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Mangroves are adapted to intertidal zones, which present extreme environmental conditions. WRKYs are among the most prominent transcription factors (TFs) in higher plants and act through various interconnected networks to regulate responses to multiple abiotic stressors. Here, based on omic data, we investigated the landscape and evolutionary patterns of WRKYs in the main mangrove genus Avicennia. We found that both the number and the proportion of TFs and WRKYs in Avicennia species exceeded their inland relatives, indicating a significant expansion of WRKYs in Avicennia. We identified 109 WRKY genes in the representative species Avicennia marina. Comparative genomic analysis showed that two recent whole-genome duplication (WGD) events played a critical role in the expansion of WRKYs, and 88% of Avicennia marina WRKYs (AmWRKYs) have been retained following these WGDs. Applying comparative transcriptomics on roots under experimental salt gradients, we inferred that there is high divergence in the expression of WGD-retained AmWRKYs. Moreover, we found that the expression of 16 AmWRKYs was stable between freshwater and moderately saline water but increased when the trees were exposed to high salinity. In particular, 14 duplicates were retained following the two recent WGD events, indicating potential neo- and sub-functionalization. We also found that WRKYs could interact with other upregulated genes involved in signalling pathways and natural antioxidant biosynthesis to enhance salt tolerance, contributing to the adaptation to intertidal zones. Our omic data of the WRKY family in A. marina broadens the understanding of how a TF family relates to the adaptive evolution of mangroves. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00177-y.
Collapse
Affiliation(s)
- Xiao Feng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, 511458 China
| | - Guohong Li
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Weihong Wu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Haomin Lyu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Jiexin Wang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cong Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Cairong Zhong
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100 China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| | - Ziwen He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
10
|
Goyal P, Devi R, Verma B, Hussain S, Arora P, Tabassum R, Gupta S. WRKY transcription factors: evolution, regulation, and functional diversity in plants. PROTOPLASMA 2023; 260:331-348. [PMID: 35829836 DOI: 10.1007/s00709-022-01794-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues into digital data to express both qualitative and quantitative forms. The transcriptomic approach, in particular, has added new dimensions to the versatile essence of plant genomics through the large and deep transcripts generated in the process. This has enabled the mining of super families from the sequenced plants, both model and non-model, understanding their ancestry, diversity, and evolution. The elucidation of the crystal structure of the WRKY proteins and recent advancement in computational prediction through homology modeling and molecular dynamic simulation has provided an insight into the DNA-protein complex formation, stability, and interaction, thereby giving a new dimension in understanding the WRKY regulation. The present review summarizes the functional aspects of the high volume of sequence data of WRKY transcription factors studied from different species, till date. The review focuses on the dynamics of structural classification and lineage in light of the recent information. Additionally, a comparative analysis approach was incorporated to understand the functions of the identified WRKY transcription factors subjected to abiotic (heat, cold, salinity, senescence, dark, wounding, UV, and carbon starvation) stresses as revealed through various sets of studies on different plant species. The review will be instrumental in understanding the events of evolution and the importance of WRKY TFs under the threat of climate change, considering the new scientific evidences to propose a fresh perspective.
Collapse
Affiliation(s)
- Pooja Goyal
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Ritu Devi
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bhawana Verma
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Rubeena Tabassum
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Suphla Gupta
- Plant Science & Agrotechnology, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu & Kashmir, 180001, India.
- Faculty, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Pan H, Chen Y, Zhao J, Huang J, Shu N, Deng H, Song C. In-depth analysis of large-scale screening of WRKY members based on genome-wide identification. Front Genet 2023; 13:1104968. [PMID: 36699467 PMCID: PMC9868916 DOI: 10.3389/fgene.2022.1104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
With the rapid advancement of high-throughput sequencing technology, it is now possible to identify individual gene families from genomes on a large scale in order to study their functions. WRKY transcription factors are a key class of regulators that regulate plant growth and abiotic stresses. Here, a total of 74 WRKY genes were identified from Dendrobium officinale Kimura et Migo genome. Based on the genome-wide analysis, an in-depth analysis of gene structure and conserved motif was performed. The phylogenetic analysis indicated that DoWRKYs could be classified into three main groups: I, II, and III, with group II divided into five subgroups: II-a, II-b, II-c, II-d, and II-e. The sequence alignment indicated that these WRKY transcriptional factors contained a highly conserved WRKYGQK heptapeptide. The localization analysis of chromosomes showed that WRKY genes were irregularly distributed across several chromosomes of D. officinale. These genes comprised diverse patterns in both number and species, and there were certain distinguishing motifs among subfamilies. Moreover, the phylogenetic tree and chromosomal location results indicated that DoWRKYs may have undergone a widespread genome duplication event. Based on an evaluation of expression profiles, we proposed that DoWRKY5, 54, 57, 21, etc. may be involved in the transcriptional regulation of the JA signaling pathway. These results provide a scientific reference for the study of DoWRKY family genes.
Collapse
Affiliation(s)
- Haoyu Pan
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yu Chen
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Jingyi Zhao
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Jie Huang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Nana Shu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China
| | - Hui Deng
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,*Correspondence: Hui Deng, ; Cheng Song,
| | - Cheng Song
- College of Biological and Pharmaceutical Engineering, West Anhui University, Luan, China,*Correspondence: Hui Deng, ; Cheng Song,
| |
Collapse
|
12
|
Niu YF, Li GH, Zheng C, Liu ZY, Liu J. Insights to the superoxide dismutase genes and its roles in Hevea brasiliensis under abiotic stress. 3 Biotech 2022; 12:274. [PMID: 36110566 PMCID: PMC9468202 DOI: 10.1007/s13205-022-03328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
The superoxide dismutase (SOD) protein significantly influences the development and growth of plants and their reaction to abiotic stresses. However, little is known about the characteristics of rubber tree SOD genes and their expression changes under abiotic stresses. The present study recognized 11 SOD genes in the rubber tree genome, including 7 Cu/ZnSODs, 2 MnSODs, and 2 FeSODs. Except for HbFSD1, SODs were scattered on five chromosomes. The phylogenetic analysis of SOD proteins in rubber trees and a few other plants demonstrated that the SOD proteins contained three major subgroups. Moreover, the genes belonging to the same clade contained similar gene structures, which confirmed their classification further. The extension of the SOD gene family in the rubber tree was mainly induced by the segmental duplication events. The cis-acting components analysis showed that HbSODs were utilized in many biological procedures. The transcriptomics data indicated that the phosphorylation of the C-terminal domain of RNA polymerase II might control the cold response genes through the CBF pathway and activate the SOD system to respond to cold stress. The qRT-PCR results showed that the expression of HbCSD1 was significantly downregulated under drought and salt stresses, which might dominate the adaption capability to different stresses. Additionally, salt promoted the expression levels of HbMSD1 and HbMSD2, exhibiting their indispensable role in the salinity reaction. The study results will provide a theoretical basis for deep research on HbSODs in rubber trees. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03328-7.
Collapse
Affiliation(s)
- Ying-Feng Niu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Guo-Hua Li
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Cheng Zheng
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Zi-Yan Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, Xishuangbanna, 666100 China
| |
Collapse
|
13
|
Yu Z, Zhang D, Zeng B, Liu X, Yang J, Gao W, Ma X. Characterization of the WRKY gene family reveals its contribution to the adaptability of almond ( Prunus dulcis). PeerJ 2022; 10:e13491. [PMID: 35811825 PMCID: PMC9261925 DOI: 10.7717/peerj.13491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 01/17/2023] Open
Abstract
Background WRKY (WRKY DNA-binding domain) transcription factors an important gene family that widely regulates plant resistance to biological and abiotic stresses, such as drought, salt and ion stresses. However, research on the WRKY family in almond has not yet been reported. Almond is an economically important fruit tree in Xinjiang that have strong resistance to various stresses. Results A total of 62 PdWRKY genes were identified (including six pairs of homologous genes), and the phylogenetic tree was divided into three groups according to the WRKY domain and zinc finger motifs. The members of each group had a significant number of conserved motifs and exons/introns distributed unevenly across eight chromosomes, as well as 24 pairs of fragment duplicates and nine pairs of tandem duplicates. Moreover, the synteny and Ka/Ks analyses of the WRKY genes among almond and distinct species provided more detailed evidence for PdWRKY genes evolution. The examination of different tissue expression patterns showed that PdWRKY genes have tissue-specific expression characteristics. The qRT-PCR results showed that PdWRKY genes participate in the resistance of almond to the effects of low-temperature, drought and salt stress and that the expression levels of these genes change over time, exhibiting spatiotemporal expression characteristics. It is worth noting that many genes play a significant role in low-temperature stress resistance. In addition, based on the conserved WRKY motif, 321 candidate target genes were identified as having functions in multiple pathways. Conclusions We conducted systematic bioinformatics analysis and abiotic stress research on the WRKY gene family in almond, laying the foundation for future PdWRKY genes research and improvements to almond production and breeding.
Collapse
Affiliation(s)
- Zhenfan Yu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Dongdong Zhang
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Bin Zeng
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xingyue Liu
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China,GuangZhou Institute of Forestry and Landscape Architecture, GuangZhou, China
| | - Jiahui Yang
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Wenwen Gao
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| | - Xintong Ma
- College of Horticulture, Xinjiang Agriculture University, Urumqi, China
| |
Collapse
|
14
|
Ayoub Khan M, Dongru K, Yifei W, Ying W, Penghui A, Zicheng W. Characterization of WRKY Gene Family in Whole-Genome and Exploration of Flowering Improvement Genes in Chrysanthemum lavandulifolium. FRONTIERS IN PLANT SCIENCE 2022; 13:861193. [PMID: 35557735 PMCID: PMC9087852 DOI: 10.3389/fpls.2022.861193] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/02/2022] [Indexed: 05/27/2023]
Abstract
Chrysanthemum is a well-known ornamental plant with numerous uses. WRKY is a large family of transcription factors known for a variety of functions ranging from stress resistance to plant growth and development. Due to the limited research on the WRKY family in chrysanthemums, we examined them for the first time in Chrysanthemum lavandulifolium. A total of 138 ClWRKY genes were identified, which were classified into three groups. Group III in C. lavandulifolium contains 53 members, which is larger than group III of Arabidopsis. The number of introns varied from one to nine in the ClWRKY gene family. The "WRKYGQK" motif is conserved in 118 members, while other members showed slight variations. AuR and GRE responsive cis-acting elements were located in the promoter region of WRKY members, which are important for plant development and flowering induction. In addition, the W box was present in most genes; the recognition site for the WRKY gene may play a role in autoregulation and cross-regulation. The expression of the most variable 19 genes in terms of different parameters was observed at different stages. Among them, 10 genes were selected due to the presence of CpG islands, while nine genes were selected based on their close association with important Arabidopsis genes related to floral traits. ClWRKY36 and ClWRKY45 exhibit differential expression at flowering stages in the capitulum, while methylation is detected in three genes, including ClWRKY31, ClWRKY100, and ClWRKY129. Our results provide a basis for further exploration of WRKY members to find their functions in plant growth and development, especially in flowering traits.
Collapse
|
15
|
Du Z, You S, Zhao X, Xiong L, Li J. Genome-Wide Identification of WRKY Genes and Their Responses to Chilling Stress in Kandelia obovata. Front Genet 2022; 13:875316. [PMID: 35432463 PMCID: PMC9008847 DOI: 10.3389/fgene.2022.875316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background:Kandelia obovata, a dominant mangrove species, is widely distributed in tropical and subtropical areas. Low temperature is the major abiotic stress that seriously limits the survival and growth of mangroves. WRKY transcription factors (TFs) play vital roles in responses to biotic and abiotic stresses. However, genome-wide analysis of WRKY genes in K. obovata and their responses to chilling stress have not been reported. Methods: Bioinformatic analysis was used to identify and characterize the K. obovata WRKY (KoWRKY) gene family, RNA-seq and qRT–PCR analyses were employed to screen KoWRKYs that respond to chilling stress. Results: Sixty-four KoWRKYs were identified and they were unevenly distributed across all 18 K. obovata chromosomes. Many orthologous WRKY gene pairs were identified between Arabidopsis thaliana and K. obovata, showing high synteny between the two genomes. Segmental duplication events were found to be the major force driving the expansion for the KoWRKY gene family. Most of the KoWRKY genes contained several kinds of hormone- and stress-responsive cis-elements in their promoter. KoWRKY proteins belonged to three groups (I, II, III) according to their conserved WRKY domains and zinc-finger structure. Expression patterns derived from the RNA-seq and qRT–PCR analyses revealed that 9 KoWRKYs were significantly upregulated during chilling acclimation in the leaves. KEGG pathway enrichment analysis showed that the target genes of KoWRKYs were significantly involved in 11 pathways, and coexpression network analysis showed that 315 coexpressed pairs (KoWRKYs and mRNAs) were positively correlated. Conclusion: Sixty-four KoWRKYs from the K. obovata genome were identified, 9 of which exhibited chilling stress-induced expression patterns. These genes represent candidates for future functional analysis of KoWRKYs involved in chilling stress related signaling pathways in K. obovata. Our results provide a basis for further analysis of KoWRKY genes to determine their functions and molecular mechanisms in K. obovata in response to chilling stress.
Collapse
Affiliation(s)
- Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Shixian You
- Yuhuan Municipal Bureau of Natural Resources and Planning, Yuhuan, China
| | - Xin Zhao
- Marine Academy of Zhejiang Province, Hangzhou, China
| | - Lihu Xiong
- Marine Academy of Zhejiang Province, Hangzhou, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- *Correspondence: Junmin Li,
| |
Collapse
|
16
|
Wen F, Wu X, Li T, Jia M, Liao L. Characterization of the WRKY gene family in Akebia trifoliata and their response to Colletotrichum acutatum. BMC PLANT BIOLOGY 2022; 22:115. [PMID: 35287589 PMCID: PMC8919620 DOI: 10.1186/s12870-022-03511-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/04/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Akebia trifoliata, belonging to the Lardizabalaceae family, is a well-known Chinese traditional medicinal plant, susceptible to many diseases, such as anthracnose and powdery mildew. WRKY is one of the largest plant-specific transcription factor families and plays important roles in plant growth, development and stress response, especially in disease resistance. However, little was known about the numbers, characters, evolutionary relationship and expression of WRKY genes in A. trifoliata in response to plant disease due to lacking of A. trifoliata genome. RESULTS A total of 42 putative AktWRKY genes were identified based on the full-length transcriptome-sequencing data of A. trifoliata. Then 42 AktWRKY genes were divided into three major groups (Group I-III) based on the WRKY domains. Motif analysis showed members within same group shared a similar motif composition, implying a functional conservation. Tissue-specific expression analysis showed that AktWRKY genes could be detected in all tissues, while few AktWRKY genes were tissue specific. We further evaluated the expression of AktWRKY genes in three varieties in response to Colletotrichum acutatum by qRT-PCR. The expression patterns of AktWRKY genes were similar between C01 and susceptible variety I02, but distinctly different in resistant variety H05. In addition, it showed that more than 64 percentages of AktWRKY genes were differentially expressed during fungal infection in I02 and H05. Furthermore, Gene ontology (GO) analysis showed that AktWRKY genes were categorized into 26 functional groups under cellular components, molecular functions and biological processes, and a predicted protein interaction network was also constructed. CONCLUSIONS Results of bioinformation analysis and expression patterns implied that AktWRKYs might play multiple function in response to biotic stresses. Our study could facilitate to further investigate the function and regulatory mechanism of the WRKY in A. trifoliata during pathogen response.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Liang Liao
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
17
|
Behera TK, Krishna R, Ansari WA, Aamir M, Kumar P, Kashyap SP, Pandey S, Kole C. Approaches Involved in the Vegetable Crops Salt Stress Tolerance Improvement: Present Status and Way Ahead. FRONTIERS IN PLANT SCIENCE 2022; 12:787292. [PMID: 35281697 PMCID: PMC8916085 DOI: 10.3389/fpls.2021.787292] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 05/12/2023]
Abstract
Salt stress is one of the most important abiotic stresses as it persists throughout the plant life cycle. The productivity of crops is prominently affected by soil salinization due to faulty agricultural practices, increasing human activities, and natural processes. Approximately 10% of the total land area (950 Mha) and 50% of the total irrigated area (230 Mha) in the world are under salt stress. As a consequence, an annual loss of 12 billion US$ is estimated because of reduction in agriculture production inflicted by salt stress. The severity of salt stress will increase in the upcoming years with the increasing world population, and hence the forced use of poor-quality soil and irrigation water. Unfortunately, majority of the vegetable crops, such as bean, carrot, celery, eggplant, lettuce, muskmelon, okra, pea, pepper, potato, spinach, and tomato, have very low salinity threshold (ECt, which ranged from 1 to 2.5 dS m-1 in saturated soil). These crops used almost every part of the world and lakes' novel salt tolerance gene within their gene pool. Salt stress severely affects the yield and quality of these crops. To resolve this issue, novel genes governing salt tolerance under extreme salt stress were identified and transferred to the vegetable crops. The vegetable improvement for salt tolerance will require not only the yield influencing trait but also target those characters or traits that directly influence the salt stress to the crop developmental stage. Genetic engineering and grafting is the potential tool which can improve salt tolerance in vegetable crop regardless of species barriers. In the present review, an updated detail of the various physio-biochemical and molecular aspects involved in salt stress have been explored.
Collapse
Affiliation(s)
| | - Ram Krishna
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | | | - Mohd Aamir
- ICAR-Indian Institute of Vegetable Research, Varanasi, Varanasi, India
| | - Pradeep Kumar
- ICAR-Central Arid Zone Research Institute, Jodhpur, India
| | | | - Sudhakar Pandey
- ICAR-Indian Institute of Vegetable Research, Varanasi, Varanasi, India
| | | |
Collapse
|
18
|
Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh JP, Kesharwani AK, Singh RP, Dubey SC, Singh D. Unraveling Microbial Volatile Elicitors Using a Transparent Methodology for Induction of Systemic Resistance and Regulation of Antioxidant Genes at Expression Levels in Chili against Bacterial Wilt Disease. Antioxidants (Basel) 2022; 11:antiox11020404. [PMID: 35204287 PMCID: PMC8869530 DOI: 10.3390/antiox11020404] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/10/2022] Open
Abstract
Microbial volatiles benefit the agricultural ecological system by promoting plant growth and systemic resistance against diseases without harming the environment. To explore the plant growth-promoting efficiency of VOCs produced by Pseudomonas fluorescens PDS1 and Bacillus subtilis KA9 in terms of chili plant growth and its biocontrol efficiency against Ralstonia solanacearum, experiments were conducted both in vitro and in vivo. A closure assembly was designed using a half-inverted plastic bottle to demonstrate plant–microbial interactions via volatile compounds. The most common volatile organic compounds were identified and reported; they promoted plant development and induced systemic resistance (ISR) against wilt pathogen R. solanacearum. The PDS1 and KA9 VOCs significantly increased defensive enzyme activity and overexpressed the antioxidant genes PAL, POD, SOD, WRKYa, PAL1, DEF-1, CAT-2, WRKY40, HSFC1, LOX2, and NPR1 related to plant defense. The overall gene expression was greater in root tissue as compared to leaf tissue in chili plant. Our findings shed light on the relationship among rhizobacteria, pathogen, and host plants, resulting in plant growth promotion, disease suppression, systemic resistance-inducing potential, and antioxidant response with related gene expression in the leaf and root tissue of chili.
Collapse
Affiliation(s)
- Abhijeet Shankar Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| | - Nazia Manzar
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | | | - Mahendra Vikram Singh Rajawat
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
| | - Man Mohan Deo
- Farm Machinery and Power, ICAR-Indian Institute of Pulses Research, Kanpur 208024, India;
| | - Jyoti Prakash Singh
- Plant Pathology Laboratory, ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan 275103, India; (N.M.); (M.V.S.R.); (J.P.S.)
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Amit Kumar Kesharwani
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - Ravinder Pal Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
| | - S. C. Dubey
- Division of Plant Quarantine, ICAR-NBPGR, New Delhi 110012, India;
- Krishi Bhawan, Indian Council of Agricultural Research, New Delhi 110001, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India; (A.K.K.); (R.P.S.)
- Correspondence: (A.S.K.); (D.S.)
| |
Collapse
|
19
|
Gain H, Nandi D, Kumari D, Das A, Dasgupta SB, Banerjee J. Genome‑wide identification of CAMTA gene family members in rice (Oryza sativa L.) and in silico study on their versatility in respect to gene expression and promoter structure. Funct Integr Genomics 2022; 22:193-214. [PMID: 35169940 DOI: 10.1007/s10142-022-00828-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/29/2021] [Accepted: 01/29/2022] [Indexed: 12/20/2022]
Abstract
The calmodulin-binding transcription activator (CAMTA) is a family of transcriptional factors containing a cluster of calmodulin-binding proteins that can activate gene regulation in response to stresses. The presence of this family of genes has been reported earlier, though, the comprehensive analyses of rice CAMTA (OsCAMTA) genes, their promoter regions, and the proteins were not deliberated till date. The present report revealed the existence of seven CAMTA genes along with their alternate transcripts in five chromosomes of rice (Oryza sativa) genome. Phylogenetic trees classified seven CAMTA genes into three clades indicating the evolutionary conservation in gene structure and their association with other plant species. The in silico study was carried out considering 2 kilobases (kb) promoter regions of seven OsCAMTA genes regarding the distribution of transcription factor binding sites (TFbs) of major and plant-specific transcription factors whereas OsCAMTA7a was identified with highest number of TFbs, while OsCAMTA4 had the lowest. Comparative modelling, i.e., homology modelling, and molecular docking of the CAMTA proteins contributed the thoughtful comprehension of protein 3D structures and protein-protein interaction with probable partners. Gene ontology annotation identified the involvement of the proteins in biological processes, molecular functions, and localization in cellular components. Differential gene expression study gave an insight on functional multiplicity to showcase OsCAMTA3b as most upregulated stress-responsive gene. Summarization of the present findings can be interpreted that OsCAMTA gene duplication, variation in TFbs available in the promoters, and interactions of OsCAMTA proteins with their binding partners might be linked to tolerance against multiple biotic and abiotic cues.
Collapse
Affiliation(s)
- Hena Gain
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debarati Nandi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Deepika Kumari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Arpita Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Somdeb Bose Dasgupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Joydeep Banerjee
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
20
|
Zhu S, Fan R, Xiong X, Li J, Xiang L, Hong Y, Ye Y, Zhang X, Yu X, Chen Y. MeWRKY IIas, Subfamily Genes of WRKY Transcription Factors From Cassava, Play an Important Role in Disease Resistance. FRONTIERS IN PLANT SCIENCE 2022; 13:890555. [PMID: 35720572 PMCID: PMC9201764 DOI: 10.3389/fpls.2022.890555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 05/20/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important tropical crop for food, fodder, and energy. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) occurs in all cassava growing regions and threatens global cassava production. WRKY transcription factor family plays the essential roles during plant growth, development, and abiotic or biotic stress. Particularly, previous studies have revealed the important role of the group IIa WRKY genes in plant disease resistance. However, a comprehensive analysis of group IIa subfamily in cassava is still missing. Here, we identified 102 WRKY members, which were classified into three groups, I, II, and III. Transient expression showed that six MeWRKY IIas were localized in the nucleus. MeWRKY IIas transcripts accumulated significantly in response to SA, JA, and Xam. Overexpression of MeWRKY27 and MeWRKY33 in Arabidopsis enhanced its resistance to Pst DC3000. In contrast, silencing of MeWRKY27 and MeWRKY33 in cassava enhanced its susceptibility to Xam. Co-expression network analysis showed that different downstream genes are regulated by different MeWRKY IIa members. The functional analysis of downstream genes will provide clues for clarifying molecular mechanism of cassava disease resistance. Collectively, our results suggest that MeWRKY IIas are regulated by SA, JA signaling, and coordinate response to Xam infection.
Collapse
Affiliation(s)
- Shousong Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ruochen Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xi Xiong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Jianjun Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Li Xiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Yuhui Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yiwei Ye
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaofei Zhang
- CGIAR Research Program on Roots Tubers and Bananas (RTB), International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- *Correspondence: Xiaohui Yu
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
- Yinhua Chen
| |
Collapse
|
21
|
Di P, Wang P, Yan M, Han P, Huang X, Yin L, Yan Y, Xu Y, Wang Y. Genome-wide characterization and analysis of WRKY transcription factors in Panax ginseng. BMC Genomics 2021; 22:834. [PMID: 34794386 PMCID: PMC8600734 DOI: 10.1186/s12864-021-08145-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Panax ginseng is a well-known medicinal plant worldwide. As an herbal medicine, ginseng is also known for its long lifecycle, which can reach several decades. WRKY proteins play regulatory roles in many aspects of biological processes in plants, such as responses to biotic or abiotic stress, plant development, and adaptation to environmental challenges. Genome-wide analyses of WRKY genes in P. ginseng have not been reported. RESULTS In this study, 137 PgWRKY genes were identified from the ginseng genome. Phylogenetic analysis showed that the PgWRKYs could be clustered into three primary groups and five subgroups. Most of the PgWRKY gene promoters contained several kinds of hormone- and stress-related cis-regulatory elements. The expression patterns of PgWRKY genes in 14 different tissues were analyzed based on the available public RNA-seq data. The responses of the PgWRKY genes to heat, cold, salt and drought treatment were also investigated. Most of the PgWRKY genes were expressed differently after heat treatment, and expression trends changed significantly under drought and cold treatment but only slightly under salt treatment. The coexpression analysis of PgWRKY genes with the ginsenoside biosynthesis pathway genes identified 11 PgWRKYs that may have a potential regulatory role in the biosynthesis process of ginsenoside. CONCLUSIONS This work provides insights into the evolution, modulation and distribution of the WRKY gene family in ginseng and extends our knowledge of the molecular basis along with modulatory mechanisms of WRKY transcription factors in ginsenoside biosynthesis.
Collapse
Affiliation(s)
- Peng Di
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China. .,State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China.
| | - Ping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Min Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Peng Han
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Xinyi Huang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Le Yin
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yan Yan
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| | - Yonghua Xu
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China.
| | - Yingping Wang
- State Local Joint Engineering Research Center of Ginseng Breeding and Application, College of Chinese Medicinal Materials, Jilin Agricultural University, 130118, Changchun, China
| |
Collapse
|
22
|
Cao Z, Wu P, Gao H, Xia N, Jiang Y, Tang N, Liu G, Chen Z. Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence. Genes Genomics 2021; 44:219-235. [PMID: 34110609 DOI: 10.1007/s13258-021-01118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Lonicera macranthoides is an important woody plant with high medicinal values widely cultivated in southern China. WRKY, one of the largest transcription factor families, participates in plant development, senescence, and stress responses. However, a comprehensive study of the WRKY family in L. macranthoides hasn't been reported previously. OBJECTIVE To establish an extensive overview of the WRKY family in L. macranthoides and identify senescence-responsive members of LmWRKYs. METHODS RNA-Seq and phylogenetic analysis were employed to identify the LmWRKYs and their evolutionary relationships. Quantitative real-time (qRT-PCR) and transgenic technology was utilized to investigate the roles of LmWRKYs in response to developmental-, cold-, and ethylene-induced senescence. RESULTS A total of 61 LmWRKY genes with a highly conserved motif WRKYGQK were identified. Phylogenetic analysis of LmWRKYs together with their orthologs from Arabidopsis classified them into three groups, with the number of 15, 39, and 7, respectively. 17 LmWRKYs were identified to be differentially expressed between young and aging leaves by RNA-Seq. Further qRT-PCR analysis showed 15 and 5 LmWRKY genes were significantly induced responding to tissue senescence in leaves and stems, respectively. What's more, five LmWRKYs, including LmWRKY4, LmWRKY5, LmWRKY6, LmWRKY11, and LmWRKY16 were dramatically upregulated under cold and ethylene treatment in both leaves and stems, indicating their involvements commonly in developmental- and stress-induced senescence. In addition, function analysis revealed LmWRKY16, a homolog of AtWRKY75, can accelerate plant senescence, as evidenced by leaf yellowing during reproductive growth in LmWRKY16-overexpressing tobaccos. CONCLUSION The results lay the foundation for molecular characterization of LmWRKYs in plant senescence.
Collapse
Affiliation(s)
- Zhengyan Cao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Peiyin Wu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China.,College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Hongmei Gao
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Xia
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ying Jiang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| | - Guohua Liu
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, 402160, China. .,Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, 400000, China. .,Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing, 400000, China.
| |
Collapse
|
23
|
Nan H, Ludlow RA, Lu M, An H. Genome-Wide Analysis of Dof Genes and Their Response to Abiotic Stress in Rose ( Rosa chinensis). Front Genet 2021; 12:538733. [PMID: 33747030 PMCID: PMC7969895 DOI: 10.3389/fgene.2021.538733] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/26/2021] [Indexed: 11/20/2022] Open
Abstract
Dof (DNA binding with one finger) proteins play important roles in plant development and defense regulatory networks. In the present study, we report a genome-wide analysis of rose Dof genes (RchDof), including phylogenetic inferences, gene structures, chromosomal locations, gene duplications, and expression diversity. A total of 24 full-length RchDof genes were identified in Rosa chinensis, which were assigned to nine distinct subgroups. These RchDof genes were unevenly distributed on rose chromosomes. The genome-scale analysis of synteny indicated that segmental duplication events may have played a major role in the evolution of the RchDof gene family. Analysis of cis-acting elements revealed putative functions of Dofs in rose during development as well as under numerous biotic and abiotic stress conditions. Moreover, the expression profiles derived from qRT-PCR experiments demonstrated distinct expression patterns in various tissues, and gene expression divergence existed among the duplicated RchDof genes, suggesting a fundamentally functional divergence of the duplicated Dof paralogs in rose. The gene expression analysis of RchDofs under drought and salt stress conditions was also performed. The present study offered novel insights into the evolution of RchDofs and can aid in the further functional characterization of its candidate genes.
Collapse
Affiliation(s)
- Hong Nan
- College of Agriculture, Guizhou University, Guiyang, China
| | - Richard A Ludlow
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Min Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Huaming An
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
24
|
Li S, Hai J, Wang Z, Deng J, Liang T, Su L, Liu D. Lilium regale Wilson WRKY2 Regulates Chitinase Gene Expression During the Response to the Root Rot Pathogen Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2021; 12:741463. [PMID: 34646290 PMCID: PMC8503523 DOI: 10.3389/fpls.2021.741463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 05/17/2023]
Abstract
Root rot, mainly caused by Fusarium oxysporum, is the most destructive disease affecting lily (Lilium spp.) production. The WRKY transcription factors (TFs) have important roles during plant immune responses. To clarify the effects of WRKY TFs on plant defense responses to pathogens, a WRKY gene (LrWRKY2) was isolated from Lilium regale Wilson, which is a wild lily species highly resistant to F. oxysporum. The expression of LrWRKY2, which encodes a nuclear protein, is induced by various hormones (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) and by F. oxysporum infection. In this study, LrWRKY2-overexpressing transgenic tobacco plants were more resistant to F. oxysporum than the wild-type plants. Moreover, the expression levels of jasmonic acid biosynthetic pathway-related genes (NtAOC, NtAOS, NtKAT, NtPACX, NtJMT, NtOPR, and NtLOX), pathogenesis-related genes (NtCHI, NtGlu2, and NtPR-1), and antioxidant stress-related superoxide dismutase genes (NtSOD, NtCu-ZnSOD, and MnSOD) were significantly up-regulated in LrWRKY2 transgenic tobacco lines. Additionally, the transient expression of a hairpin RNA targeting LrWRKY2 increased the susceptibility of L. regale scales to F. oxysporum. Furthermore, an F. oxysporum resistance gene (LrCHI2) encoding a chitinase was isolated from L. regale. An electrophoretic mobility shift assay demonstrated that LrWRKY2 can bind to the LrCHI2 promoter containing the W-box element. Yeast one-hybrid assay results suggested that LrWRKY2 can activate LrCHI2 transcription. An examination of transgenic tobacco transformed with LrWRKY2 and the LrCHI2 promoter revealed that LrWRKY2 activates the LrCHI2 promoter. Therefore, in L. regale, LrWRKY2 is an important positive regulator that contributes to plant defense responses to F. oxysporum by modulating LrCHI2 expression.
Collapse
|
25
|
Mao P, Jin X, Bao Q, Mei C, Zhou Q, Min X, Liu Z. WRKY Transcription Factors in Medicago sativa L.: Genome-Wide Identification and Expression Analysis Under Abiotic Stress. DNA Cell Biol 2020; 39:2212-2225. [PMID: 33156699 DOI: 10.1089/dna.2020.5726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is the most widely cultivated leguminous herb in the world. Its agricultural development has been restricted by various adverse environmental conditions, including water deficiency, high salinity, and low temperature. WRKY transcription factors (TFs) serve important roles in the regulation of plant development and stress responses. Research on the WRKY gene family has been reported for several species, but minimal information is available for alfalfa. In the present study, a total of 107 WRKY genes were identified in alfalfa and divided into 3 main groups. The classification, evolution, conserved motifs, and tissue expression were comprehensively analyzed. Meanwhile, 27 MsWRKY candidate genes that may be involved in abiotic stress were isolated through an analysis of gene expression profiles under different stresses, including cold, abscisic acid, drought, and salt treatments. Additionally, investigation of the cis-elements and potential biological functions of these genes further revealed that MsWRKY TFs may serve important roles in multiple stress resistance in alfalfa. This study provides an important foundation for future cloning and functional studies of WRKY genes in alfalfa.
Collapse
Affiliation(s)
- Pei Mao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiaoyu Jin
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qinyan Bao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Cuo Mei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang Zhou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xueyang Min
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhipeng Liu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
26
|
Baillo EH, Hanif MS, Guo Y, Zhang Z, Xu P, Algam SA. Genome-wide Identification of WRKY transcription factor family members in sorghum (Sorghum bicolor (L.) moench). PLoS One 2020; 15:e0236651. [PMID: 32804948 PMCID: PMC7430707 DOI: 10.1371/journal.pone.0236651] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
WRKY transcription factors regulate diverse biological processes in plants, including abiotic and biotic stress responses, and constitute one of the largest transcription factor families in higher plants. Although the past decade has seen significant progress towards identifying and functionally characterizing WRKY genes in diverse species, little is known about the WRKY family in sorghum (Sorghum bicolor (L.) moench). Here we report the comprehensive identification of 94 putative WRKY transcription factors (SbWRKYs). The SbWRKYs were divided into three groups (I, II, and III), with those in group II further classified into five subgroups (IIa–IIe), based on their conserved domains and zinc finger motif types. WRKYs from the model plant Arabidopsis (Arabidopsis thaliana) were used for the phylogenetic analysis of all SbWRKY genes. Motif analysis showed that all SbWRKYs contained either one or two WRKY domains and that SbWRKYs within the same group had similar motif compositions. SbWRKY genes were located on all 10 sorghum chromosomes, and some gene clusters and two tandem duplications were detected. SbWRKY gene structure analysis showed that they contained 0–7 introns, with most SbWRKY genes consisting of two introns and three exons. Gene ontology (GO) annotation functionally categorized SbWRKYs under cellular components, molecular functions and biological processes. A cis-element analysis showed that all SbWRKYs contain at least one stress response-related cis-element. We exploited publicly available microarray datasets to analyze the expression profiles of 78 SbWRKY genes at different growth stages and in different tissues. The induction of SbWRKYs by different abiotic stresses hinted at their potential involvement in stress responses. qRT-PCR analysis revealed different expression patterns for SbWRKYs during drought stress. Functionally characterized WRKY genes in Arabidopsis and other species will provide clues for the functional characterization of putative orthologs in sorghum. Thus, the present study delivers a solid foundation for future functional studies of SbWRKY genes and their roles in the response to critical stresses such as drought.
Collapse
Affiliation(s)
- Elamin Hafiz Baillo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- Agricultural Research Corporation (ARC), Ministry of Agriculture, Wad Madani, Gezira, Sudan
- * E-mail: ,
| | - Muhammad Sajid Hanif
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinghui Guo
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhengbin Zhang
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- * E-mail: ,
| | - Ping Xu
- Center for Agricultural Resources Research, Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water Saving, Institute of Genetics and Developmental Biology, University of Chinese Academy of Sciences, Shijiazhuang, Hebei, China
- University of Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Soad Ali Algam
- Faculty of Agriculture, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
27
|
Nan H, Li W, Lin YL, Gao LZ. Genome-Wide Analysis of WRKY Genes and Their Response to Salt Stress in the Wild Progenitor of Asian Cultivated Rice, Oryza rufipogon. Front Genet 2020. [DOI: 10.3389/fgene.2020.00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Huang X, Song X, Chen R, Zhang B, Li C, Liang Y, Qiu L, Fan Y, Zhou Z, Zhou H, Lakshmanan P, Li Y, Wu J. Genome-Wide Analysis of the DREB Subfamily in Saccharum spontaneum Reveals Their Functional Divergence During Cold and Drought Stresses. Front Genet 2020; 10:1326. [PMID: 32117408 PMCID: PMC7013043 DOI: 10.3389/fgene.2019.01326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/05/2019] [Indexed: 01/24/2023] Open
Abstract
Drought and cold stresses are the main environmental factors that affect the yield of sugarcane, and DREB genes play very important roles in tolerance to drought, cold, and other environmental stresses. In this study, bioinformatics analysis was performed to characterize Saccharum spontaneum SsDREB genes. RNA sequencing (RNA-seq) was used to detect the expression profiles of SsDREBs induced by cold and drought stresses. According to our results, there are 110 SsDREB subfamily proteins in S. spontaneum, which can be classified into six groups; 106 of these genes are distributed among 29 chromosomes. Inter- and intraspecies synteny analyses suggested that all DREB groups have undergone gene duplication, highlighting the polyploid events that played an important role in the expansion of the DREB subfamily. Furthermore, RNA-seq results showed that 45 SsDREBs were up- or downregulated under cold stress; 35 of them were found to be involved in responding to drought stress. According to protein–protein interaction analysis, SsDREB100, SsDREB102, and SsDREB105 play key roles during the response to cold stress. These results reveal that functional divergence exists between collinear homologous genes or among common origin genes in the DREB subfamily of S. spontaneum. This study presents a comprehensive analysis and systematic understanding of the precise mechanism of SsDREBs in response to abiotic stress and will lead to improvements in sugarcane.
Collapse
Affiliation(s)
- Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Baoqing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Changning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yongsheng Liang
- Nanning Institute of Agricultural Sciences, Guangxi Academy of Agricultural Science, Nanning, China
| | - Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| |
Collapse
|
29
|
Jiang Y, Zheng W, Li J, Liu P, Zhong K, Jin P, Xu M, Yang J, Chen J. NbWRKY40 Positively Regulates the Response of Nicotiana benthamiana to Tomato Mosaic Virus via Salicylic Acid Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:603518. [PMID: 33552099 PMCID: PMC7857026 DOI: 10.3389/fpls.2020.603518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/01/2020] [Indexed: 05/05/2023]
Abstract
WRKY transcription factors play important roles in plants, including responses to stress; however, our understanding of the function of WRKY genes in plant responses to viral infection remains limited. In this study, we investigate the role of NbWRKY40 in Nicotiana benthamiana resistance to tomato mosaic virus (ToMV). NbWRKY40 is significantly downregulated by ToMV infection, and subcellular localization analysis indicates that NbWRKY40 is targeted to the nucleus. In addition, NbWRKY40 activates W-box-dependent transcription in plants and shows transcriptional activation in yeast cells. Overexpressing NbWRKY40 (OEWRKY40) inhibits ToMV infection, whereas NbWRKY40 silencing confers susceptibility. The level of salicylic acid (SA) is significantly higher in OEWRKY40 plants compared with that of wild-type plants. In addition, transcript levels of the SA-biosynthesis gene (ICS1) and SA-signaling genes (PR1b and PR2) are dramatically higher in OEWRKY40 plants than in the control but lower in NbWRKY40-silenced plants than in the control. Furthermore, electrophoretic mobility shift assays show that NbWRKY40 can bind the W-box element of ICS1. Callose staining reveals that the plasmodesmata is decreased in OEWRKY40 plants but increased in NbWRKY40-silenced plants. Exogenous application of SA also reduces viral accumulation in NbWRKY40-silenced plants infected with ToMV. RT-qPCR indicates that NbWRKY40 does not affect the replication of ToMV in protoplasts. Collectively, our findings suggest that NbWRKY40 likely regulates anti-ToMV resistance by regulating the expression of SA, resulting in the deposition of callose at the neck of plasmodesmata, which inhibits viral movement.
Collapse
Affiliation(s)
- Yaoyao Jiang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Weiran Zheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Kaili Zhong
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Jin
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Miaoze Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Provincial Key Laboratory of Plant Virology, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jianping Chen,
| |
Collapse
|
30
|
Genome-Wide Identification of WRKY Transcription Factors in the Asteranae. PLANTS 2019; 8:plants8100393. [PMID: 31581604 PMCID: PMC6843914 DOI: 10.3390/plants8100393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
The WRKY transcription factors family, which participates in many physiological processes in plants, constitutes one of the largest transcription factor families. The Asterales and the Apiales are two orders of flowering plants in the superorder Asteranae. Among the members of the Asterales, globe artichoke (Cynara cardunculus var. scolymus L.), sunflower (Helianthus annuus L.), and lettuce (Lactuca sativa L.) are important economic crops worldwide. Within the Apiales, ginseng (Panax ginseng C. A. Meyer) and Panax notoginseng (Burk.) F.H. Chen are important medicinal plants, while carrot (Daucus carota subsp. carota L.) has significant economic value. Research involving genome-wide identification of WRKY transcription factors in the Asterales and the Apiales has been limited. In this study, 490 WRKY genes, 244 from three species of the Apiales and 246 from three species of the Asterales, were identified and categorized into three groups. Within each group, WRKY motif characteristics and gene structures were similar. WRKY gene promoter sequences contained light responsive elements, core regulatory elements, and 12 abiotic stress cis-acting elements. WRKY genes were evenly distributed on each chromosome. Evidence of segmental and tandem duplication events was found in all six species in the Asterales and the Apiales, with segmental duplication inferred to play a major role in WRKY gene evolution. Among the six species, we uncovered 54 syntenic gene pairs between globe artichoke and lettuce. The six species are thus relatively closely related, consistent with their traditional taxonomic placement in the Asterales. This study, based on traditional species classifications, was the first to identify WRKY transcription factors in six species from the Asteranae. Our results lay a foundation for further understanding of the role of WRKY transcription factors in species evolution and functional differentiation.
Collapse
|