1
|
Zhu F, Li Y, Wang Y, Yao Y, Zeng R. The same heterozygous Col4A4 mutation triggered different renal pathological changes in Chinese family members. Front Genet 2023; 14:1180149. [PMID: 37323683 PMCID: PMC10265269 DOI: 10.3389/fgene.2023.1180149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Background: Mutations in the collagen components of the glomerular basement membrane (GBM) often lead to hereditary glomerulonephritis. Previous studies have identified that autosomal dominant mutations of Col4A3, Col4A4 or Col4A5 are associated with thin basement membrane nephropathy (TBMN), Alport syndrome and other hereditary kidney diseases. However, the genetic mutations underlying other glomerulonephritis types have not been elucidated. Methods: In this study, we investigated a Chinese family with hereditary nephritis using the methods of genetic sequencing and renal biopsy. Genomic DNA was extracted from peripheral blood of the proband and her sister, and subsequently was performed genetic sequencing. They were found to have the similar mutation sites. Other family members were then validated using Sanger sequencing. The proband and her sister underwent renal puncture biopsies, and experienced pathologists performed PAS, Masson, immunofluorescence, and immunoelectron microscopic staining of the kidney tissue sections. Results: Through genetic sequencing analysis, we detected a novel heterozygous frameshift mutation c.1826delC in the COL4A4 (NM_000092.4) gene coding region, and 1 hybrid missense variation c.86G>A (p. R29Q) was also detected in the TNXB (NM_019105.6) gene coding region in several members of this Chinese family. Interestingly, we found that the same mutations caused different clinical features and distinct pathological changes in individual family members, which confirmed that pathological and genetic testing are crucial for the diagnosis and treatment of hereditary kidney diseases. Conclusion: In this study, we found a novel heterozygous mutation in Col4A4 and co-mutations of the TNXB gene in this Chinese family. Our study indicated that the same Col4A4 mutated variants produced different pathological and clinical changes in different family members. This discovery may provide novel insights into the study of hereditary kidney disease. In addition, new genetic biology techniques and renal biopsy of individual family members are essential.
Collapse
Affiliation(s)
- Fengming Zhu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxi Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
2
|
Hirabayashi Y, Katayama K, Mori M, Matsuo H, Fujimoto M, Joh K, Murata T, Ito M, Dohi K. Mutation Analysis of Thin Basement Membrane Nephropathy. Genes (Basel) 2022; 13:genes13101779. [PMID: 36292665 PMCID: PMC9602179 DOI: 10.3390/genes13101779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
Thin basement membrane nephropathy (TBMN) is characterized by the observation of microhematuria and a thin glomerular basement membrane on kidney biopsy specimens. Its main cause is heterozygous mutations of COL4A3 or COL4A4, which also cause late-onset focal segmental glomerulosclerosis (FSGS) or autosomal dominant Alport syndrome (ADAS). Thirteen TBMN cases were analyzed using Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and exome sequencing. Ten heterozygous variants were detected in COL4A3 or COL4A4 in nine patients via Sanger sequencing, three of which were novel variants. The diagnostic rate of “likely pathogenic” or “pathogenic” under the American College of Medical Genetics and Genomics guidelines was 53.8% (7 out of 13 patients). There were eight single nucleotide variants, seven of which were glycine substitutions in the collagenous domain, one of which was a splice-site single nucleotide variant, and two of which were deletion variants. One patient had digenic variants in COL4A3 and COL4A4. While MLPA analyses showed negative results, exome sequencing identified three heterozygous variants in causative genes of FSGS in four patients with no apparent variants on Sanger sequencing. Since patients with heterozygous mutations of COL4A3 or COL4A4 showed a wide spectrum of disease from TBMN to ADAS, careful follow-up will be necessary for these patients.
Collapse
Affiliation(s)
- Yosuke Hirabayashi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Correspondence: ; Tel.: +81-59-231-5403; Fax: +81-59-231-5569
| | - Mutsuki Mori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Hiroshi Matsuo
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Kidney Center, Suzuka Kaisei Hospital, Suzuka 513-8505, Japan
| | - Mika Fujimoto
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Internal Medicine, Takeuchi Hospital, Tsu 514-0057, Japan
| | - Kensuke Joh
- Department of Pathology, The Jikei University School of Medicine, Tokyo 105-0003, Japan
| | - Tomohiro Murata
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
3
|
Kalmari A, Heydari M, Hosseinzadeh Colagar A, Arash V. In Silico Analysis of Collagens Missense SNPs and Human Abnormalities. Biochem Genet 2022; 60:1630-1656. [PMID: 35066702 DOI: 10.1007/s10528-021-10172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022]
Abstract
Collagens are the most abundant proteins in the extra cellular matrix/ECM of human tissues that are encoded by different genes. There are single nucleotide polymorphisms/SNPs which are considered as the most useful biomarkers for some disease diagnosis or prognosis. The aim of this study is screening and identifying the functional missense SNPs of human ECM-collagens and investigating their correlation with human abnormalities. All of the missense SNPs were retrieved from the NCBI SNP database and screened for a global frequency of more than 0.1. Seventy missense SNPs that met the screening criteria were characterized for functional and stability impact using six and three protein analysis tools, respectively. Next, HOPE and geneMANIA analysis tools were used to show the effect of SNPs on three-dimensional structure (3D) and physical interaction of proteins. Results showed that 13 missense SNPs (rs2070739, rs28381984, rs13424243, rs1800517, rs73868680, rs12488457, rs1353613, rs59021909, rs9830253, rs2228547, rs3753841, rs2855430, and rs970547), which are in nine different collagen genes, affect the structure and function of different collagen proteins. Among these polymorphisms, COL4A3-rs13424243 and COL6A6-rs59021909 were predicted as the most effective ones. On the other hand, designed mutated and native 3D of rs13424243 variant illustrated that it can disturb the protein motifs. Also, geneMANIA predicted that COL4A3 and COL6A6 are interacting with some proteins including: DDR1, COL6A1, COL11A2 and so on. Based on our findings, ECM-collagens functional SNPs are important and may be considered as a risk factor or molecular marker for human disorders in the future studies.
Collapse
Affiliation(s)
- Amin Kalmari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, 47416-95447, Babolsar, Mazandaran, Iran
| | - Mohammadkazem Heydari
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, 47416-95447, Babolsar, Mazandaran, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Science, University of Mazandaran, 47416-95447, Babolsar, Mazandaran, Iran.
| | - Valiollah Arash
- Department of Orthodontics, Dental School, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Du R, Liu J, Hu Y, Peng S, Fan L, Xiang R, Huang H. Novel heterozygous mutation in COL4A4 responsible for Alport syndrome in a Chinese family. Front Genet 2022; 13:899006. [PMID: 36159970 PMCID: PMC9501878 DOI: 10.3389/fgene.2022.899006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Chronic kidney disease, a global public health problem, results in kidney damage or a gradual decline in the glomerular filtration rate. Alport syndrome is commonly characterized by chronic glomerulonephritis caused by a structural disorder in the glomerular basement membrane. Currently, three disease-causing genes, namely collagen type IV alpha 3–5 (COL4A3, COL4A4, and COL4A5), have been associated with the occurrence of Alport syndrome. Methods: We enrolled a Chinese family where the affected individuals suffered from recurrent hematuria and proteinuria. The proband was selected for whole-exome sequencing to identify the pathogenic mutations in this family. Results: After data filtering, a novel heterozygous COL4A4 variant (NM_000092: c.853G>A/p. G285A) was identified as the putative genetic lesion in the affected individuals. Further co-segregation analysis using Sanger sequencing confirmed that this novel COL4A4 mutation (c.853G>A/p. G285A) exists only in the affected individuals and is absent in other healthy family members as well as in the control cohort of 200 individuals from the same locality. According to American College of Medical Genetics and Genomics guidelines, the mutation was classified as ‘potentially pathogenic’. A bioinformatics-based prediction analysis revealed that this mutation is pathogenic and may disrupt the structure and function of type IV collagen. This variant is located at an evolutionarily conserved site of COL4A4. Conclusion: In this study, we identified a novel heterozygous COL4A4 variant (c.853G>A) in a Chinese AS family and assisted to diagnose this AS proband as autosomal-dominant Alport syndrome (ADAS). Our study expands the spectrum of Alport syndrome mutations and contributes to the genetic counseling and diagnosis of patients with Alport syndrome.
Collapse
Affiliation(s)
- Ran Du
- Department of Nephrology, The Third Xiangya Hospital Central South University, Changsha, China
- Department of Cell Biology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Jishi Liu
- Department of Nephrology, The Third Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Yiqiao Hu
- Department of Cell Biology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
| | - Song Peng
- Department of Radiology, The Third Xiangya Hospital Central South University, Changsha, China
| | - Liangliang Fan
- Department of Nephrology, The Third Xiangya Hospital Central South University, Changsha, China
- Department of Cell Biology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Rong Xiang
- Department of Nephrology, The Third Xiangya Hospital Central South University, Changsha, China
- Department of Cell Biology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - Hao Huang
- Department of Nephrology, The Third Xiangya Hospital Central South University, Changsha, China
- Department of Cell Biology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
- *Correspondence: Hao Huang,
| |
Collapse
|
5
|
García-Aznar JM, De la Higuera L, Besada Cerecedo L, Gandiaga NP, Vega AI, Fernández-Fresnedo G, González-Lamuño D. New Insights into Renal Failure in a Cohort of 317 Patients with Autosomal Dominant Forms of Alport Syndrome: Report of Two Novel Heterozygous Mutations in COL4A3. J Clin Med 2022; 11:jcm11164883. [PMID: 36013122 PMCID: PMC9409901 DOI: 10.3390/jcm11164883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Alport syndrome (AS) is a clinically and genetically heterogeneous disorder with a wide phenotypic spectrum, onset, and progression. X-linked AS (XLAS) and autosomal recessive AS (ARAS) are severe conditions, whereas the severity of autosomal dominant AS (ADAS) may vary from benign familial hematuria to progressive renal disease with extra-renal manifestations. In this study, we collated information from the literature and analyzed a cohort of 317 patients with ADAS carrying heterozygous disease-causing mutations in COL4A3/4 including four patients from two unrelated families who carried two novel variants in COL4A3. Regarding the age of onset of the disease, 80% of patients presented urinalysis alterations (microhematuria, hematuria, and/or proteinuria) before the age of 40 years. The cumulative probability of suffering adverse renal events was mainly observed between 30 and 70 years, without statistical differences between COL4A3 and COL4A4. We observed statistically significant differences between the sexes in the age of developing ESKD in cases affected by mutations in COL4A3/4 (p value = 0.0097), suggesting that males begin experiencing earlier deterioration of renal function than women. This study supports the importance of follow-up in young patients who harbor pathogenic mutations in COL4A3/4. We update the knowledge of ADAS, highlighting differences in the progression of the disease between males and females.
Collapse
Affiliation(s)
| | | | | | - Nerea Paz Gandiaga
- Servicio de Genética, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Ana Isabel Vega
- Servicio de Genética, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - Gema Fernández-Fresnedo
- Servicio de Nefrología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | | |
Collapse
|
6
|
Barton AR, Hujoel MLA, Mukamel RE, Sherman MA, Loh PR. A spectrum of recessiveness among Mendelian disease variants in UK Biobank. Am J Hum Genet 2022; 109:1298-1307. [PMID: 35649421 PMCID: PMC9300759 DOI: 10.1016/j.ajhg.2022.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/12/2022] [Indexed: 01/09/2023] Open
Abstract
Recent work has found increasing evidence of mitigated, incompletely penetrant phenotypes in heterozygous carriers of recessive Mendelian disease variants. We leveraged whole-exome imputation within the full UK Biobank cohort (n ∼ 500K) to extend such analyses to 3,475 rare variants curated from ClinVar and OMIM. Testing these variants for association with 58 quantitative traits yielded 102 significant associations involving variants previously implicated in 34 different diseases. Notable examples included a POR missense variant implicated in Antley-Bixler syndrome that associated with a 1.76 (SE 0.27) cm increase in height and an ABCA3 missense variant implicated in interstitial lung disease that associated with reduced FEV1/FVC ratio. Association analyses with 1,134 disease traits yielded five additional variant-disease associations. We also observed contrasting levels of recessiveness between two more-common, classical Mendelian diseases. Carriers of cystic fibrosis variants exhibited increased risk of several mitigated disease phenotypes, whereas carriers of spinal muscular atrophy alleles showed no evidence of altered phenotypes. Incomplete penetrance of cystic fibrosis carrier phenotypes did not appear to be mediated by common allelic variation on the functional haplotype. Our results show that many disease-associated recessive variants can produce mitigated phenotypes in heterozygous carriers and motivate further work exploring penetrance mechanisms.
Collapse
Affiliation(s)
- Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA.
| | - Margaux L A Hujoel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|